岳玉波沙之敏赵峥陆欣欣张金秀赵琦曹林奎. Effects of rice cultivation patterns on nitrogen and phosphorus leaching and runoff losses

Size: px
Start display at page:

Download "岳玉波沙之敏赵峥陆欣欣张金秀赵琦曹林奎. Effects of rice cultivation patterns on nitrogen and phosphorus leaching and runoff losses"

Transcription

1 Chinese Journal of Eco-Agriculture, Dec. 2014, 22(12): DOI: /j.cnki.cjea * ** 岳玉波沙之敏赵峥陆欣欣张金秀赵琦曹林奎 ( ) 过量施用化肥造成的氮 磷流失已成为农业面源污染的主要污染源 为探究不同种植模式对氮 磷流失的影响, 采用大田试验, 研究比较了常规种植 绿色蛙稻和有机蛙稻 3 种水稻种植模式下稻田生态系统的田面水氮 磷浓度特征规律, 以及径流 渗漏的氮 磷流失特征和产量差异 结果表明, 3 种水稻种植模式中, 田面水总氮 (TN) 平均浓度为 : 常规种植 > 绿色蛙稻 > 有机蛙稻, 分别为 mg L mg L 1 和 8.20 mg L 1 与常规种植模式相比, 绿色蛙稻模式和有机蛙稻模式在整个水稻季中的 TN 总流失负荷分别减少 15.27% 和 25.76% 径流流失负荷为: 绿色蛙稻 > 常规种植 > 有机蛙稻, 氮的主要形态为铵态氮 (NH + 4 -N); 渗漏流失负荷为 : 常规种植 > 绿色蛙稻 > 有机蛙稻, 氮的形态以硝态氮 (NO 3 -N) 为主 田面水总磷 (TP) 平均浓度为 : 有机蛙稻 > 绿色蛙稻 > 常规种植, 分别为 0.82 mg L mg L 1 和 0.37mg L 1 总磷(TP) 总流失负荷为 : 有机蛙稻 > 绿色蛙稻 > 常规种植, 总流失负荷占施磷量的比例为 : 绿色蛙稻 > 常规种植 > 有机蛙稻, 并且以溶解性磷 (DP) 为主 3 种模式下水稻产量为 : 常规种植 > 有机蛙稻 > 绿色蛙稻, 与常规种植模式相比, 绿色蛙稻模式和有机蛙稻模式分别减产 19.33% 和 8.51% 研究结果表明, 有机蛙稻和绿色蛙稻模式能够有效地控制水稻田中氮 磷流失, 但会造成水稻减产 由于有机蛙稻模式要求种 养条件更高, 因此有机蛙稻模式下的产品往往品质最好, 经济效益最高 水稻种植模式氮素流失磷素流失径流渗漏产量 : S32 : A : (2014) Effects of rice cultivation patterns on nitrogen and phosphorus leaching and runoff losses YUE Yubo, SHA Zhimin, ZHAO Zheng, LU Xinxin, ZHANG Jinxiu, ZHAO Qi, CAO Linkui (School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai , China) Abstract The loss of nitrogen and phosphorus due to excessive application has become a major form in agricultural non-point pollution. In order to explore the impact of different planting patterns (conventional cultivation, green rice-frog ecosystem, organic rice-frog ecosystem) on nitrogen and phosphorus loss, a field experiment was conducted and the characteristics of nitrogen and phosphorus in surface water, runoff, leakage as well as rice yield differences analyzed in three paddy ecosystems. The results showed that among the paddy ecosystems, the order of average concentration of total nitrogen (TN) in surface water was: conventional cultivation (18.87 mg L 1 ) > green rice-frog ecosystem (8.98 mg L 1 ) > organic rice-frog ecosystem (8.20 mg L 1 ). Compared with conventional cultivation, green rice-frog ecosystem and organic rice-frog ecosystem decreased TN loss during rice growth season by 15.27% and 25.76%, respectively. The TN runoff loss was in the following order: green rice-frog ecosystem > conventional cultivation > organic rice-frog ecosystem. NH + 4 -N was the main form of TN runoff. The order of TN leaching loss of was conventional cultivation > green rice-frog ecosystem > organic rice-frog ecosystem, with NO 3 -N as the main form of TN leaching. Also the ratio of total TN loss to nitrogen use in the three treatments was in the range of 1.25% 2.38%, all less than 3%. Average total phosphorus (TP) concentration of surface water was in the following order: organic rice-frog ecosystem (0.82 mg L 1 ) > green rice-frog ecosystem (0.64 mg L 1 ) > conventional cultivation (0.37 mg L 1 ). Total loss of TP was in the order of: organic rice-frog ecosystem > green rice-frog ecosystem > conventional cultivation. Then the order of proportion of total loss of * (2012BAD15B03)( ) ** :, clk@sjtu.edu.cn, yueyubo@126.com : :

