Bos indicus and Bos taurus Crossbred Dairy Cattle in Australia. IV* Progeny Testing and Expected Rate of Genetic Improvement

Size: px
Start display at page:

Download "Bos indicus and Bos taurus Crossbred Dairy Cattle in Australia. IV* Progeny Testing and Expected Rate of Genetic Improvement"

Transcription

1 Aust. J. Agric. Res., 1976, 27, Bos indicus and Bos taurus Crossbred Dairy Cattle in Australia. IV* Progeny Testing and Expected Rate of Genetic Improvement I. R. Franklin,* R. H. HaymanB and R. W. HewetsonC A Division of Animal Genetics, CSIRO, P.O. Box 90, Epping, N.S.W Division of Animal Genetics, CSIRO, F. D. McMaster Field Station, CSIRO Mail Bag, Liverpool, N.S.W Division of Animal Genetics, CSIRO, c/- Agricultural Research Centre, New South Wales Department of Agriculture, Wollongbar, N.S.W Abstract A dairy improvement program designed to develop a breed of cattle adapted to tropical environments is described. Each year young crossbred (Bos indicus x Bos taurus) bulls are screened for heat tolerance and tick resistance, and then progeny-tested in the herds of cooperating dairy farmers. Estimates of phenotypic and genetic means, variances and correlations are presented for production of milk and milk components, and the rate of genetic improvement is discussed. In particular the heritability of milk yield in the crossbred progeny is 0.27, and the theoretical rate of improvement is 2.6% per year. Introduction The first paper in this series (Hayman 1972) described milk production among the filial generations of Red Sindhi x Jersey, and Sahiwal x Jersey crossbred dairy cattle. This work established that production in some crossbred individuals was sufficiently high to compete with existing Bos taurus breeds, and that selection proved to be effective in eliminating the tendency found in Bos indicus cattle to fail to let down milk after removal of their offspring. These two findings were crucial, since without the potential for high production under Australian conditions of management a dairy breed derived from this intercrossed population would have little chance of commercial success. In 1962 when enough prospective sires became available, a progeny-testing program was implemented in an environment where heat, humidity, and inadequate winter feed were normal conditions. This paper describes the development of the program, and gives estimates of the heritability and selection differentials in the daughters of progeny test sires. From these data the expected response to selection is calculated. Experimental Procedure The region chosen for progeny testing is in the vicinity of the Wollongbar Agricultural Research Centre in northern New South Wales. This area has a tropical pattern of hot humid summers and dry winters, although the climate is not extreme (Table 1). The area is climatically suited to the tick species Boophilus microplus and Haemaphysalis bispinosa, but Boophilus is controlled on cattle by a regulatory dipping program. With the cooperation of the New South Wales Department of Agriculture * Part 111, Aust. J. Agric. Res., 1974, 25, 1023.

2 I. R. Franklin et a[. a group of dairy farmers were found who were willing to participate in a progenytesting program with crossbred bulls. Initially, eight herds were chosen, with a total breeding population of c. 600 cows. At a later date one cooperating farmer retired from dairying and three more were added, and the total population was increased to c. 750 cows. All cows and heifers are artificially inseminated and herdrecorded by CSIRO staff, and this, together with subsidies to the cooperating farmers, has allowed tight control over the breeding program. The initial intention was to progeny-test six sires per year on the basis of 30 daughters per sire, but during the first few years an average of only five sires were used. Sires for progeny testing were chosen from the crossbred herd maintained at the F. D. McMaster Field Station near Sydney. In the second generation eight sires were being used each year, and these are bred predominantly in cooperating farmers' herds. Table year means for average daily maximum and minimum temperatures, average index of mean relative humidity, and average monthly rainfall at Lismore, N.S.W. Wollongbar is c. 20 km from Lismore. Climatic records, Australian Bureau of Meteorology, 1969 Total Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. year Au. daily max. temperature ('C) Av, daily min. tentperature ('C) Au. index of relative humidity (% saturation) Av. monthly rainfall (mm) Since 1964, preliminary screening of young bulls in a climate room (Allen and Donegan 1974) has been combined with the progeny test, and in 1968 a test for tick resistance (Hewetson 1968) was added to the selection procedure. Since 1968 between 30 and 40 bull calves have been screened each year, first for heat tolerance and then for tick resistance, leaving six to eight young bulls for the progeny test. The cooperating farmers are subsidized to rear most of their heifers, and c. 30% of all milking cows are in their first lactation. Statistical Estimates Estimation of Annual Production Production of milk and milk components is estimated on the basis of a 300 day lactation period, but lactations shorter than 300 days have not been corrected to a standard length in calculating the mean performance of heifers in the progeny test. One of the major problems with Zebu cattle is the poor persistence of lactation (Branton et al. 1966; Hayman 1972), and it has been considered essential to exert strong selection on this trait. While it would have been more efficient to treat poor

