Dry season soil conditions and soil nitrogen availability to wet season wetland rice

Size: px
Start display at page:

Download "Dry season soil conditions and soil nitrogen availability to wet season wetland rice"

Transcription

1 Soil Science and Plant Nutrition ISSN: (Print) (Online) Journal homepage: Dry season soil conditions and soil nitrogen availability to wet season wetland rice Wilbur Ventura & Iwao Watanabe To cite this article: Wilbur Ventura & Iwao Watanabe (1978) Dry season soil conditions and soil nitrogen availability to wet season wetland rice, Soil Science and Plant Nutrition, 24:4, , DOI: / To link to this article: Published online: 19 Apr Submit your article to this journal Article views: 248 View related articles Citing articles: 18 View citing articles Full Terms & Conditions of access and use can be found at

2 Soil Sci. Plant Nutr., 24 (4), , 1978 DRY SEASON SOIL CONDITIONS AND SOIL NITROGEN AVAILABILITY TO WET SEASON WETLAND RICE Wilbur VENTURA and Iwao WATANABE The International Rice Research Institute, Los Ballos, Loguna, Philippines Received May 4,1978 A pot experiment with Maahas clay soil covered three consecutive crops. After uniform growth of the first crop, the soils were subjected to different moisture conditions during the dry season. Prolonged drying before wet season flooded rice stimulated increased release of mineral nitrogen but moistening of the dry soil for a dryland crop or by occasional rain during the dry season reduced nitrogen use from the soil in the next wet season. One cycle of alternate wet and dry soil preparation for 20 days before transplanting rice improved soil nitrogen availability and plant uptake of fertilizer nitrogen. The initial growth of rice was retarded after flooding the previously moist dryland or dried soil, but not in the continuously flooded soils. Losses of applied nitrogen were sma)) in continuously flooded soils and were greater in the previously moist dryland and dry treatments. Uptake of soil nitrogen, however, was much higher in the air-dried soil treatment and in the dry with alternate wet and dry preparation treatments. Total nitrogen uptake (soil+fertilizer) was also greater in those dry treatments. Uptake of soil nitrogen in the wet-season crop was roughly proportional to the amounts of ammonia measured just before transplanting. The proportion of the uptake of immobilized fertilizer nitrogen to available soil nitrogen was constant among treatments. Release of immobilized fertilizer nitrogen was also greatly enhanced by soil drying. For 1976 wet-season crop, the availability of fertilizer nitrogen immobilized in the 1975 wet season was three times higher than that of native soil nitrogen. Additional Tndex Words: soil nitrogen availability, soil condition, wetland rice. Nitrogen nutrition of wetland rice depends largely on available soil nitrogen (5, 7). Efficient use of soil nitrogen is an important consideration for minimizing dependency on purchased fertilizer for rice production. Amounts of potentially available or mineralizable soil nitrogen in tropical rice soils were surveyed to evaluate soil nitrogen fertility (4). But the amount of ammonia released by the flooding of air-dried soil gives only the potential capacity of available soil nitrogen (14, 15). The actual amount of soil nitrogen absorbed by the wetland rice plant during its growth period is affected by factors such as drying during fallow (15), puddling and land preparation (8), temperature (17, 18), and mid season drying (8, 9). A large area of tropical Asia's rainfed rice land stays dry during the dry season, either for a dryland crop' or as fallow because of insufficient water. Occasio"nal rains 535

3 S3Q" W. VENTURA and I. WATANABE during the dry season may cause fluctuations in soil moisture. The conversion of wetland rice soil to a dryland soil during part of the year may have marked effects on the nitrogen-supply process of the soil in the succeeding wet-season crop. A common practice of preparing rice fields is wetting and ploughing at least two times with soil drying in between, primarily for thorough land preparation and better control of weeds. Such land preparation may affect soil nitrogen availability because alternate drying and wetting cycle is known to enhance nitrogen loss (9, 10). Soil nitrogen becomes available at earlier stage of rice growth in the tropical rice soils than in temperate soils (6), but SHIGA and VENTURA (13) could not find this trend in the Philippines, particularly in dry season when temperature was lower at the earlier stage of rice growth. Both papers did not pay attention to the soil condition before transplanting. In the tropics, soil conditions before the wet season are presumed to have more pronounced effects on the growth and nitrogen uptake of wet season wetland rice than in a temperate region, because of high temperature from an earlier stage of rice growth. Our study experimentally demonstrated the effects of soil drying after one cropping season on the availability of soil nitrogen in a succeeding wetland rice crop. MATERIALS AND METHODS Three successive rice crops were grown to simulate field cropping conditions in pot culture in the 1975 wet season and the 1976 dry and wet seasons. The Maahas clay soil used had 0.14% N, ph 6.6, CEC of 35 meq/l00 g soil, 1.28% organic C, 443 ppm P, 976 ppm K, and 11.1 % Fe. It was taken from continuously flooded plots at the International Rice Research Institute (IRRI) and the wet soil material was passed through 2 mm sieve and then 2.8 kg (dry equivalent weight) was put to each glazed porcelain pot (1/50 ml). For the 1975 wet-season crop, all pots were flooded. To label a part of soil nitro_ gen half of the pots were treated with UN-labelled ammonium sulphate ( atom % excess) at 180 mg N/pot and the other pots were similarly treated with non]abelled nitrogen. The fertilizer was applied in 20 ml solution and it was immediately mixed by hand with the entire soil in the pot. Each pot also received 40 mg of each of P206 and KIO. Rice was grown as one plant hill per pot. At crop maturity, pots were selected at random for the analysis of total and 15N contents in plant and soil. After harvest of the wet-season crop, different dry season soil conditions Were set: (I) flooded planted, (II) flooded unplanted, (III) dryland planted, (IV) dryland unplanted, (V) kept air-dried, and (VI and VII) kept outdoors. Each treatment had four pots for each of the two sets. The pots kept outdoors received moisture from occasional dry.season rain. All other pots were kept in the greenhouse. For the dryland treatments the pot soil was kept at field moisture capacity. There was an interval of 20 days between harvest of the first and planting of the second crop and Soil preparation started 2 weeks before transplanting. No fertilizer was applied. Two

4 Soil Moisture Conditions and Nitrogen Availability 537 seedlings of rice were uniformly transplanted as one plant hill in every p o t ~ " After harvest of the upland treatment in the 1976 dry-season crop (143 days after transplanting), all outdoor pots were moved into the greenhouse. To simulate the wetting process in rainfed rice fields, half of the pots that had been kept outdoors were immediately water-saturated, puddled, and then left unwatered until cracks appeared on the soil surface, and thereafter the soil was continuously submerged before transplanting the 1976 wet-season crop (Treatment VII). The whole period of soil preparation covered 20 days. All other dry land and dry treatments were kept puddled and submerged for 9 days before transplanting. Before applying fertilizer and transplanting the third crop, soil samples were taken from every pot and analysed for exchangeable ammonia, nitrate, total nitrogen, and 15N. The set of pots that did not receive llin-labelled fertilizer in the first cropping reveived 205 mg N as UN-labelled ammonium SUlphate (5.424 atom % excess) for each pot. The set of pots that received UN-labelled fertilizer in the previous wet-season crop received the same amount of unlabelled ammonium sulphate. Application of nitrogen fertilizer was similar to that in the first crop. Each pot received also 40 mg of each of Pa06 and K 2 0. All pots were kept flooded. Treatments were arranged in a randomized block design. Two 10-day-old rice seedlings were transplanted as one hill at the center of each pot. In addition, one seedling was grown for 20 days at the side of the pot, and analysed for total nitrogen and UN. Rice growth was measured at 20-day intervals. At maturity, the plants were harvested and total nitrogen and llin content of the plants were analysed. A day after harvest, the soil of each pot was mixed and the soil samples were taken for analysis of exchangeable-mineral nitrogen and total nitrogen, and 15N. Immediately after sampling, the soil was extracted with 2 N KCl and the exchangeable ammonium and nitrate were determined by steam distillation of the soil extract with MgO and DEVARDA'S alloy. Total nitrogen content was analysed by the Kjeldahl method. The distillates obtained from the determination of exchangeable and total nitrogen were acidified with dilute H 2 SO. and evaporated to dryness, then treated with methanol to remove excess boric acid. After further drying, llin was generated from these samples using the RITTENBERG method described by PROKSCH (12). Isotope 15N was analysed by emission spectrometry using a JASCO NIA-l 15N analyser. Total nitrogen of the dried and ground plant materials was analysed by the micro.;. Kjeldahl technique and UN by the emission spectrographic method as simplified by YONEYAMA and KUMAZAWA (16) also using the JASCO NIA-1 15 N analyser. RESULTS The 1975 wet-season crop had uniform treatments under flooded condition. No difference was observed in dry matter production (average 15.6 g straw and 16.6 g grain/pot) and plant nitrogen uptake (231 mg N/pot in straw and grains) for the 1975 wet-season crop.