2 12 : 1425 phosphorous was: green rice-frog ecosystem > conventionally cultivation treatment > organic rice-frog ecosystem, most of which was dissolved phosphorus. The order of rice yield under the three treatments was: conventional cultivation > organic rice-frog ecosystem > green rice-frog ecosystem. Compared with conventional cultivation, yield under green rice-frog ecosystem and organic rice-frog ecosystem decreased respectively by 19.33% and 8.15%. Research results showed that organic rice-frog ecosystem and green rice-frog ecosystem effectively controlled nitrogen and phosphorus loss in paddy fields although production decreased. Production quality and economic benefits of organic rice-frog ecosystem were better than those of green rice-frog ecosystem and conventional cultivation treatment. The requirements for organic rice-frog ecosystem were higher than those for green rice-frog ecosystem and conventional cultivation treatment. Keywords Rice cultivation pattern; Nitrogen loss; Phosphorus loss; Runoff; Leaching; Yield (Received Jul. 13, 2014; accepted Sep. 26, 2014) 20,, [1] [2], t t 17.0%~45.7% [3], 15%~25% [4],,,,, [5] 200~1 700 mg L 1[6],,,,,,,,,, [7],,,, 3, 1 材料与方法 1.1, ,, 15.6, mm 9, 1.2 3,, (Rana rugulosa),, ;, ;,, 9,,, 4, m 2, 3 m, 60 cm PVC 90 cm,, 20 cm 10 cm 3 5 mm,, ;,,,, 20 cm, [8] PVC 20 cm,, [6],,,

3 [9] kg(n) hm 2, (Trifolium pratense),,, 2 Table 1 表 1 不同水稻种植模式中的土壤理化性质 Physical and chemical properties of soils under different rice cultivation patterns Property Conventional cultivation system Green frog-paddy ecosystem Organic frog-paddy ecosystem Water storage (mm) Bulk density (g cm 3 ) Porosity (%) ph EC (ms cm 1 ) Total N (g kg 1 ) Total P (g kg 1 ) Total K (g kg 1 ) Organic matter (g kg 1 ) Available P (mg kg 1 ) Available K (mg kg 1 ) Cultivation pattern Clover Colza cake 表 2 不同水稻种植模式下的施肥种类和施肥量 Table 2 Fertilization application rates of three rice cultivation patterns Base Fertilizer Mixed seed cake Biological compound BB Bulk blending Biological compound 1( ) First topdressing BB Bulk blending Urea Biological compound 2() Second topdressing BB Bulk blending kg(n) hm 2 Urea Fertilizer application CT GT OT CT GT OT CT, GT and OT represent conventional cultivation treatment, green rice-frog ecosystem and organic rice-frog ecosystem. The same below. : 1) N 18% P 6% K 8%,,,,,, 2) :, 75%~ 85%, 7%,,,,,, [10] 3)BB :,,, 52% 1.3 0~20 cm, ; 1 d 3 d 5 d 7 d 11 d 15 d 20 d 30 d, 30 d 1 ; ; 1 m 2, [11] : (TN) ph ; : (NH + 4 -N)(NO 3 -N) (TP) (DP) SmartChem 2000 (Alliance, ), ;, ; DP, 0.45 μm, [12]

4 12 : Microsoft Excel 2010 SPSS 17.0 ANOVA 2 结果与分析 TN 1 3 TN, 10 d,, TN [13], TN 2 1 d, mg L 1 ; 1 d, mg L mg L 1,,,, TN, 28, 3 TN mg L mg L mg L 1 TN,, TN Fig. 1 图 1 不同水稻种植模式田面水总氮 (TN) 浓度变化特征 Variation of total N concentration of surface flood water of three rice cultivation patterns , 8,, 7 3 2, 0.18~9.20 kg hm 2 1, , 2 d, TN,,,, mm,, 3 3 TN kg hm kg hm kg hm 2,, 1 2 d, TN ;, TN,, TN 16.17% 图 2 Fig. 2 不同水稻种植模式下稻季氮素径流流失负荷 Variation of loss loading of N runoff of three rice cultivation patterns

