GENETIC CONSIDERATIONS FOR HEIFER FERTILITY DR. HEATHER J. HUSON ROBERT & ANNE EVERETT ENDOWED PROFESSORSHIP OF DAIRY CATTLE GENETICS

Size: px
Start display at page:

Download "GENETIC CONSIDERATIONS FOR HEIFER FERTILITY DR. HEATHER J. HUSON ROBERT & ANNE EVERETT ENDOWED PROFESSORSHIP OF DAIRY CATTLE GENETICS"

Transcription

1 GENETIC CONSIDERATIONS FOR HEIFER FERTILITY DR. HEATHER J. HUSON ROBERT & ANNE EVERETT ENDOWED PROFESSORSHIP OF DAIRY CATTLE GENETICS OVERVIEW Genetic merit of the heifer Genetics as a management tool CALF & HEIFER CONGRESS 2017 CALF & HEIFER CONGRESS 2017 What s the value of the individual? GENETIC MERIT OF THE HEIFER How do we select for value? CALF & HEIFER CONGRESS 2017

2 ESTIMATION OF GENETIC MERIT Phenotype Genotype Pedigree Parent Average: Genetic average of each parent s genetic value Assumes that offspring inherit exactly ½ of each parents genetic merit for all traits Assumes that parents are identified as 100% accurate Genotypic value: value of an individual s genes on their OWN performance Breeding value: value of an individual s genes on their PROGENY s performance (EBV) Progeny difference = Transmitting ability: expectation of what the PROGENY inherits from the parent (PTA) Producing ability: (PA) performance potential of an individual for a repeated trait Economically important traits Predicted Genetic Merit WHAT S INCLUDED IN GENETIC EVALUATIONS ESTIMATING GENETIC MERIT OF THE HEIFER Genomic evaluation of the heifer Sire: genomic evaluations Dam: farm records; potential genomic evaluations Siblings: farm records; potential genomic evaluations

3 HOW DO YOU ESTIMATE THE VALUE OF TRAITS NOT EXHIBITED? PROGENY TESTING Investment Time (generation interval) Cost (cost of raising animal and progeny til performance evaluated) Milking ability Calving ease Maternal traits Mastitis GENOMIC PREDICTION gebv Investment Genetic research Industry infrastructure Producer buy-in USES FOR GENETIC EVALUATIONS Management tool Provides an objective value for an individual reflecting health, production, and conformation Reproductive management Sire decisions IVF/Embryo transfer (donors versus recipients) Culling decisions Marketing tool Creates economic value for the producer Provides a currency for marketing stock particularly in young and phenotypically unproven animals Ensures utilization and subsequent incorporation of the targeted genetics in the next generation Investigate marketing (research) claims

4 CONSIDERATIONS FOR USING PERFORMANCE INDEXES RATE OF GENETIC CHANGE Measures the effectiveness of selection CDCB / USDA Economic index Industry objectives Breed association & Company indexes Targeted toward association or company objectives Purebred evaluations Within breed: genetic patterns can be breed specific Holstein, Jersey, Ayrshire, Milking Shorthorn, Brown Swiss, Guernsey Crossbred evaluations International evaluations Selection criteria INTERBULL Supporting research Expected genetic progress per year Genetic variance = variation in the population due to genetics; includes heritability (h 2 ) of the trait We can t change this Genetic variance Selection differential = intensity of selection; how selective we are when making mating decisions Accuracy = how certain we are about our estimate of an animal s genetic merit Generation interval = time between generations Selection differential (intensity) Generation interval Accuracy GENOMIC PREDICTION COMPARISON OF COMMON TOTAL PERFORMANCE INDEXES = OPTIMIZED FOR GENERAL IMPROVEMENT OF PRODUCTION, HEALTH, AND CONFORMATION Net Merit TPI JPI Benefits of Genomics Chapter : Principle of genomic selection; Groen Kennisnet Improved accuracy of genetic merit and trait selection Merit of young stock Parentage validation Disease assessment (Carrier status for genetic conditions) Conf. 16% Health 40% Production 44% Holstein, Jersey, Ayrshire, Brown Swiss, Guernsey, Milking Shorthorn Conf. 26% Health 28% Holstein Production 46% Health 27% Conf. 15% Jersey Production 58%

5 INDIVIDUAL TRAITS Milk Fat Protein Fat % Protein % Somatic cell score Productive life Reproduction Daughter pregnancy rate Heifer conception rate Cow conception rate Sire calving ease Daughter calving ease Sire still birth Daughter still birth Type / Conformation Stature Strength (chest width) Body depth (rib cage) Dairy form (rib angle) Rump angle Rump width Rear leg side view Rear leg rear view Foot angle Feet/ leg score Fore udder attachment Rear udder attachment Rear udder height Rear udder width Udder cleft Udder depth Front teat placement Rear teat placement Teat length GENETICS AS A MANAGEMENT TOOL GENETICS MATTER Genetics provide the foundation for potential Set the genetic ceiling of the herd Management and the environment allow animal to reach that potential Some animals will exceed estimated potential while others do not achieve expected potential Farms which don t use genetic information will generally still improve due to overall industry improvement Slower rate of improvement Nutrition Environment Reproduction Genetics Milk Quality Health Establish herd goals

6 Identify methods to achieve herd goals SETTING GOALS Focused use of genetic information Selection intensity Accuracy Reduced time to achieve gain REPRODUCTIVE MANAGEMENT Total Performance Indexes Net Merit Conf. 16% Health 40% Production 44% Big Picture Targeted Indexes Calving ability (CA$) Fertility Index (FI) Individual Reproductive Traits Daughter pregnancy rate Heifer conception rate Cow conception rate Sire calving ease Daughter calving ease Sire still birth Daughter still birth Genetic Conditions Recessive Fertility Haplotypes Details