5 538 W. VENTURA and I. WATANABE Without fertilizer application, the second crop (1976 dry season) had stunted plant growth. Rice plants grown in soil kept at field moisture capacity were bigger and had greater nitrogen uptake but matured 10 days later than rice grown in the flooded soil. Nitrogen uptake in straw and grain was 64.8 mg N/pot in the flooded rice and 75.8 mg N/pot in field moisture capacity pots. The soil kept outdoors received a total of 394 mm of rainfall for the dry season (143 days): 196 mm during the last 10 days of December, 44 mm in January, 9 mm in February, 31 mm in March, 55 mm in April, and 59 mm for the first 2 weeks of May. Table 1 shows the available nitrogen content for each treatment of soil after 9 days of flooding before transplanting the 1976 wet-season (third) crop. Flooding and puddling of the soil that was kept air-dried for the entire dry season released large amounts of nitrogen in ammonium form, indicating that ammonification was enhanced. One cycle of wetting and drying also favoured releases of exchangeable ammonium nitrogen, but the ammonification process was accompanied by nitrification probably caused by the subsequent drying of the flooded soil. Keeping the soil at field moisture capacity and unplanted stored a large amount of nitrate nitrogen but not ammonium nitrogen as compared with the planted treatment because of possible depression of nitrification under the plants. The release of residual labelled nitrogen from the 1975 wet-season fertilization was roughly proportional to the release of soil nitrogen (Table 1). Although sufficient mineral nitrogen was present as a result of heavy mineralization and fertilizer application, the growth of plants was inhibited at 20 days after transplanting in dryland soils that were previously moist and then dried (Table 2). Plants in continuously flooded soils showed greater growth and nitrogen uptake, which came mostly from the applied fertilizer. Table 1. Available nitrogen in soil just before fertilizer application and transplanting for 1976 wet-season crop. Soil condition in previous dry season Available N in soil (mg/pot)!' NH,-N NO.-N Total Residual Total Residual Flooded, planted 45.3 be 0.8e S.Ob O.le Flooded, fallow O.Ob O.Oc Field moisture capacity, planted b O.le Field moisture capacity, fallow 5.04 O.Od Sb Air-dried 215.4& 11.0& 4.8b 0.2e Dry, with occasional rain b Dry, with occasional rain (AWD)Z) 70.3b 2.9b 98.0& ) In a column, means followed by a common letter are not significantly different at the S% level by DMRT. I) AWD: alternate wet and dry soil preparation.

6 Soil Moisture Conditions and Nitrogen Availability 539 Table 2. Dry matter weight and nitrogen uptake by the rice plant at 20 days after transplanting, 1976 wet season. Dry matter N uptake (mg/pot)l) Soil condition in previous wt. dry season (mg/pot) Total Fertilizer Residual Flooded, planted 43S& 16.2& 13.0& 0.2b Flooded, fallow 459& 17.2& 12.1& 0.3& Field moisture capacity, planted 10S bo 4.3b 3.4bO 0.04 Field moisture capacity, fallow 151 b 4.9 b 3.9b 0.04 Air-dried 135bo 4.8b 2.3 bo 0.2b Dry, with occasional rain 94 bo 3.2b 2.0e 0.04 Dry, with occasional rain (AWD)2) b le4 1) In a column, means followed by a common letter are not significantly different at the S% level by DMRT. I) Alternate wet and dry soil preparation. Table 3. Tiller numbers and yield of wetland rice in the 1976 wet season as affected by different soil conditions in the previous (1976) dry season. Soil condition in previous dry season Tiller numbers l ) Panicle Straw Grain no./pot wt. wt. 20DAT 40DAT 60DAT 8SDAT (g/pot) (g/pot) Flooded, planted 6& 28& 27& 19b 19b 23.6b 24.0b Flooded, fallow 6& 28& 27& 20& 20& 27.1& 26.6&b Field moisture capacity, planted Field moisture capacity, fallow 2b 7d 104 lot b IS.7 Air-dried 2b ISb 21b 20& 19&b 22.Sb 2S.6& Dry, with rain 2b 6' IS.2o Dry, with rain (AWD)') 2b 9c IS.2o 23.Sb 1) In a column, means followed by a common letter are not significantly different at the S% level by DMRT. I) Alternate wet and dry soil preparation. Table 3, however, shows that growth of plants improved with age in the previous dryland and dry treatments. The grain yield in the air-dried treatment was comparable to that in continuously flooded soil. Also, the growth of rice improved at the later stages in alternate wet and dry preparation treatments. The soil that was watered occasionally by dry-season rain behaved similarly to the previously moist soil and both had inferior plant growth and yield. Keeping the soil in fallow for the previous crop did not significantly improve grain yield. Utilization of fertilizer nitrogen was the best in continuously flooded soils (Table

7 540 W. VENTURA and I. WATANABE Table 4. Balance sheet of labelled nitrogenl) in wetland rice for the 1976 wet season. Soil condition in previous dry season Recovery') Unaccounted for Crop (%) Soil (%) Total (%) (%) Flooded, planted SS.l' 40.8ab 9S.9' 4.10 Flooded, fallow S8.S a 3S.9 bo 94.4 S.6o Field moisture capacity, planted 38.2d 4S. S" 83.7be 16.3ab Field moisture capacity, fallow 46.0bO 3S.4bo 81. 4becl 18.6ab Air-dried 43.0cd d 22.8' Dry, with rain 40. 3d 41. lab 81.4bo 18.6ab Dry, with rain (AWD)I) 49.3b 37.0bo 86.3b 13.7b 1) In a column, means followed by a common letter are not significantly different at S% level by DMRT. I) Based from the amount of labelled N added (3S0 mg per pot). ') Alternate wet and dry preparation. Table S. Soil nitrogen uptake 1 ) 1976 wet season as influenced by soil conditions during previous dry season. Total N Soil condition in previous Soil N uptake dry season uptake (mg/pot) (mg/pot) Soil N Residual in total labelled N uptake in soil N (%) uptake (X) Flooded, planted 320.8c d 39.9' 6.3ab Flooded, fallow 380.3b 17S.4o a Field moisture capacity, planted S 4S.1 d S.9b Field moisture capacity, fallow r 36.8' 6.0b Air-dried 'b Dry, with rain JOS.Oc S3.7 S.6b Dry, with rain (AWD)2) 406. lab 233.Sb S7.S b 6.3ab 1) In a column, means followed by a common letter are not significantly ditterent at the S% level by DMRT. I) Alternate wet and dry soil preparation. 4), and was lower in previously moist dryland and dried treatments. One cycle of alternate wet and dry preparation of 20 days duration, however, improved plant uptake of applied nitrogen. The total recovery of labelled nitrogen (plant and soil) showed losses of less than 6% in the continuously flooded soils. Loss was the greatest in the air-dried treatment. Although prolonged air drying before the third crop caused more losses of fertilizer, it was compensated by greater use of soil nitrogen, so that total nitrogen uptake Was even greater than in continuously flooded soil (Table S). Alternate wet and dry prep. aration before transplanting increased both fertilizer nitrogen and soil nitrogen use.

8 Soil Moisture Conditions and Nitrogen Availability 541 Table 6. The effect 'oc 1976 dry-season conditlons on the availability of newly immobilized and native soil nitrogen at the time oc the harvest oc 1976 wet season. % tin absorbed to % UN absorbed to Availability Treatment total soil nitrogen immobilized nitrogen ratio A Bl) BIA Flooded, planted Flooded, Callow Field moisture capacity, planted Field moisture capacity, Callow Air-dried Dry, with rain Dry, with rain (A WD)') ) Calculated Crom Table 7. I) Alternate wet and dry soil preparation. Table 7. Balance sheet of labelled nitrogen 1 ) of the residual experiment Cor three crop seasons, Labelled Labelled Labelled Unaccounted N in soil N left in TotalN for (X) Previous season Present soil before N uptake soil condition condition by plants soil after recovery crops (mg/pot) crop (%) To To (mg/pot) (mg/pot) 180mg 90.7 mg First crop (wet season)!) Flooded field flooded S S.4 Second crop (dry season) Flooded flooded, planted 7.1' FMC. planted 4.6 b Third crop (wet season) Flooded, planted flooded 83.0& 8.1d 65. lab 88.0& 12o0 b 6 Ob Flooded, fallow flooded 84.3& 12.4c 66. 7&b 87.8& 12.2b 6.1b Field moisture capacity. planted Field moisture capacity, fallow flooded 82.2' & 88.2& 11.8b S.9b flooded 80.1' S ab 82.5b 17.5' 8.8& Air-dried flooded 86.4' 16.6' 64. lab b S. 7b Dry, with rain flooded 77.0& b 82.1b 17.9a 9.0a D ~ with, rain AWD)') flooded 77. Sa 14.6b 61.7ab 86.3& 13.7a b 6.9ab 1) In a column for each cropping, means followed by a common letter are not significantly different at the 5% level by DMRT. I) Initial labelled N based from amount added (180 mg!pot). ') Alternate wet and dry. soil preparation.

