安调过 李立会. Application of molecular marker techniques in rye research

Size: px
Start display at page:

Download "安调过 李立会. Application of molecular marker techniques in rye research"

Transcription

1 Chinese Journal of Eco-Agriculture, March 2011, 19(2): DOI: /SP.J * 尹冬冬 1,3 安调过 1** 李立会 2 许红星 1 ( ; ; ) 黑麦 (Secale cereal L.) 作为小麦的近缘植物, 是改良小麦抗病性 产量和品质等性状的重要基因源 分子标记技术作为分子生物学研究中极具价值的一种研究工具已被广泛用于黑麦研究 本文论述了目前分子标记技术在黑麦遗传连锁图谱构建 有益基因定位和黑麦特异性分子标记开发应用等方面的研究进展, 并分析了该技术在黑麦研究中的应用前景 黑麦分子标记技术简单重复序列分子标记辅助选择 : S512.5 : A : (2011) Application of molecular marker techniques in rye research YIN Dong-Dong 1,3, AN Diao-Guo 1, LI Li-Hui 2, XU Hong-Xing 1 (1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang , China; 2. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing , China; 3. Graduate University of Chinese Academy of Sciences, Beijing , China) Abstract Rye (Secale cereal L.) is an important alien gene resources in wheat (Triticum aestivum L.) genetic research as it is a related species of Triticinae. It has been used in improving disease resistance, yield and grain quality of wheat. Molecular marker technique (a valuable tool in molecular biological research) has been used extensively in rye research. This review summarized the progress in research regarding the applications of molecular marker techniques in rye. Such techniques included genetic linkage map construction, valuable gene identification and mapping, and specific rye genome marker development and application. The application prospects of molecular marker techniques in rye research were also discussed. Key words Secale cereal L., Molecular marker technique, Simple sequence repeat, Marker-assisted selection (Received May 4, 2010; accepted July 26, 2010) (Secale cereal L.) (Gramineae) (Triticeae) (Triticinae), (Tertiary gene pool) [1],,,, (Blumeria graminis f sp tritici) (Puccinia graminis f sp tritici) (Puccinia triticina Eriks.) (Puccinia graminis Pers. f. sp. tritici) (Tilletia controversa Kuhn, TCK) (Barley yellow dwarf virus, BYDV), [2 7], DNA 20 70,,, : (1) ; (2) ; (3) ; (4) ; (5) ; (6) * (2006BAD13B02) (863 ) (2011AA100103) ** : 安调过 (1965~), 女, 博士, 研究员, 研究方向为作物种质创新 优异基因的发掘和聚合育种 andiaoguo@163.com 尹冬冬 (1985~), 男, 硕士研究生, 研究方向为小麦遗传改良与种质创新 yindongdong2003@163.com : :

2 (Marker-assisted selection, MAS) 1 DNA 分子标记技术的类别与发展 DNA : (1)DNA, (Restriction fragment length polymorphisms, RFLPs); (2)PCR(Polymerase chain reaction), DNA(Random amplified polymorphic DNAs, RAPDs) (Amplified fragment length polymorphisms, AFLPs) (Microsatellites or simple sequence repeats, SSRs); (3) (Plant retrotransposons); (4) (Single nucleotide polymorphisms, SNPs) [8 9], 4 (Sequence tagged sites, STSs) (Inter simple sequence repeats, ISSRs) (Selective amplification of microsatellite polymorphic loci, SAMPL) (Sequencetagged microsatellites, STMs) EST-SSRs (Expressed sequence tags-simple sequence repeats) EST-SNPs (Expressed sequence tags-single nucleotide polymorphisms) [10] SSR 1.1 SSR (Repetitive sequences), : (1) (Simple sequence repeats, SSR) (Microsatellite), (CAG)n; (2) (Complex sequence repeats, CSR), (Transposable elements, TE); (3) (Mathematically defined repeats, MDR) SSR (Short tandem repeat, STR) SSR, CA/GT DNA,,,, SSR PCR, SSR : (1), ; (2), ; (3) ; (4), PCR, DNA SSR, RFLP, RAPD SSR DNA, DNA, SSR, [11 13] 1.2 EST-SSR (Expressed sequence tag, EST) EST-SSR 150~500 bp (cdna) Adams [14] 1991 (EST ) EST 1991 EST 2 000, (National Center for Biotechnology Information, NCBI)EST EST EST EST EST mrna,, EST [15] SSR(Genome-SSR, G-SSR), EST ; EST-SSR EST DNA,, EST-SSR G-SSR [16] SSR,, EST-SSR, EST-SSR Varshney [16] 165 EST-SSR 78.2% 75.2% 42.4%