7 REPRODUCTIVE INDEXES HEALTH: REPRODUCTIVE TRAITS Calving ability (CA$): Genetic index that measures the ability of a calf to be born easily and alive. Specific traits used in the CA$ index include sire calving ease, daughter calving ease, sire still birth and daughter still birth Fertility Index (FI): Holstein only; Genetic index combining 18% heifer conception rate + 18% cow conception rate + 64% daughter pregnancy rate. Daughter pregnancy rate (DPR): expected % difference, compared to breed average, that a nonpregnant cow will become pregnant during each 21 day estrous cycle. (~1% DPR increase equals four fewer days open) Heifer conception rate (HCR): heifers ability to conceive defined as the % of inseminated heifers that become pregnant at each service. (an HCR of 1 implies that daughters of this animal would be 1% more likely to become pregnant as a heifer than daughters of an animal with an HCR value of 0) Cow conception rate (CCR): similar to HCR but in regards to cow that has previously calved Sire calving ease (SCE): ability of a calf to be born easily and is expressed as a percentage of difficult births in among first-calf heifer calvings. Lower numbers reflect easier calving. Daughter calving ease (DCE): Measures the genetic ability of a female to calve easily and is expressed as percent difficult births for first-calf heifers. Lower numbers reflect easier calving. Sire still birth (SSB): Measures the genetic tendency of calves from a particular sire to be stillborn or die within 48 hours. Lower numbers are desired. Daughter still birth (DSB): Measures the genetic ability of a cow to produce live calves REPRODUCTIVE / FERTILITY CONDITIONS INBREEDING: RECESSIVE FERTILITY HAPLOTYPES HH1 HH2 HH3 HH4 HH5 JH1 JH2 BH1 BH2 Zoetis C = carrier F = free Geneseek T = tested free C = carrier A = homozygous affected 1. Individuals are documented as Carrier or Free for genetic conditions. 2. An individual s status for a genetic condition does NOT alter it s merit score! Haplotypes traced back to common, popular sires Name Chromoso me Location Carri er Freq Earliest Known Ancestors BTA Mbase % HH Pawnee Farm Arlinda Chief HH Willowholme Mark Anthony HH Glendell Arlinda Chief, Gray View Skyliner JH Observer Chocolate Soldier BH West Lawn Stretch Improver VanRaden, P.M., et al. Reporting of haplotypes with recessive effects on fertility. Proc. Interbull Mtg., Stavanger, Norway, Aug , 4 pp

8 INBREEDING Genetic merit. Regression per 1% inbreeding Milk Fat Protein Productive Life Somatic Cell Score Daughter Pregnancy Rate Heifer Cow Conception Conception Livability Rate Rate FOCUSED USE OF GENOMIC INFORMATION MANAGEMENT TOOL S M A R T Specific Improved reproductive efficiency within herd Meaningful Actionable Realistic Trackable How will it improve your herd? Economics, health, welfare Net merit Fertility index = (18% Heifer Conception Rate) + (18% Cow conception rate) + (64% Daughter Pregnancy Rate) Individual traits: DPR, HCR, CCR, CA, SCE, DCE, SSB, DSB Genetic conditions: Recessive fertility haplotypes (HH1, HH2 JH1 ) What endpoint is achievable given resources? Who to genotype? Implementation? Cost? Time-frame? Pregnancy rate, conception rate, calf survival Reproductive management Sire decisions IVF/Embryo transfer (donors versus recipients) Culling decisions

9 REPRODUCTIVE TECHNOLOGIES BULL SELECTION Bulls Artificial insemination Sexed semen Considerations for use Cost Animal transport requirements Expertise and facility availability Cows Egg collection: traditional flushing, ovum pickup (OPU) or transvaginal oocyte retrieval (TVOR) In vitro fertilization (IVF) Cryopreservation / Recipient cows Proven Bulls Increased reliability in estimation of genetic merit Phenotypic and genomic data 85-90% reliability (B. Cassell, ) Higher probability of progeny having expected genetic merit Young Bulls Reduces generation interval- increasing rate of genetic change Genomic estimation of merit slightly less than proven estimates 70% reliability (B. Cassell, ) (~30% reliability phenotype only) Popularity and acceptance of technology Impact Reduce generation interval Increased # of offspring from elite stock Increase selection intensity The use of a variety of bulls buffers the impact of any bull decreasing in genetic merit over time. BULL SELECTION TAKE HOME: GENOMIC & REPRODUCTIVE TECHNOLOGIES Who selects the bull(s)? How diverse is your bull selection? How specific is the mating choice? Individual mating Group mating- how are groups identified? Overall merit, specific traits, random? Herd Sexed semen Reduce generation interval Increase selection intensity Beef semen Increase rate of genetic change

10 ELITE ANIMALS DRIVE GENETIC CHANGE CURRENT & FUTURE STATUS OF GENETICS & GENOMICS Table 1. Mean predicted transmitting abilities (PTAs) for milk, fat, protein, productive life (PL), somatic cell score (SCS), and net merit (NM) for registered 1 cows passing first-stage screening. Breed Cows 2 (no.) NM ($) PTA milk PTA fat PTA protein PTA PTA PL PTA SCS DPR (lb) (lb) (lb) (mo) Ayrshire 6, Brown Swiss 21, Guernsey 7, Holstein 927, Jersey 151, Milking Shorthorn 2, Red and White August 2017 Elite Cow and Heifer Statistics Table 3. Percentiles and corresponding NM for a cow to be designated as elite or a high-ranking grade and numbers by breed. Evaluation Minimum Minimum Elite cows Highranking Breed percentile NM ($) (no.) grade cows (no.) Ayrshire ,641 Brown Swiss ,768 Guernsey Holstein ,931 35,109 Jersey ,725 24,565 Milking Shorthorn Red and White GENETIC VERSUS GENOMIC PTA Reliability (%) Trait Genomic Traditional Difference 1 Standard deviation Genomic Traditional Difference 1 average average average average Net merit ($) Milk (pounds) Fat (pounds) Protein (pounds) Somatic cell score Productive life (months) Livability Daughter pregnancy rate (%) Cow conception rate Heifer conception rate Sire calving ease Daughter calving ease Final score