9 542 W. VENTURA and I. WATANABE Nitrogen uptake from soil during the third crop was roughly proportional to the amount of ammonium nitrogen already present in soil before transplanting (Tables 1 and 5). Greater dependence on soil nitrogen by plants grown after soil drying was already apparent in nitrogen uptake at 20 days after transplanting (Table 2). A fraction of soil nitrogen uptake came from the residual labelled nitrogen which was labelled during 1975 wet-season crop (Table 5) and the ratio of the residual nitrogen to the available soil nitrogen was almost constant among treatments (6%). As presented by BROADBENT and NAKASHIMA (2), an availability ratio was calculated (Table 6). It was demonstrated that the nitrogen immobilized two crops before (l year before) was three times more available than the native available soil nitrogen. The fate of applied nitrogen was determined for three cropping seasons. Of the 180 mg nitrogen per pot applied, the first crop took up 44% and 50% remained in the soil as immobilized nitrogen (Table 7). Remineralization of immobilized nitrogen was slow, releasing only 8 and 5% of it for the second crop of wetland and dryland rice, respectively. Soil conditions during the previous dry season affected availability of immobilized nitrogen for the next wetland rice crop. The greater uptake of residual nitrogen from air-dried and alternate wet-dry treatments may show greater mineralization activity by soil drying. At the end of the third crop, about 35% of the applied nitrogen still remained in immobilized form in the soil and from 12 to 18% was lost during three crops in this experiment. DISCUSSION BIRCH (1) showed the relationship of length of soil drying to the mineral nitrogen level after wetting. In our experiments the soil kept dry for 140 days greatly increased the availability of soil nitrogen. But drying for such a long period is the extreme case. An occasional rain produces nitrate and also decreases the drying effect on soil nitrogen mineralization as shown in this experiment. Because moisture is sup. plied by capillary movement to the dry surface soil in the field, the dry condition in the field would not be as severe as in our pot experiments. Consequently, the airdried treatment we used may provide knowledge of the extreme case for the dry season in the tropics. To explain our results, the hypothesis is that drying in soil caused opposing effects on the rice plant after the flooding. The soil drying increased the amount of available soil nitrogen (positive effect). On the other hand, soil organic matter became easily decomposable by drying effect which promoted soil reduction after flooding (IS) (presumably negative effect). The growth retardation, owing to the delayed settling of seedlings, in the previous dry or moist treatments indicates that harmful factors accumulated after flooding. Plant response might be determined by the balance of the two opposing factors. High availability of soil nitrogen released by air-drying likely overcomes the growth retarda_ tion after settling of seedlings.

10 Soil Moisture Conditions and Nitrogen Availability 543 The improvement of soil nitrogen availability by alternate submergence and drying preparation indicates the effectiveness of even a short and gradual drying of the wet and puddled soil. The better utilization of fertilizer nitrogen as compared to the other dry treatments suggests that gradual wetting of soil. for a reasonable period of time before fertilization, does not increase losses of fertilizer nitrogen. This procedure alleviated harmful effects after flooding without greatly decreasing soil nitrogen.availability. A consideration of the period of submergence before fertilization and transplanting appears important. Nine days of soil flooding before transplanting was shorter than the usual practice. It takes at least 3 weeks to bring down the redox potential of a submerged soil to a stable level of activity (11). Therefore. if the period of flooding before transplanting was longer. any harmful factors accumulated at an earlier stage would be decreased. Converting wetland rice soils into dryland farming during the dry season made nitrification active during the period of moist soil conditions and the large amount of nitrate formed was stored in soil in the absence of an absorbing rice plant. It would not be expected, however, for the nitrate to stay long enough after flooding the soil to be of use to the rice seedlings. In the continuously flooded treatment, fertilizer nitrogen efficiency was high, but use of soil nitrogen was low. In the air-dried treatment, the opposite was observed. Because the total nitrogen uptake by a plant is limited. the efficiency of fertilizer nitrogen competes with the use of soil nitrogen. It is. therefore. one-sided to pay attention only to the efficiency of fertilizer nitrogen. Loss of fertilizer nitrogen was the highest in the air-dried treatment (Table 4), but the loss of immobilized UN (Table 7) was the lowest in this treatment. This implies that the behaviour of fertilizer nitrogen is different from that of the available (mineralizable) soil nitrogen. The finding also gives argument against the A-value concept (3) that presumed similarity in the behaviour in plant uptake of fertilizer nitrogen and available soil nitrogen. The amount and rate of immobilized UN were high (from 34 to 50%, Tables 4 and 7) as compared with other reports. especially with that of YOSHIDA and PADRE (20) in which the rate of immobilization was about 20%. Consequently, total recovery of applied UN in this experiment was also high and reached 95%. In this experiment, the fertilizer was applied either in the continuously flooded soils or in soils that were flooded and puddled for 9 days and not during the day of soil submergence, which may account for the greater nitrogen recovery. including the amount of immobilized nitrogen. Our results show that the effect of soil conditions on recovery of fertilizer nitrogen is drastic. Furthermore, the differing C: N ratio might have contributed to the difference in rates of nitrogen immobilization. Keeping the soil unplanted in the previous season decreased the rate of immobilization (Table 4), perhaps because there were no crop residues that could widen the C : N ratio of the soil. The fraction of immobilized nitrogen in the nitrogen uptake from soil nitrogen

11 S44 W. VENTURA and I. WATANABE was constant among the treatments (Table 5). If a large amount of atmospheric nitrogen was fixed and incorporated into the available-soil-nitrogen pool under the presence of rice plant as suggested by YOSHIDA and ANCAJAS (19), residual un uptake ratio to nitrogen uptake that originated from sources other than fertilizer might be lowered after the growth of rice plant as compared with that after fallow. This dilution effect was not found (Table 5). Based from the error of analysis the contribution of atmospheric nitrogen, if any, might be less than 25% of plant nitrogen uptake. Experiments demonstrate the need of an appropriate manipulation scheme to use the soil nitrogen that is released after a prolonged dry period. An improvement in the method of land preparation as well as judicious use of nitrogen fertilizer based on the amount and pattern of soil nitrogen release is indicated. REFERENCES 1) BIRCH, H.F., Nitrification in soils after different periods of dryness, Plant Soil, 12, (1960) 2) BROADBENT, F.E. and NAKASHIMA, T., Reversion of fertilizer nitrogen in soils, Soil Sci. Soc. Arne,.. Proc., 31, 648-6S2 (1967) 3) FRIED, M. and DEAN, L.A., A concept concerning the measurement of available soil nutrients. Soil Sci., 73, (19S2) 4) KAWAGUCHI, K. and KYUMA, K., Paddy soils in tropical Asia. Part I. Description on fertility characteristics, South Asian Studies, n, 3-24 (1974) 5) KOYAMA, T., Practice of determining potential nitrogen supplying capacity of paddy soils and rice yield, J. Sci. Soil Manure. Japan. 46, (197S) (in Japanese) 6) KOYAMA, T., Soil plant nutrition studies on tropical rice. Ill. The effect of soil fertility status of nitrogen and its liberation upon the nitrogen utilization of rice plants in Dangkhen paddy Soil Soil Sci. Plant Nutr., 17, (1971) 7) MITSUI, S., Inorganic Nutrition, Fertilization and Soil Amelioration for Lowland Rice, Yokendo Co., Tokyo, 19S4. p ) OYAMA, N., Nitrogen supplying patterns of paddy soil for rice in temperate area in Japan-cft'ect of application of organic matters and soil managements on the pattern, J. Sci. Soil M a n u r ~ Japan, 46, (197S) (in Japanese) 9) PATRICK, W.H., Jr., QUIRK, W.A., PETERSON, F.J., and FAULKNER, M.D.. Effect of continuous submergence versus alternate flooding and drying on growth, yield and nitrogen uptake of rice J. Agron., 59, (1967) 10) PATRICK, W.H., Jr. and WYATT, R., Soil nitrogen loss as a result of alternate submergence and drying, Soil Sci. Soc. Amer. Proc., 28, 647-6S3 (1964) 11) PONNAMPERUMA, F.N., Physicochemical properties of submerged soils in relation to fertility, IRIU Res. Paper Ser. S, p.32 12) PROKSCH, G., Application of mass and emission spectrometry for UN/UN ratio determination in biological material, In Isotopes and Radiation in Soil-Plant Relationships Induding Forestry International Atomic Energy Agency, Vienna, pp s 13) SmoA, H. and VENTURA, W., Nitrogen supplying ability of paddy soils under field conditions in the Philippines, Soil Sci. Plant Nutr., 21, (1976) 14) SHIOIRI, M., AOMINE, S., UNO, Y., and HARADA, T., Effect of drying of paddy soils J. Sci. SOil Manure, Japan, 15, (1941) (in Japanese) 15) SHlOIRI, M., The effect of soil drying during fallow period of lowland rice, Report Agrie. ExPII Station. Ministry oj Agric., 64, 1-24 (1948) (in Japanese)