3 2 : 479 Thiel [17] 311 EST-SSR, 80%, 60%, 40% EST-SSR,, EST 2 分子标记技术在黑麦研究中的具体应用 2.1 RFLP RAPD SSR, [18 30] Masojć [24] 1 RFLP 282, cm, 139 RFLP 69 RAPD 13 SSR Milczarski [26] 99 RAPD 18 SSR 14 STS 9 SCAR 7 ISSR, cm ; Masojć [24], 611, 70~109, cm, 3.1 cm [25], Khlestkina [25] 39 EST-SSR 60 WMS, SSR 1R 2R 3R 4R 5R 6R 7R,, 44 Plaschke [27] RFLP 29, 129 cm 5R (Consensus linkage map) BÖrner [28] 12 RFLP, 374 RFLP 24 15, 413 ; 15 5, Stojałowski [29] 6R, 1.3 cm, cm Gustafson [30] JoinMap ( UC90 E-line, P87 P105, I0.1-line I0.1-line, E-line R-line Ds2 RxL10 ), cm 1.6 cm 5, 2.2, 1R 7R [31 32] ;, (Pm8 Pm17) (Yr9) (Lr26) (Sr31) (Ir) (Vr) 1RS Mohler [33] 1 RFLP STS, Pm8 Pm17 Mago [34 35] (Hordeum vulgare)1hs (Aegilop tauschii)1ds RFLP 1RS Lr26 Sr31 Yr9; 3, cm Wehling [36] SSR STS, 2 Pr1 Pr2 6RL 7RL Anderson [37] 1A 1B 1D 1H 1R 111 RFLP, Dn7 1R, Xbcd1434 XksuD cm 7.4 cm, Gallego [38 39] 22 RAPD 11, 13 3R 4R 6R ; 2 6RS Alt1 SCAR ScR ScB , 2 Alt1 2.1 cm 5.5 cm, MAS Miftahudin [40 41] RFLP Alt3 4R, 2 Alt3 0.4 cm 0.7 cm Alt cm, BÖrner [28] RFLP (Ct2 Sp1) Korzun [42]

4 RFLP Ddw1 Hp 5R, Xwg199 Ddw1 5.6 cm, Ddw1 5AL Rht12 ; Tenhola-Roininen [43] Ddw1 67.8% QTL WMS6 REMS1218com, REMS1218com 13 cm Stracke [44] RAPD AFLP Rfp1 Rfp2, SCAR, 2.9 cm 5.2 cm Malyshev [45] SSR 2 sy1 sy9; sy1 2RL, Xscm43 Xgwm132 ; sy9 7RL, 2 Xrems1188 Xrems cm 0.1 cm Dobrovolskaya [46] G-SSR EST-SSR 2 (Multi row spike, MRS) ; Mrs1 Xgwm988 Xgwm484; Mol Xrms5b Xcfe209, 15.7 cm 10.7 cm;, MAS 2.3,,,,,,,, [47 48], , Sharp [49] RFLP Katto [50] psc20h F3 R3 [51] AF BL/1RS, [52] 50 SSR 13 DNA, 3 gwm232, gwm260 gwm644, 2.3.2,,, Koebner [53] rrna, 1R NOR-R1, 1RS [54] NOR-R1 1R, NOR-R1 1R [55] RAPD, SCAR PSCM 1082, 6R [56 57] 1 EST 5 1R EST-STS ; 2 EST-STS 1RS, 1RS Kofler [58] BAC 74 1RS [59] 7 88 SSR 9 gwm232, 6R, 6R Zhuang [60] EST 81 EST-SSR, 30, 8 1R 4R 5R R7, 7 Lee [61] 2 EST 114, 2BS/2RL 6 2RL, RT-PCR(Real time PCR), 1 Wang [2] 1RS EST-STS,