11 COMMERCIAL MARKETING WHY DO WE NEED NEW TRAITS? Changes in production economics Technology produces new phenotypes Better understanding of biology Recent review by Egger-Danner et al. Immunity + Sires Offering dairymen a genetic option for natural disease resistance -- Semex Creating wellness trait genomic predictions J. Cole, USDA 2016 CHALLENGES TO GENETIC IMPROVEMENT THERE ARE NO GUARANTEES GENETIC CHANGE ISN T FAST... Research is being done on new traits Often not turned into new products It s a collective action problem Disagreement on objectives Lack of commercial incentives Infrastructure is not in place This provides an opportunity for new players to enter the market Independent validation lacking New technologies often require considerable capital investment They sometimes fail to work or do not deliver the promised gain Data are most useful when combined with observations from many farms This inevitably involves risk J. Cole, USDA 2016 J. Cole, USDA 2016

12 FRANKENSCIENTISTS ANNOUNCE MUTANT GMO COWS TO PRODUCE HORMONE-INDUCED ENGINEERED MILK t.com/2013/06/frankenscientistsannounce-mutant-gmo.html RESOURCES GMOs??? Gene editing? What s the future of GMO technology in the dairy industry? Council on Dairy Cattle Breeding Heifer/Cow Fertility Traits: Genetic evaluation CALF & HEIFER CONGRESS 2017

13 QUESTIONS TOPICS TO CONSIDER CALF & HEIFER CONGRESS 2017

11/30/2018. Introduction to Genomic Selection OUTLINE. 1. What is different between pedigree based and genomic selection? 2.

11/30/2018. Introduction to Genomic Selection OUTLINE. 1. What is different between pedigree based and genomic selection? 2. Introduction to Genomic Selection imagefriend.com OUTLINE 1. What is different between pedigree based and genomic selection? 2. Selection tools - Selection Indexes - Genotyping resources 3. DNA-based markers

More information

Understanding Results

Understanding Results Understanding Results CLARIFIDE is a DNA-marker-based technology that provides a comprehensive genetic evaluation of each animal. CLARIFIDE is a 3,000-marker panel (3K) that delivers as many as 30 production,

More information

Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth

Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth First Current Reality August 2016 US CDCB-AGIL Genetic Breed Difference From Holstein Breed Milk Fat Protein Productive

More information

Individual Genomic Prediction Report

Individual Genomic Prediction Report Interpreting Holstein Association USA s Individual Prediction Report When you genomic test an animal through Holstein Association USA, you will receive a report with a variety of traits and their genomic

More information

Understanding Bull Proofs

Understanding Bull Proofs Understanding Bull Proofs 1. Ideal Commercial Cow (ICC$) Index A genetic ranking developed by Genex. ICC$ is designed to breed for farm profitability and efficiency using real-time economic indicators

More information

Using genotypes to construct phenotypes for dairy cattle breeding programs and beyond

Using genotypes to construct phenotypes for dairy cattle breeding programs and beyond Using genotypes to construct phenotypes for dairy cattle breeding programs and beyond John B. Animal Genomics and Improvement Laboratory Agricultural Research Service, USDA Beltsville, MD 20705-2350 john.cole@ars.usda.gov

More information

What dairy farmers should know about genetic selection

What dairy farmers should know about genetic selection 52nd Florida Dairy Production Conference 9 Gainesville, FL, April 6, 2016 Francisco Peñagaricano Department of Animal Sciences University of Florida Genetic selection decisions one of the most important

More information

2/22/2012. Impact of Genomics on Dairy Cattle Breeding. Basics of the DNA molecule. Genomic data revolutionize dairy cattle breeding

2/22/2012. Impact of Genomics on Dairy Cattle Breeding. Basics of the DNA molecule. Genomic data revolutionize dairy cattle breeding Impact of Genomics on Dairy Cattle Breeding Bennet Cassell Virginia Tech 2012 VSFA/VA Tech Nutrition Cow College Genomic data revolutionize dairy cattle breeding Accuracy of selection prior to progeny

More information

Farm Management Decisions in the Era of Genomics

Farm Management Decisions in the Era of Genomics Farm Management Decisions in the Era of Genomics Brian Van Doormaal and Gerrit Kistemaker Canadian Dairy Network, Guelph, Ontario. E-mail: Brian@cdn.ca Take Home Messages Genomics has had a major impact

More information

Profitable Dairy Cow Traits for Future Production Circumstances

Profitable Dairy Cow Traits for Future Production Circumstances Profitable Dairy Cow Traits for Future Production Circumstances Albert de Vries, Ph.D. Department of Animal Sciences University of Florida Gainesville, Florida, USA 57 th Annual Meeting of the European

More information

Genomic selection in cattle industry: achievements and impact

Genomic selection in cattle industry: achievements and impact Genomic selection in cattle industry: achievements and impact Dr. Fritz Schmitz-Hsu Senior Geneticist Swissgenetics CH-3052 Zollikofen Scientific Seminar WBFSH 2016 1 Source: https://i.ytimg.com/vi/cuvjxlhu79a/hqdefault.jpg

More information

NTM. Breeding for what truly matters. The NTM breeding goal is healthy, fertile, high producing cows the invisible cow. Elisabeth

NTM. Breeding for what truly matters. The NTM breeding goal is healthy, fertile, high producing cows the invisible cow. Elisabeth NTM Breeding for what truly matters The NTM breeding goal is healthy, fertile, high producing cows the invisible cow. Elisabeth 1 Contents Nordic Total Merit NTM a powerful tool for dairy farmers 3 How

More information

Decoding genomic selection and the benefit for unconventional traits

Decoding genomic selection and the benefit for unconventional traits Decoding genomic selection and the benefit for unconventional traits Pete Hansen Dept. of Animal Sciences University of Florida Change in Breeding Value for Milk Yield in Holsteins 1957-2013 Breeding Value