12 Soil Moisture Conditions and Nitrogen Availability S4S 16) YONEYAMA, T. and KUMAZAWA, K., A simple determination of UN abundance in plant powder sample, J. Sci. Soil Manure, Japan, 45, (1974) (in Japanese) 17) YOSHINO, T. and DEI, Y., Patterns of nitrogen release in paddy soils predicted by an incubation method, Japan Agric. Res. Quart., 8, (1974) 18) YOSHINO, T. and DEI, Y., Prediction of nitrogen release in paddy soils by means of the concept of effective temperature, J. Central Agric. Exptl. Station,lS,l-62 (1977) (in Japanese, English summary) 19) YOSHIDA, T. and ANCAJAS, R.R., Nitrogen fixing activity in upland and flooded rice fields, Soil Sci. Soc. Amer. Proc., 37, (1973) 20) YOSHIDA, T. and PADRE, B.C., Jr., Effect of organic matter application and water regimes on the transformation of fertilizer nitrogen in a Philippine soil, Soil Sci. Plant Nutr., 11, (1975)

TRANSFORMATION OF SOIL AND FERTILIZER NITROGEN IN PADDY SOIL AND THEIR AVAILABILITY TO RICE PLANTS

TRANSFORMATION OF SOIL AND FERTILIZER NITROGEN IN PADDY SOIL AND THEIR AVAILABILITY TO RICE PLANTS Plant and Soil 47, 113-123 (1977) Ms. 3029 TRANSFORMATION OF SOIL AND FERTILIZER NITROGEN IN PADDY SOIL AND THEIR AVAILABILITY TO RICE PLANTS by TOMIO YOSHIDA* and BENJAMIN C. PADRE, JR. The International

More information

Influence of industrial wastes on growth, yield and yield attributing characters of rice

Influence of industrial wastes on growth, yield and yield attributing characters of rice ENGINEERING AND TECHNOLOGY IN INDIA Volume 2 Issue (1&2); (April & October, 2011); Page : 32-36 RESEARCH ARTICLE Received: may, 2011; Revised : Aug., 2011;Accepted: sep.., 2011 Influence of industrial

More information

Scientific registration n o : 285 Symposium n o : 13B Presentation: Poster. BHUIYAN Nurul I (1), SAHA Pranesh K (2) INTRODUCTION

Scientific registration n o : 285 Symposium n o : 13B Presentation: Poster. BHUIYAN Nurul I (1), SAHA Pranesh K (2) INTRODUCTION Scientific registration n o : 285 Symposium n o : 13B Presentation: Poster Effect of P-Fertilization on Ripening, Yield and P- Nutrition of Rice Under Different Levels of Soil P Effet de la fertilisation

More information

NITROGEN MINERALIZATION IN SOME CALCAREOUS SOILS OF IRAQ. Faiz G. Aziz, Hamad M. Salih, Barzan I. Khayatt, M. A. Umran

NITROGEN MINERALIZATION IN SOME CALCAREOUS SOILS OF IRAQ. Faiz G. Aziz, Hamad M. Salih, Barzan I. Khayatt, M. A. Umran Proc. 5th Sci. Conf. / SRC Iraq, Baghdad 7 11 Oct. 1989 Vol. I Part 2 NITROGEN MINERALIZATION IN SOME CALCAREOUS SOILS OF IRAQ Faiz G. Aziz, Hamad M. Salih, Barzan I. Khayatt, M. A. Umran Department of

More information

IPNS BASED FERTILIZER MANAGEMENT FOR RICE IN COASTAL ZONE OF BANGLADESH. Abstract

IPNS BASED FERTILIZER MANAGEMENT FOR RICE IN COASTAL ZONE OF BANGLADESH. Abstract ISSN 0258-7122 (Print), 2408-8293 (Online) Bangladesh J. Agril. Res. 41(4): 667-673, December 2016 IPNS BASED FERTILIZER MANAGEMENT FOR RICE IN COASTAL ZONE OF BANGLADESH M. N. ISLAM 1, M. I. U. SARKAR

More information

Rice Straw Management

Rice Straw Management Rice Straw Management By A. Dobermann and T.H. Fairhurst Straw is the only organic material available in significant quantities to most rice farmers. About 40 percent of the nitrogen (N), 30 to 35 percent

More information

Key words Acid dichromate Anaerobic incubation Release of ammonium Total N.

Key words Acid dichromate Anaerobic incubation Release of ammonium Total N. Plant and Soil 69, 73 77 (1982). 0032-079X/82/0691-007350.75. Ms. 4958 9 1982 Martinus Nijhoff/Dr V~ Junk Publishers, The Hague. Printed in The Netherlands. Simple modification of the Walkley-Black method

More information

Performance of Different Crop Establishment Methods on Growth, Weeds Dynamics and Yield in Rice-Rice Cropping Sequence

Performance of Different Crop Establishment Methods on Growth, Weeds Dynamics and Yield in Rice-Rice Cropping Sequence International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 06 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.706.261

More information

NITROGEN DINAMICS IN RICE AT DIFFERENT STAGES OF CROP GROWTH UNDER RICE-WHEAT CROPPING SYSTEM

NITROGEN DINAMICS IN RICE AT DIFFERENT STAGES OF CROP GROWTH UNDER RICE-WHEAT CROPPING SYSTEM NITROGEN DINAMICS IN RICE AT DIFFERENT STAGES OF CROP GROWTH UNDER RICE-WHEAT CROPPING SYSTEM Hrusikesh Patro*, S.C. Swain, S.C. Mohapatra 1, Lingaraj Patro 2, B.S. Mohapatra and Ajay Kumar 3 1. Krishi

More information

Utilization Advantages of Controlled Release Nitrogen Fertilizer on Paddy Rice Cultivation

Utilization Advantages of Controlled Release Nitrogen Fertilizer on Paddy Rice Cultivation JARQ 38 (1), 15 20 (2004) http://www.jircas.affrc.go.jp Utilization Advantages of Controlled Release Nitrogen Fertilizer on Paddy Rice Cultivation REVIEW Utilization Advantages of Controlled Release Nitrogen

More information

Effect of silicon on the growth of cucumber plant in soil culture

Effect of silicon on the growth of cucumber plant in soil culture Soil Science and Plant Nutrition ISSN: 38-768 (Print) 1747-765 (Online) Journal homepage: https://www.tandfonline.com/loi/tssp2 Effect of silicon on the growth of cucumber plant in soil culture Yasuto

More information

Growth and Yield of Organic Rice as Affected by Rice Straw and Organic Fertilizer

Growth and Yield of Organic Rice as Affected by Rice Straw and Organic Fertilizer Research article erd Growth and Yield of Organic Rice as Affected by Rice Straw and Organic Fertilizer ANAN POLTHANEE Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand E-mail:panan@kku.ac.th

More information

Effects of Reduced Rates of N, P, K, S and Zn on the Growth and Yield of BRRI dhan29

Effects of Reduced Rates of N, P, K, S and Zn on the Growth and Yield of BRRI dhan29 American-Eurasian J. Agric. & Environ. Sci., 5 (4): 58-522, 205 ISSN 88-6769 IDOSI Publications, 205 DOI: 0.5829/idosi.aejaes.205.5.4.2564 Effects of Reduced Rates of N, P, K, S and Zn on the Growth and

More information

Z. N. Thamida Begum, * R. Mandal and Saiful Islam

Z. N. Thamida Begum, * R. Mandal and Saiful Islam EFFECT OF CYANOBACTERIAL BIOFERTILIZER ON THE GROWTH AND YIELD COMPONENTS OF TWO HYV OF RICE Z. N. Thamida Begum, * R. Mandal and Saiful Islam Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh

More information

DEEP PLACEMENT A METHOD OF NITROGEN FERTILIZER APPLICATION COMPATIBLE WITH ALGAL NITROGEN FIXATION IN WETLAND RICE SOILS

DEEP PLACEMENT A METHOD OF NITROGEN FERTILIZER APPLICATION COMPATIBLE WITH ALGAL NITROGEN FIXATION IN WETLAND RICE SOILS Ms 4344 DEEP PLACEMENT A METHOD OF NITROGEN FERTILIZER APPLICATION COMPATIBLE WITH ALGAL NITROGEN FIXATION IN WETLAND RICE SOILS by P. A. ROGER*, S. A. KULASOORIYA, A. C. TIROL and E. T. CRASWELL** The

More information

Fixation Activity and N Enrichment in Paddy Soils as Affected by Soil Management in the Northern Area of Japan

Fixation Activity and N Enrichment in Paddy Soils as Affected by Soil Management in the Northern Area of Japan JARQ 37 (2), 15 111 (23) http://www.jircas.affrc.go.jp Seasonal Changes in N 2 Fixation Activity and N Enrichment in Paddy Soils as Affected by Soil Management in the Northern Area of Japan Motohiko KONDO

More information

Tiller Dynamics of Three Irrigated Rice Varieties under Varying Phosphorus Levels