5 Cultivation pattern NO 3 -N 表 3 不同水稻种植模式下稻季氮素总径流流失负荷和总渗漏流失负荷 Table 3 N runoff and leaching losses loadings of three rice cultivation patterns Runoff loss loading NH 4 + -N Total N Ratio total N to N (%) NO 3 -N Leaching loss loading NH 4 + -N Total N Ratio of total N to N (%) CT 2.27a 3.01a 13.65a 4.52a 2.40a 0.27a 7.13a 2.38a GT 4.17b 5.64b 13.85a 4.72a 2.12a 0.13b 3.68b 1.25b OT 1.80a 3.54a 11.61b 3.68b 2.77a 0.48c 5.75a 1.82b 1.44%, TN 4.52% 4.72% 3.68%,,, [14] %,, [15 17] 70 cm, 60 cm [11] 1.17 mm d 1 3 3, 0.10~1.61 kg hm 2, TN,, TN 3 TN 3, 3 TN : 7.13 kg hm kg hm kg hm 2, TN, TN 19.35%, 48.67%, 3 TN 1.25%~2.38%, 3%, TN 图 3 不同水稻种植模式下稻季氮素渗漏流失动态变化 Fig. 3 Variation of N leaching loss of three rice cultivation patterns , 3 TP 4, 0.10~2.92 mg L 1, 0.02 mg L 1[15] 4, TP TN,,,, TP, 2.92 mg L mg L 1 ; TP 1, 1.13 mg L 1 TP 0.37 mg L mg L mg L 1,,,,,, [15]

6 12 : 1429 Fig. 4 图 4 不同水稻种植模式下稻季田面水总磷 (TP) 浓度动态变化 Variation of total P concentrations for surface flood water of three rice cultivation patterns TP 5, TN, TP T N,, [16] 图 5 Fig. 5 不同水稻种植模式下稻季 P 径流流失负荷 Variation of loss loading of P runoff of three rice cultivation patterns TP 0.59 kg hm kg hm kg hm 2, TP,,, TP, ; TP,,, TP 11.54%, 62.18%, TP 0.67%~ 3.02%, TP, DP, 59.32%~69.88%, DP Table 4 表 4 不同水稻种植模式稻季磷素径流流失负荷 P runoff and leaching losses loadings in different rice cultivation patterns Cultivation pattern Soluble P Runoff loss loading Total P Ratio of total P to P (%) Soluble P Leaching loss loading Total P Ratio of total P to P (%) CT 0.35a 0.59a 2.24a 0.21a 0.25a 1.12a GT 0.91b 1.38b 3.02a 0.31a 0.39b 1.00a OT 1.09b 1.56b 0.67b 0.42a 0.53c 0.26b TP 6, ~ kg hm 2, TP,, TP,, 3 TP 6, 3 TP 0.25 kg hm kg hm kg hm 2,, 3 TP

7 图 6 不同水稻种植模式下稻季磷素渗漏流失动态变化 Fig. 6 Variation of P leaching loss of three rice cultivation patterns, TP 26.42%, 52.83%, TP : 1.12%, 1.00%, 0.26%, TP, ( 5), ( ), 3 : kg hm kg hm kg hm 2, 3, 8.51% 19.33%,,,,,,,,,,,, [17],, Table 5 表 5 不同种植模式下水稻产量及构成因素 Rice yield and components of three rice cultivation patterns Cultivation pattern 1000-grain weight (g) Average spike length (cm) Theoretical straw production Theoretical grain yield Real grain yield Ratio of grain to straw CT 24.89a 12.35a a a a 0.86a GT 25.06a 12.11a b c c 0.89a OT 25.21a 12.80a a b b 0.93a 3 讨论与结论 1) 3, TN TP, 10 d, TN : >> ; TP : >> 2) 3, TN : > >, ;, TN : > >, ; 3 : >> 3)TP : >