More information

Breeding briefs. A guide to genetic indexes in dairy cattle

Breeding briefs. A guide to genetic indexes in dairy cattle Breeding briefs A guide to genetic indexes in dairy cattle 1 Contents Introduction 4 Genetic indexes: the theory 5 What are they and why do we need them? 5 How are they calculated? 5 The Test Day Model

More information

Genomic Management: Impact on Sustainability

Genomic Management: Impact on Sustainability Genomic Management: Impact on Sustainability David C. Thorbahn, Select Sires Inc. 1 Definition of Sustainability: the ability to survive, be sustained, be supported, or confirmed the quality of not being

More information

Using Genomics to Improve the Genetic Potential and Management of Your Herd

Using Genomics to Improve the Genetic Potential and Management of Your Herd Using Genomics to Improve the Genetic Potential and Management of Your Herd Pedigree-Based Selection Dr. Kent A. Weigel Department of Dairy Science University of Wisconsin Madison 1675 Observatory Drive

More information

Introduction. Data collection and evaluation activities

Introduction. Data collection and evaluation activities 2017 Annual and Final Report on Cooperation on the Genetic Evaluation System (GES) Under the Nonfunded Cooperative Agreement (NFCA) 8042-31000-101-07 Between the Agricultural Research Service (ARS), U.S.

More information

Results Key. Farm ID Official ID Breed Birth Date

Results Key. Farm ID Official ID Breed Birth Date The Igenity Dairy Heifer Program family of products contains comprehensive, powerful and easy-to-use tools for genetic evaluation, at any time in an animal s lifetime. No matter if you use the Igenity-Elite,

More information

Got Dairy? A brief introduction to dairy cattle genetics

Got Dairy? A brief introduction to dairy cattle genetics Got Dairy? A brief introduction to dairy cattle genetics 1 2 Essential Information External Anatomy Jersey. Said to have the highest quality milk: 15-20% more protein, 15-18% more calcium. The cow is typically

More information

Establishment of a Single National Selection Index for Canada

Establishment of a Single National Selection Index for Canada Establishment of a Single National Selection Index for Canada Brian Van Doormaal, Gerrit Kistemaker and Filippo Miglior Canadian Dairy Network, Guelph, Ontario, Canada Introduction Ten years ago, in 1991,

More information

Genetics 472. Heritability. Heritability estimates 12/7/2015. Round Two

Genetics 472. Heritability. Heritability estimates 12/7/2015. Round Two Genetics 472 Round Two Heritability Phenotype=Genotype + Environment Genotype is the measure of heritability, the measure of genetic merit of one individual Milk 25 40% Fat 27 43% Fat% 32 87% Prot. % 48

More information

Big Data, Science and Cow Improvement: The Power of Information!

Big Data, Science and Cow Improvement: The Power of Information! Big Data, Science and Cow Improvement: The Power of Information! Brian Van Doormaal, Canadian Dairy Network (CDN) Building a Sustainable Dairy Industry, DFC Symposium November 7-8, 2017, Ottawa Our Product

More information

Strategy for Applying Genome-Wide Selection in Dairy Cattle

Strategy for Applying Genome-Wide Selection in Dairy Cattle Strategy for Applying Genome-Wide Selection in Dairy Cattle L. R. Schaeffer Centre for Genetic Improvement of Livestock Department of Animal & Poultry Science University of Guelph, Guelph, ON, Canada N1G

More information

Genomic selection applies to synthetic breeds

Genomic selection applies to synthetic breeds Genomic selection applies to synthetic breeds Jérémie Vandenplas, Mario P.L. Calus 21 November 2015 Traditional selection Aim Selection of the best animals to create the next generation Based on estimated

More information

Where can the greatest economic value of genomic testing be found?

Where can the greatest economic value of genomic testing be found? Where can the greatest economic value of genomic testing be found? Albert De Vries Department of Animal Sciences University of Florida Gainesville, FL 32611 devries@ufl.edu Dairy Genomics Workshop, Twin

More information

CDCB tools for the improvement of the Jersey breed

CDCB tools for the improvement of the Jersey breed CDCB tools for the improvement of the Jersey breed 21 st International Conference of the World Jersey Cattle Bureau 150 th Anniversary of the American Jersey Cattle Association Canton, OH - June 30, 2018

More information

Genetics Effective Use of New and Existing Methods

Genetics Effective Use of New and Existing Methods Genetics Effective Use of New and Existing Methods Making Genetic Improvement Phenotype = Genetics + Environment = + To make genetic improvement, we want to know the Genetic value or Breeding value for

More information

J. Dairy Sci. 100: https://doi.org/ /jds

J. Dairy Sci. 100: https://doi.org/ /jds J. Dairy Sci. 100:5729 5745 https://doi.org/10.3168/jds.2016-11979 American Dairy Science Association, 2017. Comparison between an exclusive in vitro produced embryo transfer system and artificial insemination

More information

Why Crossbreed?? Dr. Tom Lawlor, Holstein USA

Why Crossbreed?? Dr. Tom Lawlor, Holstein USA Why Crossbreed?? Dr. Tom Lawlor, Holstein USA y Why Crossbreed? Published: February 2016 What do those who are selling semen for crossbreeding say Improved ProducIon Improved MasIIs Resistance Improved

More information

João Dürr Interbull Centre Director. Animal identification and traceability Interbull s s and Interbeef s perspectives

João Dürr Interbull Centre Director. Animal identification and traceability Interbull s s and Interbeef s perspectives João Dürr Interbull Centre Director Animal identification and traceability Interbull s s and Interbeef s perspectives Summary Interbull & Interbeef Genetic improvement essentials Globalization of cattle

More information

Strategy for applying genome-wide selection in dairy cattle

Strategy for applying genome-wide selection in dairy cattle J. Anim. Breed. Genet. ISSN 0931-2668 ORIGINAL ARTICLE Strategy for applying genome-wide selection in dairy cattle L.R. Schaeffer Department of Animal and Poultry Science, Centre for Genetic Improvement