Tiller Dynamics of Three Irrigated Rice Varieties under Varying Phosphorus Levels American-Eurasian Journal of Agronomy 2 (2): 89-94, 2009 ISSN 995-896X IDOSI Publications, 2009 Tiller Dynamics of Three Irrigated Rice Varieties under Varying Phosphorus Levels 2 M.M. Alam, Mirza Hasanuzzaman

More information

Irrigation & Fertilizer Affects on Productivity, Water Use and N Balance in Rice & Maize Cropping Systems in Telangana Region, India

Irrigation & Fertilizer Affects on Productivity, Water Use and N Balance in Rice & Maize Cropping Systems in Telangana Region, India Indo-US AKI Project on Sustainable Water Resources Management Irrigation & Fertilizer Affects on Productivity, Water Use and N Balance in Rice & Maize Cropping Systems in Telangana Region, India Dakshina

More information

NITROGEN FERTILIZATION

NITROGEN FERTILIZATION NITROGEN FERTILIZATION 22 Carolyn DeMoranville Cranberry Experiment Station University of Massachusetts Nitrogen is the most important fertilizer element in cranberry production determining vegetative

More information

tests. Tolerant rices gave grain yields of nearly 3 t/ha when iron toxicity VARIETAL REACTIONS OF RICE TO IRON

tests. Tolerant rices gave grain yields of nearly 3 t/ha when iron toxicity VARIETAL REACTIONS OF RICE TO IRON VARIETAL REACTIONS OF RICE TO IRON TOXICITY ON AN ACID SULFATE SOIL F.N. Ponnamperuma and J.L. Solivas The International Rice Research Institute Los Baños, Philippines 1 Summary A total of 420 rices was

More information

Mineralisation pattern of neem coated urea products in different soils

Mineralisation pattern of neem coated urea products in different soils RESEARCH PAPER International Journal of Agricultural Sciences, Vol. 5 Issue 1, January to May, 2009 : 175-179 Mineralisation pattern of neem coated urea products in different soils ABSTRACT S. SUGANYA*,

More information

EFFECT OF TWO APPLICATIONS OF SUBSTRATE ON NITRIFICATION AND ph OF SOILS

EFFECT OF TWO APPLICATIONS OF SUBSTRATE ON NITRIFICATION AND ph OF SOILS Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan. Vol.15, No.3, December 2004, pp. 263-269 ISSN 1021-1012 EFFECT OF TWO APPLICATIONS OF SUBSTRATE ON NITRIFICATION AND ph OF

More information

RESPONSE OF ONION, T. Aus AND T. Aman RICE TO NPKS FERTILIZERS IN THE HIGH GANGES RIVER FLOODPLAIN SOIL

RESPONSE OF ONION, T. Aus AND T. Aman RICE TO NPKS FERTILIZERS IN THE HIGH GANGES RIVER FLOODPLAIN SOIL Progress. Agric. 20(1 & 2) : 63 72, 2009 ISSN 1017-8139 RESPONSE OF ONION, T. Aus AND T. Aman RICE TO NPKS FERTILIZERS IN THE HIGH GANGES RIVER FLOODPLAIN SOIL M. A. Siddiky 1 *, K. U. Ahammad 2, M. S.

More information

Potential Uses for Agrotain and Polymer Coated Products

Potential Uses for Agrotain and Polymer Coated Products Potential Uses for Agrotain and Polymer Coated Products C.A. Grant Agriculture and Agri-Food Canada Brandon Research Centre Brandon, MB INTRODUCTION Urea is the major granular fertilizer used on the Canadian

More information

Gyeongbuk Agricultural Technology Administration, KOREA.

Gyeongbuk Agricultural Technology Administration, KOREA. Increasing Productivity and Growth of Rice with Less Irrigation Jong Gun Won, Jang Soo Choi and Seung Phil Lee Gyeongbuk Agricultural Technology Administration, KOREA. www.nongup.gyeongbuk.kr Email mailto:jgwon67@empal.com

More information

Agustinho da Costa Ximenes

Agustinho da Costa Ximenes Agronomic Responses and Nitrogen Use Efficiency of Local and Introduced Corn (Zea Mays L.) Genotypes to Different Levels and Sources of Nitrogen in Two Corn Growing Areas in Timor-Leste 24 Agustinho da

More information

Application of biochar from coconut shells to different soils in Thua Thien Hue province, Vietnam

Application of biochar from coconut shells to different soils in Thua Thien Hue province, Vietnam Application of biochar from coconut shells to different soils in Thua Thien Hue province, Vietnam Tran Thi Tu 1), Morihiro Maeda 2), Le Van Thang 1), Nguyen Dang Hai 1), Tran Dang Bao Thuyen 1) 1) Institute

More information

Improving Yield and Nutrient Uptake Potentials of Japonica and Indica Rice Varieties with Nitrogen Fertilization

Improving Yield and Nutrient Uptake Potentials of Japonica and Indica Rice Varieties with Nitrogen Fertilization World Journal of Agricultural Sciences 4 (4): 47-434, 8 ISSN 87-347 IDOSI Publications, 8 Improving Yield and Nutrient Uptake Potentials of Japonica and Indica Rice Varieties with Nitrogen Fertilization

More information

Two soil areas approximately 1 km (0.6 mile) apart were selected. Agronomy Department. High Rates of Urea Fertilizer for Corn (Zea mays L.

Two soil areas approximately 1 km (0.6 mile) apart were selected. Agronomy Department. High Rates of Urea Fertilizer for Corn (Zea mays L. High Rates of Urea Fertilizer for Corn (Zea mays L.) on Two Soils, 1969-19711 Russell K. Stivers Agronomy Department Purdue University, Lafayette, Indiana 47907 Abstract Five rates of nitrogen from urea

More information

Rice growing environments

Rice growing environments Rice growing environments 2 Rice production by region Global rice production area by region Other 2% Africa 3% Latin America 4% East Asia 33% South Asia 31% Southeast Asia 27% IRRI 2011 2 3 Rice Production

More information

Nitrogen Dynamics Feeding the Crops that Feed Us

Nitrogen Dynamics Feeding the Crops that Feed Us Nitrogen Dynamics Feeding the Crops that Feed Us Overview All plants require nitrogen in relatively large amounts and nitrogen is the most commonly limiting nutrient in agriculture. Consequences of insufficient

More information

Growth and Yield of Selected Vegetables Sprayed with Mature Coconut Water

Growth and Yield of Selected Vegetables Sprayed with Mature Coconut Water Growth and Yield of Selected Vegetables Sprayed with Mature Coconut Water ABSTRACT Genaro D. Omo Don Mariano Marcos Memorial State University Bacnotan, La Union, Philippines Most soils planted with vegetables

More information

Yoshinaga Ikuo *, Y. W. Feng**, H. Hasebe*** and E. Shiratani****

Yoshinaga Ikuo *, Y. W. Feng**, H. Hasebe*** and E. Shiratani**** NITROGEN REMOVAL FUNCTION OF PADDY FIELD IN A CIRCULAR IRRIGATION SYSTEM Yoshinaga Ikuo *, Y. W. Feng**, H. Hasebe*** and E. Shiratani**** * National Institute for Rural Engineering, Tsukuba Science City

More information

Legume-based catch crops can improve N-supply without increasing the N 2 O emission

Legume-based catch crops can improve N-supply without increasing the N 2 O emission Legume-based catch crops can improve N-supply without increasing the N 2 O emission By Xiaoxi Li, Peter Sørensen, Søren O. Petersen and Jørgen E. Olesen, Department of Agroecology, Aarhus University Legume-based

More information

Legume-based catch crops can improve N-supply without increasing the N 2 O emission

Legume-based catch crops can improve N-supply without increasing the N 2 O emission Legume-based catch crops can improve N-supply without increasing the N 2 O emission By Xiaoxi Li, Peter Sørensen, Søren O. Petersen and Jørgen E. Olesen, Department of Agroecology, Aarhus University Legume-based

More information

STATEMENT OF PROBLEMS AND MEANS OF INCREASING RICE PRODUCTION BY DR. K. RAML~

STATEMENT OF PROBLEMS AND MEANS OF INCREASING RICE PRODUCTION BY DR. K. RAML~ STATEMENT OF PROBLEMS AND MEANS OF INCREASING RICE PRODUCTION BY DR. K. RAML~ [Rice Expert (Retired), Bangalore] INDIA has the largest area under rice (75 million acres) among the rice growing countries

More information

EVALUATION OF TOTAL N, P, K AND ORGANIC MATTER CONTENTS OF SOIL AMENDED WITH PADDY HUSK CHARCOAL COATED UREA AND COMPARISON OF THE YIELD OF PADDY.