8 12 : 1431 >, TP : >>, DP TP : > >, TP : >>, DP 3 : >>, : >>, 4) 3 : >>, 8.51% 19.33% 5),, [18] ;,,,,,,, ;,,,,,,,, 3,,, 参考文献 [1],,,. [J]., 2003, 9(3): Yang X Q, Feng F, Song C Q, et al. Fate and efficient use of nitrogen in main agroecosystems[j]. Plant Nutrition and Fertilizer Science, 2003, 9(3): [2]. [J]., 2013, 31(5): Li Z L. Review of the current situation and control countermeasures in agricultural non-point source pollution control in China[J]. Agricultural Research in the Arid Areas, 2013, 31(5): [3]. [J]., 2002, 21(1): Li Z F. Nitrogen loss in soil of organic agriculture and its control procedure[j]. Agricultural Environmental Protection, 2002, 21(1): [4],,,. [J]., 2011, 27(4): Wen Y, Zhang H L, Xie J W, et al. Studies on the nitrogen loss from rice field with different treatments[j]. Bulletin of Science and Technology, 2011, 27(4): [5],,,. [J]. :, 2003, 21(4): Chen G J, Cao L K, Lu Y T, et al. Study on the testing hole on the nitrogen loss in the rice field[j]. Journal of Shanghai Jiaotong University: Agriculture Science Edition, 2003, 21(4): [6],,,. N [J]., 2008, 28(10): Li C F, Cao C G, Wang J P, et al. Dynamic variations and losses of N in floodwater of paddy fields in integrated rice-duck and rice-fish ecosystems[j]. Acta Scientiae Circumstantiae, 2008, 28(10): [7],,. [J]., 2001, 21(4): Zhang Z J, Dong L, Zhu Y M. The dynamic characters and modeling of nitrogen in paddy field surface water and nitrogen loss from field drainage[j]. Acta Scientiae Circumstantiae, 2001, 21(4): [8],,,. [J]., 2013, 32(8): Jiang P, Yuan Y K, Zhu R H, et al. Study on the nitrogen loss from paddy fields on different water management[j]. Journal of Agro-Environment Science, 2013, 32(8): [9],,,. [J]., 2010, 29(3): Tong L G, Li C F, Yang J H, et al. Floodwater phosphorus dynamics and losses from no-tillage rice fields[j]. Journal of Agro-Environmental Science, 2010, 29(3): [10],,,. [J]., 2006, 38(6): Tian Y H, He F Y, Yin B, et al. Dynamics changes of nitrogen and phosphorus concentrations in surface water of paddy field[j]. Soils, 2006, 38(6): [11],,. [J]., 2006, 34(12): Tian Y H, Yin B, Zhu Z L. Study on nitrogen losses via leaching in paddy soil[j]. Journal of Anhui Agricultural Science, 2006, 34(12): [12]. [M]. :, 1989: , SEPA. Methods for Examination of Water and Wastewater[M]. Beijing: China Environmental Science Press, 1989: ,

9 [13] Azam F. Comparative effects of organic and inorganic nitrogen sources applied to a flooded soil on rice yield and availability of N[J]. Plant and Soil, 1990, 125(2): [14] Zhang D, Min Q W, He L, et al. Value of ecosystem services in conventional and organic rice paddies: A case study in Wannian, Jiangxi, China[J]. Chinese Journal of Population Resources and Environment, 2010, 8(2): [15] Zhang H C, Cao Z H, Wang G P, et al. Winter runoff losses of phosphorus from paddy soils in the Taihu Lake Region of South China[J]. Chemosphere, 2003, 52(9): [16] Peng S Z, Yang S H, Xu J Z, et al. Nitrogen and Phosphorus leaching losses from paddy fields with different water and nitrogen managements[j]. Paddy and Water Environment, 2011, 9(3): [17] Nagumo T, Tajima S, Chikushi S, et al. Phosphorus balance and soil phosphorus status in paddy rice fields with various practices[j]. Plant Production Science, 2013, 16(1): [18] Subehia S K, Dhanika. Soil nitrogen and its effect on rice (Oryza sativa) yield under integrated nutrient management in a north-western Himalayan soil[j]. Indian Journal of Soil Conservation, 2013, 41(1): 欢迎订阅 2015 年 中国生态农业学报,,, RCCSE, CNKI, (CABI) (CA)(IC) ( ) (2014 ) , 3, ,,,,,,,,,,, CN /S, ISSN , 16, 128, 35, 420 : , ( / ) : (050022) 286 : (0311) : (0311) : editor@sjziam.ac.cn