More information

Reliability of Genomic Evaluation of Holstein Cattle in Canada

Reliability of Genomic Evaluation of Holstein Cattle in Canada Reliability of Genomic Evaluation of Holstein Cattle in Canada F. S. Schenkel 1, M. Sargolzaei 1, G. Kistemaker 2, G.B. Jansen 3, P. Sullivan 2, B.J. Van Doormaal 2, P. M. VanRaden 4 and G.R. Wiggans 4

More information

Economic Impact of Bull Choices... A.I. Or Otherwise

Economic Impact of Bull Choices... A.I. Or Otherwise Economic Impact of Bull Choices... A.I. Or Otherwise By Dr. Ben McDaniel Animal Science Department North Carolina State University P.O. Box 7621 Raleigh, NC 27695-7621 919-515-4023 fax 919-515-7780 Email:

More information

Placing: 1 st 2 nd 3 rd 4 th

Placing: 1 st 2 nd 3 rd 4 th 2012 North Dakota FFA Convention Pedigree Evaluation [50 points] Given the following scenario, place the attached four (4) pedigrees in the order best suited to meet the long term goals of the purebred

More information

Genetic improvement: a major component of increased dairy farm profitability

Genetic improvement: a major component of increased dairy farm profitability Genetic improvement: a major component of increased dairy farm profitability F. Miglior,2, J. Chesnais 3, and B. J. Van Doormaal 2 Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph,

More information

Genetics of dairy production

Genetics of dairy production Genetics of dairy production E-learning course from ESA Charlotte DEZETTER ZBO101R11550 Table of contents I - Genetics of dairy production 3 1. Learning objectives... 3 2. Review of Mendelian genetics...

More information

GENOMICS AND YOUR DAIRY HERD

GENOMICS AND YOUR DAIRY HERD GENOMICS AND YOUR DAIRY HERD Genomics uses DNA information to predict the genetic merit of bulls and cows. Available in Australia since 2011, genomic information is routinely used to calculate genomic

More information

6 Breeding your cows and heifers

6 Breeding your cows and heifers 6 Breeding your cows and heifers 6 Breeding your cows and heifers Regardless of the bulls you use, breeding your herd replacements from your best cows and heifers is essential if you want to achieve the

More information

DAIRY CATTLE EVALUATION CAREER DEVELOPMENT EVENT

DAIRY CATTLE EVALUATION CAREER DEVELOPMENT EVENT DAIRY CATTLE EVALUATION CAREER DEVELOPMENT EVENT 1. reeds of dairy cattle that may be used in this CDE include Ayrshire, rown Swiss, Guernsey, Holstein, Jersey and mixed breeds. Only one class may be mixed

More information

Using EPDs in a Commercial Herd

Using EPDs in a Commercial Herd Using EPDs in a Commercial Herd R. R. Schalles and K. O. Zoellner Department of Animal Sciences and Industry Kansas State University Manhattan, KS 66506 Today, beef cattle producers have the best tools

More information

, 2018 (1) AGIL

, 2018 (1) AGIL What is cooking at AGIL? Dr Paul VanRaden and chef Dan Null USDA Animal Genomics and Improvement Lab, Beltsville, MD 20705 Email: paul.vanraden@ars.usda.gov Web site: https://aipl.arsusda.gov/ Council

More information

Understanding and Using Expected Progeny Differences (EPDs)

Understanding and Using Expected Progeny Differences (EPDs) Agriculture and Natural Resources FSA3068 Understanding and Using Expected Progeny Differences (EPDs) Brett Barham Associate Professor Animal Science Arkansas Is Our Campus Visit our web site at: http://www.uaex.edu

More information

A management tool for breeders

A management tool for breeders A management tool for breeders Egbert Feddersen, B. Grohmann, German Livestock Association (BRS) H. Swalve, University Halle, Institute of Agricultural and Nutritional Sciences 15th European EHRC Conference,

More information

Goal Oriented Use of Genetic Prediction

Goal Oriented Use of Genetic Prediction Goal Oriented Use of Genetic Prediction Mark Johnson Inheritance of Quantitative Traits P = G + E Phenotype = Genotype + Environment Genotype Additive due to individual genes Non-additive due to combinations

More information

Evidence of improved fertility arising from genetic selection: weightings and timescale required

Evidence of improved fertility arising from genetic selection: weightings and timescale required Department of Animal and Aquacultural Sciences Evidence of improved fertility arising from genetic selection: weightings and timescale required Torstein Steine Department of Animal and Aquacultural Sciences,

More information

19. WORLD SIMMENTAL FLECKVIEH CONGRESS. The robust Fleckvieh cow breeding for fitness and health

19. WORLD SIMMENTAL FLECKVIEH CONGRESS. The robust Fleckvieh cow breeding for fitness and health 19. WORLD SIMMENTAL FLECKVIEH CONGRESS The robust Fleckvieh cow breeding for fitness and health Dr. Christa Egger Danner, Dr. Christian Fürst und Dr. Hermann Schwarzenbacher, ZuchtData, Vienna, Austria

More information

CHOOSING A BREEDING BULL

CHOOSING A BREEDING BULL CHOOSING A BREEDING BULL By: Roger Bergeron, M.Sc., Agr. and Linda Larocque, Agr. Outaouais, November 5th 2014 1 CHOOSING A BREEDING BULL The goal: Not give you a recipe But explain to you the principles

More information

Fertility Factors Fertility Research: Genetic Factors that Affect Fertility By Heather Smith-Thomas

Fertility Factors Fertility Research: Genetic Factors that Affect Fertility By Heather Smith-Thomas Fertility Factors Fertility Research: Genetic Factors that Affect Fertility By Heather Smith-Thomas With genomic sequencing technology, it is now possible to find genetic markers for various traits (good