EVALUATION OF TOTAL N, P, K AND ORGANIC MATTER CONTENTS OF SOIL AMENDED WITH PADDY HUSK CHARCOAL COATED UREA AND COMPARISON OF THE YIELD OF PADDY. EVALUATION OF TOTAL N, P, K AND ORGANIC MATTER CONTENTS OF SOIL AMENDED WITH PADDY HUSK CHARCOAL COATED UREA AND COMPARISON OF THE YIELD OF PADDY. Ashoka Gamage Department of Agricultural Engineering,

More information

NUTRIENT AVAILABILITY TO CORN FROM DAIRY MANURES AND FERTILIZER IN A CALCAREOUS SOIL

NUTRIENT AVAILABILITY TO CORN FROM DAIRY MANURES AND FERTILIZER IN A CALCAREOUS SOIL NUTRIENT AVAILABILITY TO CORN FROM DAIRY MANURES AND FERTILIZER IN A CALCAREOUS SOIL A. Leytem 1, R. Dungan 1, A. Moore 2, M. Miller 1 1 USDA ARS, Kimberly, Idaho 2 University of Idaho, Twin Falls R&E

More information

Recycling of crop residues for sustainable crop production in wheat-peanut rotation system

Recycling of crop residues for sustainable crop production in wheat-peanut rotation system Symposium no. 59 Paper no. 373 Presentation: poster Recycling of crop residues for sustainable crop production in wheat-peanut rotation system SAFWAT M.S.A. (1), SHERIF M.A. (2), ABDEL-BARY E.A. (3), SAAD

More information

Table 3. Treatment effects on plant mass (g/10 plants) at three sampling stages and final grain yield (kg/ha).

Table 3. Treatment effects on plant mass (g/10 plants) at three sampling stages and final grain yield (kg/ha). Table 3. Treatment effects on plant mass (g/10 plants) at three sampling stages and final grain yield (kg/ha). Treatment y First sampling z Second sampling z z Third sampling Grain Yield A 30.55 cd 11427

More information

DRIP AND PAIRED ROW PLANTING FOR PADDY CULTIVATION

DRIP AND PAIRED ROW PLANTING FOR PADDY CULTIVATION DRIP AND PAIRED ROW PLANTING FOR PADDY CULTIVATION Vilas Tajane 1, Arvind Gulghane 2 and Abhijeet page 3 ABSTRACT Traditionally paddy is planted in India by square method or random method. Usually farmers

More information

Land Preparation & Crop Establishment

Land Preparation & Crop Establishment Land Preparation & Crop Establishment What you need to know about land preparation Rice can be grown in 3 different ecologies. These are the irrigated, lowland rain fed and upland rain fed ecologies respectively.

More information

THE CHALLENGE OF PREDICTING NITROGEN AVAILABILITY FROM SOILS

THE CHALLENGE OF PREDICTING NITROGEN AVAILABILITY FROM SOILS THE CHALLENGE OF PREDICTING NITROGEN AVAILABILITY FROM SOILS Indiana CCA Conference December 19, 218 Steve Culman Assistant Professor of Soil Fertility School of Environment and Natural Resources Ohio

More information

Economics of paddy based cropping system under south Gujarat condition

Economics of paddy based cropping system under south Gujarat condition Agriculture Update February & May 2010 Vol. 5 Issue 1 & 2 64-68 Economics of paddy based cropping system under south Gujarat condition H.M. VIRDIA AND H.D. MEHTA RESEARCH ARTICLE See end of the article

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from soils

More information

Phosphorus nutrition of rice in relation to flooding and tern porary loss of soil-water saturation in a lowland soil of Cambodia

Phosphorus nutrition of rice in relation to flooding and tern porary loss of soil-water saturation in a lowland soil of Cambodia Seng, V., Bell, R.W., Willett, I.R. and Nesbitt, H.J. (2000) Phosphorus nutrition of rice and temporary loss of soil-water saturation in lowland soils of Cambodia. In: Soils 2000 : making our science more

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 18 September 2012 Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions

More information

THE DECOMPOSITION OF FRESH AND COMPOSTED OR- GANIC MATERIALS IN SOIL

THE DECOMPOSITION OF FRESH AND COMPOSTED OR- GANIC MATERIALS IN SOIL THE DECOMPOSITION OF FRESH AND COMPOSTED OR- GANIC MATERIALS IN SOIL Hitoichi Shiga Research and Development Center for Dairy Farming Kitano 2-3-5-9, Kiyota-Ku, Sapporo 004-0862, Japan ABSTRACT Livestock

More information

Pantelopoulos A., Magid J., Jensen L.S. Faculty of Science Department of Plant and Environmental Sciences University of Copenhagen

Pantelopoulos A., Magid J., Jensen L.S. Faculty of Science Department of Plant and Environmental Sciences University of Copenhagen Pantelopoulos A., Magid J., Jensen L.S. Faculty of Science Department of Plant and Environmental Sciences University of Copenhagen Funded by the European Union Background The digestate solids Dry matter

More information

Nitrogen Fertilization of Sugar Beets In the Woodland Area of California 1

Nitrogen Fertilization of Sugar Beets In the Woodland Area of California 1 Nitrogen Fertilization of Sugar Beets In the Woodland Area of California 1 II. Effects upon the nitrate-nitrogen of petioles and its relationship to sugar production ALBERT ULRICH 2 The importance of nitrogen

More information

Research Report to Oregon Processed Vegetable Commission ( ) H. J. Mack and J. R. Stang, Horticulture. Request will be made for continuation.

Research Report to Oregon Processed Vegetable Commission ( ) H. J. Mack and J. R. Stang, Horticulture. Request will be made for continuation. 69 Research Report to Oregon Processed Vegetable Commission (1989-90) Title of Project: Project Leaders: Effects of irrigation (water stress), timing of N application, boron rates and transplant characteristics

More information

THE USE OF COVER CROPS AFTER A MAIZE CROP IN THE NORTH OF SPAIN. Dpto. Biología Vegetal y Ecología, UPV. Apdo. 644, Bilbao, Spain.

THE USE OF COVER CROPS AFTER A MAIZE CROP IN THE NORTH OF SPAIN. Dpto. Biología Vegetal y Ecología, UPV. Apdo. 644, Bilbao, Spain. ID # 04-03 THE USE OF COVER CROPS AFTER A MAIZE CROP IN THE NORTH OF SPAIN D. Báez 1, M. Pinto 1, M. Rodríguez 2, G. Besga 1 and J. M Estavillo 3 1 NEIKER, Berreaga 1,48160 Derio, Spain 2 Dpto. Sanidad.

More information

SELECTING THE RIGHT PLACEMENT OF FERTILIZER N IN MANITOBA

SELECTING THE RIGHT PLACEMENT OF FERTILIZER N IN MANITOBA BENEFICIAL MANAGEMENT PRACTICE (BMP) FOR GREENHOUSE GAS MITIGATION SELECTING THE RIGHT PLACEMENT OF FERTILIZER N IN MANITOBA BACKGROUND N fertilizer placements are dependent on fertilizer, crop and soil

More information

A Method of Measuring Available Silicates in Paddy Soils <!) ~ 150 ~ :o~ ::, ~'co '- ~ ::, C <.> :!: :;;.5- ~ ~ ., ~ ~ ci5 :=..-.

A Method of Measuring Available Silicates in Paddy Soils <!) ~ 150 ~ :o~ ::, ~'co '- ~ ::, C <.> :!: :;;.5- ~ ~ ., ~ ~ ci5 :=..-. A Method of Measuring Available Silicates in Paddy Soils By KUNIHIKO NONAKA and KAZUO TAKAHASHI Department of Cultivation, Shikoku National Agricultural Experiment Station (Zentsuji, Kagawa, 75 Japan)

More information

Effect of sowing date and harvest time on longevity of riceseeds

Effect of sowing date and harvest time on longevity of riceseeds '... Seed Science Research (1996) 7,13-20 13 Effect of sowing date and harvest time on longevity of riceseeds N. Kameswara Rao1* and M.T. Jackson Genetic Resources Center, International Rice Research Institute,

More information

Effect of Flora on the Growth and Yield of Wetland Rice

Effect of Flora on the Growth and Yield of Wetland Rice J Agric Rural Dev 7(1&2), 9-13, June 2009 ISSN 1810-1860 K wl I cj x Dbœqb zj Available online at http://www.banglajol.info/index.php/jard JARD Journal of Agriculture & Rural Development Effect of Flora

More information

Using Nitrate-N Petiole Sap-Testing for Better Nitrogen Management in Vegetable Crops

Using Nitrate-N Petiole Sap-Testing for Better Nitrogen Management in Vegetable Crops Using Nitrate-N Petiole Sap-Testing for Better Nitrogen Management in Vegetable Crops September 2008 Introduction Vegetables have a relatively high nitrogen requirement and at times growers apply too much

More information

Potassium Budgets in Rice Cropping Systems with Annual Flooding in the Mekong River Delta

Potassium Budgets in Rice Cropping Systems with Annual Flooding in the Mekong River Delta SOUTHEAST ASIA/ VIETNAM Potassium Budgets in Rice Cropping Systems with Annual Flooding in the Mekong River Delta By Nguyen My Hoa, B.H. Janssen, O. Oenema, and A. Dobermann Potassium (K) balances provide