5 2 : 481 (Genomic in situ hybridization, GISH) (Multicolor fluorescence in situ hybridization, FISH), 1 2BL/1RS, 3 分子标记技术在黑麦研究中的应用前景 DNA RGAs(Resistance gene analogs) RMAPD (Random microsatellite amplify polymorphic DNA) SRAP(Sequence related amplified polymorphism) TRAP(Target region amplified polymorphism), [41,62] (Map-based cloning),, Fu [63] Yr36; Xucw71 Xbarc136,,, 0.14 cm,,,, [64 65],,, ; ;, 1,, [66], [67 69],,,,,,,, QTL, [70 72],,, MAS 参考文献 [1]. [J]., 2000, 20(3): [2] Wang C M, Zheng Q, Li L H, et al. Molecular cytogenetic characterization of a new T2BL 1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew[j]. Plant Dis, 2009, 93(2): [3] Friebe B, Hatchett J H, Sears R G, et al. Transfer of Hessian fly resistance from Chaupon rye to hexaploid wheat via 2BS/2RL wheat-rye chromosome translocation[j]. Theor Appl Genet, 1990, 79(3): [4] Carver B F, Rayburn A L. Comparison of related wheat stocks possessing 1B or 1RS 1BL chromosomes agronomic performance[j]. Crop Sci, 1994, 34(6): [5] Moreno-Sevilla B, Baenziger P S, Peterson C J, et al. The 1BL/1RS translocation: Agronomic performance of F 3 - derived from a winter wheat cross[j]. Crop Sci, 1995, 35(4): [6] Rabinovich S V. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L.[J]. Euphytica, 1998, 100(1/3): [7], Snape J W. 6R [J]., 1995, 40(24):