More information

Emma Carlén, Jørn Pedersen, Jukka Pösö, Jan-Åke Eriksson, Ulrik Sander Nielsen, Gert Pedersen Aamand

Emma Carlén, Jørn Pedersen, Jukka Pösö, Jan-Åke Eriksson, Ulrik Sander Nielsen, Gert Pedersen Aamand Emma Carlén, Jørn Pedersen, Jukka Pösö, Jan-Åke Eriksson, Ulrik Sander Nielsen, Gert Pedersen Aamand Outline Nordic Total Merit and survival traits Youngstock survival: Data, trait definition and phenotypic

More information

Genomic Postcard from Dairy Cattle Breeding GUDP Project. Søren Borchersen, Head R&D VikingGenetics

Genomic Postcard from Dairy Cattle Breeding GUDP Project. Søren Borchersen, Head R&D VikingGenetics Genomic Postcard from Dairy Cattle Breeding GUDP Project Søren Borchersen, Head R&D VikingGenetics VikingGenetics owned by more than 30.000 farmers Assentoft head office Skara Office in Sweden Hollola

More information

Exploring the Dairy Industry

Exploring the Dairy Industry Lesson B2 2: Exploring the Dairy Industry Unit B. Animal Science and the Industry Problem Area 2. Identifying and Understanding the Segments of the Animal Science Industry Lesson 2. Exploring the Dairy

More information

Youngstock Survival in Nordic Cattle Genetic Evaluation

Youngstock Survival in Nordic Cattle Genetic Evaluation Abstract Youngstock Survival in Nordic Cattle Genetic Evaluation E. Carlén 1, J. Pedersen 2, J. Pösö 3, J-Å. Eriksson 1, U.S. Nielsen 2 and G.P. Aamand 4 1 Växa Sweden, Box 288, 75105 Uppsala, Sweden 2

More information

National DHIA Annual Meeting CDCB Report

National DHIA Annual Meeting CDCB Report National DHIA Annual Meeting CDCB Report João Dürr & Javier Burchard March 5, 2019 San Diego, CA Outline From genomics to big data Genomic evaluations including crossbred animals Early first calving Updated

More information

Exploring the Dairy Industry

Exploring the Dairy Industry Lesson B2 2 Exploring the Dairy Industry Unit B. Animal Science and the Industry Problem Area 2. Identifying and Understanding the Segments of the Animal Science Industry Lesson 2. Exploring the Dairy

More information

Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population

Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population Petek Settar 1 and Joel I. Weller Institute of Animal Sciences A. R. O., The Volcani Center, Bet Dagan 50250, Israel Abstract The

More information

MILK. U.S. daily milk production is million gallons. Youth across the nation drink % of all milk consumed. oldest

MILK. U.S. daily milk production is million gallons. Youth across the nation drink % of all milk consumed. oldest Dairy Production Objectives A. Explain the importance of the dairy industry; B. Define terms associated with dairy production C. List 7 breeds of dairy cattle & their breed characteristics; D. Label the

More information

What could the pig sector learn from the cattle sector. Nordic breeding evaluation in dairy cattle

What could the pig sector learn from the cattle sector. Nordic breeding evaluation in dairy cattle What could the pig sector learn from the cattle sector. Nordic breeding evaluation in dairy cattle Gert Pedersen Aamand Nordic Cattle Genetic Evaluation 25 February 2016 Seminar/Workshop on Genomic selection

More information

Improving Genetics in the Suckler Herd by Noirin McHugh & Mark McGee

Improving Genetics in the Suckler Herd by Noirin McHugh & Mark McGee Section 4 23 by Noirin McHugh & Mark McGee Introduction Carefully identifying better animals and breeding them with other superior animals will gradually improve the genetics of a herd. Enhanced genetics

More information

TECHNICAL BULLETIN GENEMAX FOCUS - EVALUATION OF GROWTH & GRADE FOR COMMERCIAL USERS OF ANGUS GENETICS. November 2016

TECHNICAL BULLETIN GENEMAX FOCUS - EVALUATION OF GROWTH & GRADE FOR COMMERCIAL USERS OF ANGUS GENETICS. November 2016 TECHNICAL BULLETIN November 2016 GENEMAX FOCUS - EVALUATION OF GROWTH & GRADE FOR COMMERCIAL USERS OF ANGUS GENETICS Zoetis Genetics 333 Portage Street Kalamazoo, MI 49007-4931 KEY POINTS GeneMax Focus

More information

TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS

TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS P.E.Thurn 1, A.E. McClintock 1 1 Genetics Australia, Bacchus Marsh, Vic 334 SUMMARY Australian Holsteins have made significant genetic progress

More information

EPD Info 1/5. Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs)

EPD Info 1/5. Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs) EPD Info gelbvieh.org/genetic-technology/epd-info/ Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs) Expected progeny differences (EPDs) can be used to predict the average

More information

The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland. Kevin Downing 27 th October, 2016

The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland. Kevin Downing 27 th October, 2016 The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland Kevin Downing 27 th October, 2016 Introduction Working with ICBF since 2002 in the farm services area Owner

More information

Genetic Parameters and Evaluation of Rear Legs (Rear View) for Brown Swiss and Guernseys

Genetic Parameters and Evaluation of Rear Legs (Rear View) for Brown Swiss and Guernseys J. Dairy Sci. 89:4895 4900 American Dairy Science Association, 2006. Genetic Parameters and Evaluation of Rear Legs (Rear View) for Brown Swiss and Guernseys G. R. Wiggans,* 1 L. L. M. Thornton,* R. R.

More information

Section 9- Guidelines for Dairy Cattle Genetic Evaluation

Section 9- Guidelines for Dairy Cattle Genetic Evaluation - Guidelines for Dairy Cattle Genetic Evaluation Section 9 Table of Contents Section 9 1 Background... 4 2 Pre-evaluation steps... 4 2.1 Assignment to a breed of evaluation... 4 2.2 Animal identification...