More information

Anis Sholihah 1 & Agus Sugianto 2

Anis Sholihah 1 & Agus Sugianto 2 Journal of Agriculture and Environmental Sciences June 2015, Vol. 4, No. 1, pp. 21-25 ISSN: 2334-2404 (Print), 2334-2412 (Online) Copyright The Author(s). All Rights Reserved. Published by American Research

More information

LF-C 1, 2 HF-C 1, 2 Humic acid-c 1

LF-C 1, 2 HF-C 1, 2 Humic acid-c 1 Table. Carbon of particulate organic matter, i.e. litter (size >2 mm and -2 mm), light and heavy fractions and humic acid in sandy soils (0-5 cm depth) under different land-use systems Litter C LF-C, 2

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger,, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from

More information

SUSTAINABILITY OF CROP SEQUENCES WITH REFERENCE To NUTRIENT UTILIZATION

SUSTAINABILITY OF CROP SEQUENCES WITH REFERENCE To NUTRIENT UTILIZATION Philippine Journal of Crop Science 2002, 27(2): 43-51 Copyright 2004, Crop Science Society of the Philippines Released December 2004 SUSTAINABILITY OF CROP SEQUENCES WITH REFERENCE To NUTRIENT UTILIZATION

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 24 September 2013 Reading: Schlesinger & Bernhardt, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification

More information

Nutrient Sources, are not all Equal. John Lauzon

Nutrient Sources, are not all Equal. John Lauzon Nutrient Sources, are not all Equal John Lauzon Managing Organic Sources of Nutrients Organic forms of nitrogen aregenerally not plant available Need an understanding of if, and how much plant available

More information

Nitrogen dynamics of standard and enhanced urea in corn

Nitrogen dynamics of standard and enhanced urea in corn Nitrogen dynamics of standard and enhanced urea in corn James H. Houx III and Felix B. Fritschi INTRODUCTION: Concerns about illegal uses of anhydrous ammonia and ammonium nitrate may make urea a preferred

More information

APPLICATION OF Azolla pinnata ENHANCED SOIL N, P, K, AND RICE YIELD *)

APPLICATION OF Azolla pinnata ENHANCED SOIL N, P, K, AND RICE YIELD *) 5 APPLICATION OF Azolla pinnata ENHANCED SOIL N, P, K, AND RICE YIELD *) 1A. Arivin Rivaie, 2 Soni Isnaini, and 2 Maryati 1IAARD Researcher at Assessment Institute for Agricultural Technology (BPTP)-Maluku,

More information

Effects of different water management practices on rice growth

Effects of different water management practices on rice growth Effects of different water management practices on rice growth Qinghua Shi, Xiaochun Zeng, Muying Li, Xueming Tan, and Fengfeng Xu This paper describes three experiments conducted in Jiangxi, China, aimed

More information

Use of Long-term Soil Monitoring Database for Management of Arable Land in Japan

Use of Long-term Soil Monitoring Database for Management of Arable Land in Japan Use of Long-term Soil Monitoring Database for Management of Arable Land in Japan Takeshi Ota National Agriculture and Food Research Organization (NARO) National Agricultural Research Center (NARC) 3-1-1

More information

Yield quality response (YQR) of pepper under variable water application using micro-sprinkler system

Yield quality response (YQR) of pepper under variable water application using micro-sprinkler system International Journal of Agronomy and Agricultural Research (IJAAR) ISSN: 2223-7054 (Print) Vol. 2, No. 6, p. 23-27, 2012 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Yield quality response (YQR)

More information

NITROGEN EFFICIENCY AND FALL N APPLICATIONS. Larry G. Bundy Department of Soil Science University of Wisconsin

NITROGEN EFFICIENCY AND FALL N APPLICATIONS. Larry G. Bundy Department of Soil Science University of Wisconsin NITROGEN EFFICIENCY AND FALL N APPLICATIONS Larry G. Bundy Department of Soil Science University of Wisconsin NITROGEN FERTILIZER EFFICIENCY Crop uptake of fertilizer N % NFE = x 100 Amount of N fertilizer

More information

Rice Grain Chalkiness Is Negatively Correlated with Root Activity During Grain Filling

Rice Grain Chalkiness Is Negatively Correlated with Root Activity During Grain Filling 192 Rice Science, 2005, 12(3): 192-196 http://www.ricescience.org Rice Grain Chalkiness Is Negatively Correlated with Root Activity During Grain Filling ZHONG Xu-hua, HUANG Nong-rong (Rice Research Institute,

More information

Mineralization of Nitrogen from Compost

Mineralization of Nitrogen from Compost Mineralization of Nitrogen from Compost Tim Griffin USDA-ARS University of Maine Orono ME 04469 tgriffin@maine.edu Mark Hutchinson University of Maine Cooperative Extension 377 Manktown Rd Waldoboro ME

More information

Water use efficience in rice culture

Water use efficience in rice culture Water use efficience in rice culture Tantawi Badawi A., Ghanem S.A. in Chataigner J. (ed.). Future of water management for rice in Mediterranean climate areas: Proceedings of the Workshops Montpellier

More information

Rice Response to the Time and Rate of Potassium Fertilization

Rice Response to the Time and Rate of Potassium Fertilization RICE CULTURE Rice Response to the Time and Rate of Potassium Fertilization N.A. Slaton, B.C. Pugh, R.E. DeLong, S.D. Clark, R.J. Norman, and C.E. Wilson, Jr. ABSTRACT Rice (Oryza sativa L.) requires adequate

More information

13 4III1 I Li, ULU EFFECT OF IRRIGATION METHOD AND LEACHING OF 1 NITRATE-NITROGEN ON SUCROSE PRODUCTION BY SUGARBEETS

13 4III1 I Li, ULU EFFECT OF IRRIGATION METHOD AND LEACHING OF 1 NITRATE-NITROGEN ON SUCROSE PRODUCTION BY SUGARBEETS 13 4III1 I Li, ULU EFFECT OF IRRIGATION METHOD AND LEACHING OF 1 NITRATE-NITROGEN ON SUCROSE PRODUCTION BY SUGARBEETS J. N. Carter, C. H. Pair, and S. M. Bosma 2 Factors that influence sugarbeet root yield

More information

International Journal of Current Research in Biosciences and Plant Biology ISSN: Volume 2 Number 9 (September-2015) pp

International Journal of Current Research in Biosciences and Plant Biology ISSN: Volume 2 Number 9 (September-2015) pp International Journal of Current Research in Biosciences and Plant Biology ISSN: 2349-8080 Volume 2 Number 9 (September-2015) pp. 38-42 www.ijcrbp.com Original Research Article Performance of Aerobic Rice

More information

THE BENEFITS OF MANAGING MANURES WITH ALFALFA. Roland D. Meyer

THE BENEFITS OF MANAGING MANURES WITH ALFALFA. Roland D. Meyer THE BENEFITS OF MANAGING MANURES WITH ALFALFA Roland D. Meyer Abstract: Alfalfa is a major crop in California, accounting for approximately ten percent of the irrigated acreage, contributing significantly

More information

Department of Agronomy, Agricultural College and Research Institute, Madurai , India. Received : Accepted : ABSTRACT

Department of Agronomy, Agricultural College and Research Institute, Madurai , India. Received : Accepted : ABSTRACT Indian J. Agric. Res., 4 (2) : 11-1, 211 AGRICULTURAL RESEARCH COMMUNICATION CENTRE www.ar.arccjour ccjournals.com / indianjournals.com nals.com RHIZOSPHERE ENZYME ACTIVITIES AS INFLUENCED BY AGE OF SEEDLINGS,

More information

Effect of urea super granules, prilled urea and poultry manure on the yield of transplant Aman rice varieties

Effect of urea super granules, prilled urea and poultry manure on the yield of transplant Aman rice varieties J. Bangladesh Agril. Univ. 7(2): 259 263, 2009 ISSN 1810-3030 Effect of urea super granules, prilled urea and poultry manure on the of transplant Aman rice varieties M. H. Kabir, M. A. R. Sarkar and A.

More information

Patwardhan S. M. and Patel S. M. BAIF Development Research Foundation Warje, Pune, Maharashtra

Patwardhan S. M. and Patel S. M. BAIF Development Research Foundation Warje, Pune, Maharashtra Promotion of System of Rice Intensification (SRI) in Rainfed Rice Cultivation among the Farmers of Dangs District of Gujarat: An Action Research Initiative Patwardhan S. M. and Patel S. M. BAIF Development

More information

Effect of seedlings numbers per hill on the growth and yield of Kum Bangpra RiceVariety (Oryza sativa L.)