6 [8] Gupta P K, Varshney R K, Sharma P C, et al. Molecular markers and their applications in wheat breeding[j]. Plant Breed, 1999, 118(5): [9] Joshi S P, Ranjekar P K, Gupta V S. Molecular markers in plant genome analysis[j]. Curr Sci, 1999, 77(2): [10] Landjeva S, korzun V, Börner A. Molecular markers: actual and potential contributions to wheat genome characterization and breeding[j]. Euphytica, 2007, 156(3): [11],,, P GISH SSR [J]., 2006, 26(6): [12] Chen X M, Luo Y H, Xia X C, et al. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis[j]. Plant Breed, 2005, 124(3): [13] Dreisigacker S, Zhang P, Warburton M L, et al. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments[j]. Crop Sci, 2004, 44(2): [14] Adams M D, Kelley J M, Gocayne J D, et al. Complementary DNA sequencing: Expressed sequence tags and human genome project[j]. Science, 1991, 252(5013): [15] Varshney R K, Thiel T, Stein N, et al. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species[j]. Cell Mol Bio Lett, 2002, 7(2A): [16] Varshney R K, Sigmund R, Börner A, et al. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice[j]. Plant Sci, 2005, 168(1): [17] Thiel T, Michalek W, Varshney K, et al. Exploiting EST databases for the development and characterization of gen-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theor Appl Genet, 2003, 106(3): [18] Melz G, Schlegel R, Thiele V. Genetic linkage map of rye (Secale cereale L.)[J]. Theor Appl Genet, 1992, 85(1): [19] Philipp U, Wehlin G P, Wricke G. A linkage map of rye[j]. Theor Appl Genet, 1994, 88: [20] Wanous M K, Goicoechea P G, Gustafson J P. RFLP maps of rye chromosomes 6R and 7R including terminal C bands[j]. Genome, 1995, 38(5): [21] Loarce Y, Hueros G, Ferrer E. A molecular linkage map of rye[j]. Theor Appl Genet, 1996, 93(7): [22] Ma X F, Wanous M K, Houchins K, et al. Molecular linkage mapping in rye (Secale cereale L.)[J]. Theor Appl Genet, 2001, 102(4): [23] Korzun V, Malyshev S, Voylokov A V, et al. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci[j]. Theor Appl Genet, 2001, 102(5): [24] Masojć P, Myśków B, Milczarski P. Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers[j]. Theor Appl Genet, 2001, 102(8): [25] Khlestkina E K, Than M H M, Pestsova E G, et al. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags[j]. Theor Appl Genet, 2004, 109(4): [26] Milczarski P, Banek-Tabor A, Lebiecka K, et al. New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2 RXL10 intercross[j]. J Appl Genet, 2007, 48(1): [27] Plaschke J, Börner A, Xie D X, et al. RFLP mapping of genes affecting plant height and growth habit in rye[j]. Theor Appl Genet, 1993, 85(8): [28] Börner A, Korzun V. A consensus linkage map of rye (Secale cereale L.) including 374 RFLPs, 24 isozymes and 15 gene loci[j]. Theor Appl Genet, 1998, 97(8): [29] Stojałowski S, Mysków B, Milczarski P, et al. A consensus map of chromosome 6R in rye (Secale cereale L.)[J]. Cellular & Molecular Biology Letters, 2009, 14(2): [30] Gustafson J P, Ma X F, Korzun V, et al. A consensus map of rye integrating mapping data from five mapping populations[j]. Theor Appl Genet, 2009, 118(4): [31] Singh N K, Shepherd K W, Mcintosh R A. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R[J]. Theor Appl Genet, 1990, 80: [32] Schlegel R. Genes, markers and linkage data of rye (Secale cereale L.), 6th updated inventory[r] [33] Mohler V, Hsams L K, Zeller F J, et al. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat[j]. Plant Breeding, 2001, 120(5): [34] Mago R, Spielmeyer W, Lawrence G J, et al. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines[j]. Theor Appl Genet, 2002, 104(8): [35] Mago R, Miah H, Lawrence G J, et al. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1[J]. Theor Appl Genet, 2005, 112(1): [36] Wehling P, Linz A, Hackauf B, et al. Leaf-rust resistance in rye (Secale cereale L.).. Genetic analysis and mapping of resistance genes Pr1 and Pr2[J]. Theor Appl Genet, 2003, 107(3): [37] Anderson G R, Papad, Peng J H, et al. Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat[j]. Theor Appl Genet, 2003, 107(7): [38] Gallego F J, López-Solanilla E, Figueiras A M, et al. Chromosomal location of PCR fragments as a source of DNA markers linked to aluminum tolerance genes in rye[j]. Theor Appl Genet, 1998, 96(3/4): [39] Gallego F J, Calles B, Benito C. Molecular markers linked to the aluminum tolerance gene Alt1 in rye (Secale cereale L.)[J]. Theor Appl Genet, 1998, 97(7): [40] Miftahudin, Scoles G J, Gustafson, J P. AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.)[J]. Theor Appl Genet, 2002, 104(4): [41] Miftahudin T C, Ross K, Scoles G J, et al. Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity[j]. Theor Appl Genet, 2005, 110(5): [42] Korzun V, Melz G, Börner A. RFLP mapping of the dwarfing