More information

1.1 Present improvement of breeding values for milking speed

1.1 Present improvement of breeding values for milking speed Use of data from electronic milk meters and perspectives in use of other objective measures Anders Fogh 1, Uffe Lauritsen 2 and Gert Pedersen Aamand 1 1 Knowledge Center for Agriculture, Agro Food Park

More information

Canadian Hereford Association

Canadian Hereford Association Canadian Hereford Association Pan American Hereford Cattle Evaluation Fall 2017 EPD Averages, Tools and Trends Includes: Introduction to Genomically Enhanced EPD Post-Weaning Gain EPD Residual Feed Intake

More information

Genomic prediction. Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand. Nordisk Avlsværdi Vurdering. Nordic Cattle Genetic Evaluation

Genomic prediction. Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand. Nordisk Avlsværdi Vurdering. Nordic Cattle Genetic Evaluation Genomic prediction Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand STØTTET AF mælkeafgiftsfonden Present 2-step method (HOL), RDC,JER SNP and deregressed proof (DRP) Direct genomic values (DGV)

More information

Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies

Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies Sipke Joost Hiemstra 13 April 2018, Addis, Ethiopia Centre for Genetic Resources, the Netherlands

More information

TECHNICAL BULLETIN GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS. August Zoetis Genetics 333 Portage Street Kalamazoo, MI

TECHNICAL BULLETIN GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS. August Zoetis Genetics 333 Portage Street Kalamazoo, MI TECHNICAL BULLETIN August 2016 GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS Zoetis Genetics 333 Portage Street Kalamazoo, MI 49007-4931 KEY POINTS GeneMax Advantage is a genomic test for commercial

More information

TECHNICAL BULLETIN GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS. August Zoetis Genetics 333 Portage Street Kalamazoo, MI

TECHNICAL BULLETIN GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS. August Zoetis Genetics 333 Portage Street Kalamazoo, MI TECHNICAL BULLETIN August 2016 GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS Zoetis Genetics 333 Portage Street Kalamazoo, MI 49007-4931 KEY POINTS GeneMax Advantage is a genomic test for commercial

More information

Revisiting the a posteriori granddaughter design

Revisiting the a posteriori granddaughter design Revisiting the a posteriori granddaughter design M? +? M m + m?? G.R. 1 and J.I. Weller 2 1 Animal Genomics and Improvement Laboratory, ARS, USDA Beltsville, MD 20705-2350, USA 2 Institute of Animal Sciences,

More information

EFFICIENCY OF THE COW HERD: BULL SELECTION AND GENETICS

EFFICIENCY OF THE COW HERD: BULL SELECTION AND GENETICS EFFICIENCY OF THE COW HERD: BULL SELECTION AND GENETICS Oregon State University/Beef Industry Tour Corvallis, Oregon Thursday, October 25, 2018 Overview Introduction/importance of sire selection Selection

More information

New Limousin Genomic Breeding Values (GEBVS) Delivering s value for commercial producers

New Limousin Genomic Breeding Values (GEBVS) Delivering s value for commercial producers New Limousin Genomic Breeding Values (GEBVS) Delivering s value for commercial producers Background New Female Fertility and Calf Survival GEBVs for Limousin released in 2017 These follow introduction

More information

Breeding your cows for genetic gain. Max Tweedie, B+LNZ Genetics

Breeding your cows for genetic gain. Max Tweedie, B+LNZ Genetics Breeding your cows for genetic gain Max Tweedie, B+LNZ Genetics Genetic improvement Genetic improvement should be the key objective for a stud breeder. Occurs when the sire team you select are of higher

More information

THE GUERNSEY GLOBAL BREEDING PROGRAMME PRINCIPLES & PROGRESS

THE GUERNSEY GLOBAL BREEDING PROGRAMME PRINCIPLES & PROGRESS THE GUERNSEY GLOBAL BREEDING PROGRAMME PRINCIPLES & PROGRESS The Pilot Guernsey Global Breeding Programme (GGBP) commenced in 2002 although the basic principles of a Young Sire Programme had been established

More information

Longhorn Cattle Performance Recording

Longhorn Cattle Performance Recording Longhorn Cattle Performance Recording Lucy Webb-Wilson Signet Breeding Consultant Outline Who is Signet Creating EBVs and the Importance of Selective Breeding What traits do we produce? How to record Longhorn

More information

Philippine Dairy Buffalo Breeding Program

Philippine Dairy Buffalo Breeding Program Philippine Dairy Buffalo Breeding Program ESTER B FLORES Project Development Officer IV Philippine Carabao Center Workshop on Breeding for Milk Production in Tropical / Non- Temperate Environments Nov

More information

LowInputBreeds & Genomic breeding

LowInputBreeds & Genomic breeding LowInputBreeds & Genomic breeding Gillian Butler Newcastle University http://www.nefg-organic.org/ COMMUNITY RESEARCH Developing integrated livestock breeding and management strategies to improve animal

More information

Genetic analysis of true profit for Spanish dairy cattle

Genetic analysis of true profit for Spanish dairy cattle Genetic analysis of true profit for Spanish dairy cattle M.A. Pérez 1, D. Hernández 2, R. Alenda 1, M.J. Carabaño 2 and N. Charfeddine 3 1 ETSIA, Universidad Politécnica, Ciudad Universitaria, 28040 Madrid,

More information

Making sense of the numbers

Making sense of the numbers Making sense of the numbers Agenda ADGA Genetics Overview Basic Concepts Genetic Production and Type Evaluations Predicted Transmitting Ability (PTA) Reliability Confidence interval MFP$, Percentile and

More information

BREEDPLAN EBVs The Traits Explained

BREEDPLAN EBVs The Traits Explained BREEDPLAN EBVs The Traits Explained BREEDPLAN currently reports EBVs for a range of economically important traits. These traits include: Weight Fertility/Calving Carcase Other Birth Weight Scrotal Size

More information

Breeding for Profit from Beef Production ( )

Breeding for Profit from Beef Production ( ) IRISH CATTLE BREEDING FEDERATION Breeding for Profit from Beef Production ( ) Animal Evaluation Unit 1 Overview Overview of Irish beef industry ICBF, ICBF database & Animal Events What are genetic evaluations?