Effect of seedlings numbers per hill on the growth and yield of Kum Bangpra RiceVariety (Oryza sativa L.) International Journal of Agricultural Technology 2019 Vol. 15(1): 103-112 Available online http://www.ijat-aatsea.com ISSN: 2630-0613 (Print) 2630-0192 (Online) Effect of seedlings numbers per hill on

More information

Organic Matter Content of a Lowland Paddy Soil as Affected by Plant Growth and Urea Fertilization

Organic Matter Content of a Lowland Paddy Soil as Affected by Plant Growth and Urea Fertilization Tropical Agricultural Research Vol. 26 (2): 415 421 (2015) Short Communication Organic Matter Content of a Lowland Paddy Soil as Affected by Plant Growth and Urea Fertilization T. Sellathurai *, T. Sivananthawerl

More information

Alternate wetting and drying in irrigated rice

Alternate wetting and drying in irrigated rice Alternate wetting and drying in irrigated rice Implementation guidance for policymakers and investors Meryl Richards, B. Ole Sander APRIL 2014 A large potential exists for GHG reductions from rice paddies

More information

Effect of anilofos and pendimethalin on the mineralization of carbon and nitrogen in a Haplustept soil of West Bengal

Effect of anilofos and pendimethalin on the mineralization of carbon and nitrogen in a Haplustept soil of West Bengal Journal of Crop and Weed, 5(1): 206-212 (2009) Effect of anilofos and pendimethalin on the mineralization of carbon and nitrogen in a Haplustept soil of West Bengal S. NONGTHOMBAM, H. NAYEK AND A. C. DAS

More information

Effect of combined use of organic manure and nitrogen fertilizer on the performance of rice under flood-prone lowland conditions

Effect of combined use of organic manure and nitrogen fertilizer on the performance of rice under flood-prone lowland conditions Journal of Agricultural Science, Cambridge (1999), 132, 461 465. 1999 Cambridge University Press Printed in the United Kingdom 461 Effect of combined use of organic manure and nitrogen fertilizer on the

More information

Aerobic rice- the next generation innovation in rice cultivation technology

Aerobic rice- the next generation innovation in rice cultivation technology International Journal of Farm Sciences 2(2) : 54-58, 2012 Aerobic rice- the next generation innovation in rice cultivation technology J RACHEL PREDEEPA Department of Biotechnology Alpha Arts and Science

More information

Nutrient Plant Availability Coefficients for Manures in North Carolina Jot Smyth and David Crouse, Soil Science Department, N.C.

Nutrient Plant Availability Coefficients for Manures in North Carolina Jot Smyth and David Crouse, Soil Science Department, N.C. Nutrient Plant Availability Coefficients for Manures in North Carolina Jot Smyth and David Crouse, Soil Science Department, N.C. State University Commercial fertilizers contain known quantities of specific

More information

Diffuse Pollution Conference, Dublin 2003 NUTRIENT BALANCE IN A PADDY FIELD WITH A RECYCLING IRRIGATION SYSTEM

Diffuse Pollution Conference, Dublin 2003 NUTRIENT BALANCE IN A PADDY FIELD WITH A RECYCLING IRRIGATION SYSTEM NUTRIENT BALANCE IN A PADDY FIELD WITH A RECYCLING IRRIGATION SYSTEM Y.W. Feng 1*, I. Yoshinaga 2, E. Shiratani 2, T. Hitomi 2, H. Hasebe 2 1 Japan Society for the Promotion of Science, 6 Ichibancho, Chiyoda-ku,

More information

NITRATE STUDIES ON PURDUE ROTATION FIELD

NITRATE STUDIES ON PURDUE ROTATION FIELD Soil Nitrate Studies 269 NITRATE STUDIES ON PURDUE ROTATION FIELD No. 6. I. L. Baldwin, W. J. Nichter, and R. O. Lindsey, Purdue University. Nitrate formation in the soil, although primarily a chemical

More information

Yield and Nutrient Accumulation of KDML 105 Rice as Influenced by Farmyard Manure and Wood Vinegar

Yield and Nutrient Accumulation of KDML 105 Rice as Influenced by Farmyard Manure and Wood Vinegar 368 Yield and Nutrient Accumulation of KDML 105 Rice as Influenced by Farmyard Manure and Wood Vinegar Lyda Hok, Darunee Jothityangkoon* and Anan Polthanee Department of Plant Science and Agricultural

More information

Probability of Low Temperature Stress at Different Growth Stages of Boro Rice

Probability of Low Temperature Stress at Different Growth Stages of Boro Rice Bangladesh Rice J. 19(2): 19-27, 215 Probability of Low Temperature Stress at Different Growth Stages of Boro Rice M S Kabir 1, M Howlader 2, J K Biswas 3, M A A Mahbub 4 and M Nur-E-Elahi 5 ABSTRACT The

More information

EFFECT OF MIYODO ON GROWTH, YIELD ATTRIBUTES AND YIELD IN T. AMAN RICE cv. BR-11

EFFECT OF MIYODO ON GROWTH, YIELD ATTRIBUTES AND YIELD IN T. AMAN RICE cv. BR-11 Progress. Agric. 19(1) : 45-49, 2008 ISSN 1017-8139 EFFECT OF MIYODO ON GROWTH, YIELD ATTRIBUTES AND YIELD IN T. AMAN RICE cv. BR-11 A. K. M. Golam Sarwar, J. Sultana, M. O. Islam and A. K. M. A. Prodhan

More information

Fertility and Crop Nutrition. B. Linquist, R. Mutters, J. Hill and C. vankessel Rice Production Workshop, March 21, 2011

Fertility and Crop Nutrition. B. Linquist, R. Mutters, J. Hill and C. vankessel Rice Production Workshop, March 21, 2011 Fertility and Crop Nutrition B. Linquist, R. Mutters, J. Hill and C. vankessel Rice Production Workshop, March 21, 2011 900 800 Fertilizer costs: 1960-2010 Source: USDA 700 600 Nitrogen solutions (30%)

More information

Improved Water Management Practices in the Rice-Wheat Zone of Sind, Pakistan

Improved Water Management Practices in the Rice-Wheat Zone of Sind, Pakistan Improved Water Management Practices in the Rice-Wheat Zone of Sind, Pakistan T he current yields of rice and wheat in Sind, Pakistan are far below their potential yields partly due to improper water management

More information

Investigation on Nutritional Factors Limiting Crop Growth in the Red-Yellow Podzolic Soils Distributed in the Province of Lampung, Indonesia

Investigation on Nutritional Factors Limiting Crop Growth in the Red-Yellow Podzolic Soils Distributed in the Province of Lampung, Indonesia Investigation on Nutritional Factors Limiting Crop Growth in the Red-Yellow Podzolic Soils Distributed in the Province of Lampung, Indonesia I. Nutritional Factors of the Soils Limiting the Growth of Main

More information

Coated Fertilizer for the Controlled Release of Nutrient

Coated Fertilizer for the Controlled Release of Nutrient Coated Fertilizer for the Controlled Release of Nutrient BY KOSH KURHARA Chief, Laboratory of Fertilizer mprovement, Division of Fertilizers, Department of Soils and Fertilizers, National nstitute of Agricultural

More information

Irrigation Practice as it Affects Fertilizer Requirement, Quality and Yield of Sugar Beets 1

Irrigation Practice as it Affects Fertilizer Requirement, Quality and Yield of Sugar Beets 1 Irrigation Practice as it Affects Fertilizer Requirement, Quality and Yield of Sugar Beets 1 D. BOYD ARCHIBALD AND JAY L. HADDOCK 2 Approximately 85 percent of the sugar beet acreage in the United States

More information

STUDIES ON THE EFFECT OF RATIOS AND LEVELS OF NPK FERTILIZER NUTRIENTS ON THE PRODUCTIVITY OF HYBRID SUNFLOWER UNDER RAINFED FARMING SITUATIONS

STUDIES ON THE EFFECT OF RATIOS AND LEVELS OF NPK FERTILIZER NUTRIENTS ON THE PRODUCTIVITY OF HYBRID SUNFLOWER UNDER RAINFED FARMING SITUATIONS STUDIES ON THE EFFECT OF RATIOS AND LEVELS OF NPK FERTILIZER NUTRIENTS ON THE PRODUCTIVITY OF HYBRID SUNFLOWER UNDER RAINFED FARMING SITUATIONS Lokanath H. Malligawad, Agronomist (Groundnut), Oilseeds

More information

SUMMER DROUGHT: CAUSE OF DIEBACK IN PERENNIAL RYEGRASS SEED FIELDS?

SUMMER DROUGHT: CAUSE OF DIEBACK IN PERENNIAL RYEGRASS SEED FIELDS? SUMMER DROUGHT: CAUSE OF DIEBACK IN PERENNIAL RYEGRASS SEED FIELDS? T.G. Chastain, T.M. Velloza, W.C. Young III, C.J. Garbacik and M.E. Mellbye Introduction. The cause of dieback, a form of premature stand

More information

NITROGEN DYNAMICS IN SOILS AMENDED WITH DIFFERENT ORGANIC FERTILIZERS

NITROGEN DYNAMICS IN SOILS AMENDED WITH DIFFERENT ORGANIC FERTILIZERS Philippine Journal of Crop Science 23, 28(3): 49-6 Copyright 25, Crop Science Society of the Philippines Released February 25 NITROGEN DYNAMICS IN SOILS AMENDED WITH DIFFERENT ORGANIC FERTILIZERS EF JAVIER

More information