7 2 : 483 (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.)[J]. Theor Appl Genet, 1996, 92(8): [43] Tenhola-Roininen T, Tanhuanpää P. Tagging the dwarfing gene Ddw1 in a rye population derived from doubled haploid parents[j]. Euphytica, 2010, 172(3): [44] Stracke S, Schilling A G, Főrster J, et al. Development of PCR-based markers linked to dominant genes for male-fertility restoration in Pampa CMS of rye (Secale cereale L.)[J]. Theor Appl Genet, 2003, 106(7): [45] Malyshev S V, Dolmatovich T V, Voylokov A V, et al. Molecular Genetic Mapping of the sy1 and sy9 Asynaptic genes in rye (Secale cereale L.) using microsatellite and isozyme markers[j]. Russian Journal of Genetics, 2009, 45(12): [46] Dobrovolskaya O, Martinek P, Voylokov A V, et al. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale)[j]. Theor Appl Genet, 2009, 119(5): [47] Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research[j]. Genome, 2006, 49(9): [48],,,. (GISH) [J]., 1995, 22(5): [49] Sharp P J, Kreis M, Shewry P. Location of β2 amylase sequence in wheat and its relatives[j]. Theor Appl Genet, 1988, 75: [50] Katto C M, Endo T R, Nasuda S. A PCR-based marker for targeting for small rye segments in wheat background[j]. Genes Genet Syst, 2004, 79(4): [51],,,. PCR [R]., 2005 [52],. [J]. :, 2009, 30(1): [53] Koebner R M D. Generation of PCR-based markers for the detection of rye chromatin in a wheat background[j]. Theor Appl Genet, 1995, 90(5): [54],,,. 1R PCR [J]., 1999, 41(6): [55],,,. DNA SCAR [J]., 2006, 26(12): [56], 祎,,. 1R 1V 1Rk#1 [J]., 2007, 33(11): [57] Wang C M, Li L H, An D G, et al. Development and application of EST-STS markers specific to chromosome 1RS of Secale cereale[j]. Cereal Research Communications, 2009, 37(1): [58] Kofler R, Bartoš J, Gong L, et al. Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1[J]. Theor Appl Genet, 2008, 117(6): [59],,,. SSR 6R DNA [J]., 2008, 25(5): [60] Zhuang L F, Song L X, Qian B L, et al. Development and chromosome mapping of new wheat EST-SSR markers and application for characterizing rye chromosomes added in wheat[j]. Acta Agron Sin, 2008, 34(6): [61] Lee T G, Hong M J, Johnson J W, et al. Development and functional assessment of EST-derived 2RL-specific markers for 2BS 2RL translocations[j]. Theor Appl Genet, 2009, 119(4): [62] Xu W G, Wang G S, Li C X, et al. Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22[J]. Mol Breeding, 2010, 26(1): [63] Fu D L, Uauy C, Distelfeld A, et al. A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust[j]. Science, 2009, 323(5919): [64],,,. [J]., 2008, 16(6): [65],,. [J]., 2008, 16(3): [66] Liu S B, Zhou R H, Dong Y C, et al. Development, utilization of introgression lines using synthetic wheat as donor[j]. Theor Appl Genet, 2006, 112(7): [67] Schmalenbach I, Léon J, Pillen K. Identification and verification of QTLs for agronomic traits using wild barley introgression lines[j]. Theor Appl Genet, 2008, 118(3): [68] He R L, Chang Z J, Yang Z J, et al. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat[j]. Theor Appl Genet, 2009, 118(6): [69] Falke K C, Sušić Z, Wilde P, et al. Testcross performance of rye introgression lines developed by marker-assisted backcrossing using an Iranian accession as donor[j]. Theor Appl Genet, 2009, 118(7): [70],,,. [M]. :, 1985: [71] Koebner R, Summers R. The impact of molecular markers on the wheat breeding paradigm[j]. Cell Mol Biol Lett, 2002, 7(2B): [72] Bagge M, Xia X C, Lűbberstedt T. Functional markers in wheat[j]. Plant Biology, 2007, 10(2):