More information

EPDs and Reasonable Expectations in Commercial Crossbred Operations

EPDs and Reasonable Expectations in Commercial Crossbred Operations EPDs and Reasonable Expectations in Commercial Crossbred Operations Jared Decker, PhD Associate Professor, Division of Animal Sciences, University of Missouri DeckerJE@missouri.edu, A Steak in Genomics

More information

User Guide

User Guide User Guide get connected Welcome This Welcome Pack is aimed at helping you make full use of your HerdPlus membership. The HerdPlus service will furnish you with breeding and management tools you need to

More information

Improving fertility through management and genetics.

Improving fertility through management and genetics. Improving fertility through management and genetics., Director of Research, Holstein USA Introduction It is a great pleasure to be giving this talk to an international group of enthusiast Holstein breeders

More information

Crossbreeding in Beef Cattle

Crossbreeding in Beef Cattle W 471 Crossbreeding in Beef Cattle F. David Kirkpatrick, Professor Department of Animal Science Improving the productivity and efficiency of a commercial beef production operation through genetic methods

More information

TO IDENTIFY EASY CALVING, SHORT GESTATION BEEF BULLS WITH MORE SALEABLE CALVES USE THE DAIRY BEEF INDEX

TO IDENTIFY EASY CALVING, SHORT GESTATION BEEF BULLS WITH MORE SALEABLE CALVES USE THE DAIRY BEEF INDEX TO IDENTIFY EASY CALVING, SHORT GESTATION BEEF BULLS WITH MORE SALEABLE CALVES USE THE DAIRY BEEF INDEX WHAT IS THE DAIRY BEEF INDEX? The Dairy Beef Index (DBI) is a breeding goal for Irish dairy and beef

More information

NAV routine genetic evaluation of Dairy Cattle

NAV routine genetic evaluation of Dairy Cattle NAV routine genetic evaluation of Dairy Cattle data and genetic models NAV December 2017 5 th edition 1 Genetic evaluation within NAV Introduction... 6 NTM - Nordic Total Merit... 7 Traits included in

More information

Walking the Cattle Continuum: Moving from the BovineSNP50 to Higher and Lower Density SNP Panels

Walking the Cattle Continuum: Moving from the BovineSNP50 to Higher and Lower Density SNP Panels Walking the Cattle Continuum: Moving from the BovineSNP50 to Higher and Lower Density SNP Panels C.P. Van Tassell 1 *, P.R. VanRaden 1, G.R. Wiggans 1, L.K. Matukumalli 2, S. Schroeder 1, J. O Connell

More information

Scandinavian co-operation

Scandinavian co-operation Scandinavian co-operation Finland Sweden - Denmark (Norway) Jaana Kiljunen Director, Cattle Breeding Jukka Pösö Research Scientist Scandinavian countries Very close breeding schemes Health control system

More information

Delivering Valued Genomic Products to Livestock Customers

Delivering Valued Genomic Products to Livestock Customers Delivering Valued Genomic Products to Livestock Customers Sue DeNise, Ph.D. Sr. Director, Global Genetics R&D Veterinary Medicine Research and Development Predict The Future Now! 1 Who We Are u A Pfizer

More information

Genomic Selection in Germany and Austria

Genomic Selection in Germany and Austria Bayerische Landesanstalt für Landwirtschaft Genomic Selection in Germany and Austria LfL, Institute for Animal Breeding Emmerling, R.; Edel, C.; Neuner, S.; Götz, K.-U. ZuchtData GmbH, Vienna Schwarzenbacher,

More information

Genomic selection and its potential to change cattle breeding

Genomic selection and its potential to change cattle breeding ICAR keynote presentations Genomic selection and its potential to change cattle breeding Reinhard Reents - Chairman of the Steering Committee of Interbull - Secretary of ICAR - General Manager of vit,

More information

Alison Van Eenennaam, Ph.D.

Alison Van Eenennaam, Ph.D. The Value of Accuracy Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis alvaneenennaam@ucdavis.edu (530) 752-7942 animalscience.ucdavis.edu/animalbiotech

More information

Genetic Improvement of Functional Traits in Cattle Report from EU Concerted Action GIFT

Genetic Improvement of Functional Traits in Cattle Report from EU Concerted Action GIFT 1 Genetic Improvement of Functional Traits in Cattle Report from EU Concerted Action GIFT A.F. Groen Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences Wageningen University, P.O.

More information

Collecting Abattoir Carcase Information

Collecting Abattoir Carcase Information Collecting Abattoir Carcase Information Abattoir carcase information, along with live animal ultrasound scanning measurements and genomic information, is used to calculate Carcase EBVs within BREEDPLAN.

More information

Breeding Objectives Indicate Value of Genomics for Beef Cattle M. D. MacNeil, Delta G

Breeding Objectives Indicate Value of Genomics for Beef Cattle M. D. MacNeil, Delta G Breeding Objectives Indicate Value of Genomics for Beef Cattle M. D. MacNeil, Delta G Introduction A well-defined breeding objective provides commercial producers a mechanism for extracting value from

More information

CULLING: REPLACEMENT HEIFER STRATEGIES

CULLING: REPLACEMENT HEIFER STRATEGIES CULLING: REPLACEMENT HEIFER STRATEGIES David B. Fischer TAKE HOME MESSAGES Reducing herd culling rate and heifer mortality rate by 5 percent will increase surplus replacements by 30 percent per 100 cow

More information

Age-Season Standardization

Age-Season Standardization Age-Season Standardization Dr. Michael M. Schutz Canadian Beef Improvement, Inc. A report on research conducted at AIPL, USDA-ARS, Beltsville, MD (financial support from the National Association of Animal

More information