3 Crossbred Dairy Cattle. IV persistence as a trait separate from production, the genetic correlations and heritabilities necessary to construct an index were not available at the beginning of the program. The inclusion of short lactations ensures strong selection for length of lactation, but presents some statistical problems with non-normality in the distribution of total yield. Determinations of total milk, percentage fat and percentage protein are obtained for each animal every 28 days, and these data points are used to fit a cubic equation for each animal. The area under the curve between the calving date and 300 days (or the day at which the animal is noted to be dry if less than 300 days) is the estimated total yield. Separate curves are calculated for milk, fat and protein yield. Correction for Calving Date The only correction routinely applied to these data is for calving date. The calving season in the experimental area is concentrated in the months June-November, and there is a pronounced effect of calving date on production, particularly amongst mature animals. A linear regression of production on calving date is estimated for each herd, and production corrected accordingly. Estimation of the Contemporary Comparison Contemporary comparisons among bulls are calculated each year from production in daughters' first lactation only. Subsequent lactations are not used for bull selection. Only those heifers calving at months of age, and between the months of June and November, are used in the progeny test calculations. Daughters are classified by sire and by herd, and estimates of sire and herd effects are obtained by analysis of variance. The estimated sire effects, expressed as a deviation from the mean, are then corrected by the expected regression on future daughters. That is, $nh2 contemporary comparison = sire effect x 1 + (12 - l)$h2 ' where h2 is the heritability and n is the number of daughters. Results Genetic and Demographic Changes in Cooperating Farmers' Herds The original herds of the eight cooperating farmers were predominantly Jersey (72 %), but other breeds were represented in significant proportions, namely, Guernsey (13 %), Australian Illawarra Shorthorn (AH) (12 %), Friesian (3 %) and a few Ayrshire (0.6 %). The three new herds introduced later consisted of roughly equal proportions of Jersey and Guernsey. As a result of repeated crossing of half- and quarter-bred Zebu bulls in the progeny test herds the proportion of Bos indicus genome has increased to about 25 % and is expected to approach three-eighths by the end of the second generation. During the first 7 years of progeny testing (i.e. the first generation of progeny test sires) 37 bulls were used, 21 being derived from Sahiwal x Jersey crosses and 16 from Red Sindhi x Jersey crosses. Hence the Sahiwal breed was represented to a greater extent than the Red Sindhi, and culling within herds and the selection of

4 I. R. Franklin et al. primarily Sahiwal x Jersey bulls in the progeny test has increased the proportion of Sahiwal even further. Table 2 shows the distribution of Bos indicus ancestry among the heifers milked from 1965 to The mean level of Zebu was 24 %: 15 % from the Sahiwal and 9 % from the Red Sindhi. Table 2. Percentage Bos indicus among heifers milked, Number of Percentage Percentage Total Year heifers Sahiwal Red Sindhi Bos indicus Mean As a result of the requirement that each farmer rear 30% of his herd each year for the purpose of progeny testing, there has been a considerable change in the age structure of each herd, and the mean age at calving has dropped considerably in all herds. Table 3 shows the distribution of age of calving in 1962 (at the start of the program) and in The 1962 figures represent calvings among B. taurus cattle, and the 1973 data are for crossbred animals only. A few purebred European cattle still exist in the herds, particularly among the recent cooperators, but these now represent a negligible fraction of the population. This change in age structure is an important factor when considering the production figures presented below. Table 3. Age at calving, 1962 and 1973 Number of cows in each age group Years of age: Mean Percentage Year >12 Total age heifers Emergence of the Australian Milking Zebu Breed It is clear from the above that the mixture of Bos taurus and Bos indicus breeds, together with the selection program for production, tick resistance and heat tolerance, has resulted in a population of animals which cannot be classified into any of the existing breeds. Accordingly, the cooperating farmers formed a breed society in 1970, and named the population of dairy cattle the Australian Milking Zebu (AMZ). Production Table 4 shows the total milk, total fat and percentage fat among purebred European and AMZ COWS over the period Also shown is the percentage of AMZ cattle

5 Crossbred Dairy Cattle. N in the total herd. While there is a trend upward in production over the 10 year period, any genetic change that may have taken place is totally confounded with systematic changes in management. In addition, the trends are confused by marked seasonal effects and by the changes in age structure shown above. We note, however, Table 4. Average production of milk and fat in original cooperating herds, No. of Percentage Average yield (kg) Fat Year cows of AMZ Milk Fat (%) that the change-over from B. taurus to crossbred cattle was not accompanied by a dramatic fall in production (Fig. 1). Indeed production from AMZ COWS appears comparable with that of the pre-existing cattle, and the fat percentage has increased appreciably. When we look at the production figures of AMZ cattle only, it appears that the improvement noted in Fig. 1 is directly attributable either to the substitution of AMZ for European cows or to the change in age structure. Fig. 2 shows the mean production Fig. 1. Milk production in original cooperating farmers' herds. of AMZ COWS over the years for each age group. Here the upward trend has almost completely disappeared, and this argues against any systematic improvement in management. There is a very large age effect, and the improvement noted earlier is evidently due to the increasing proportion of older AMZ cattle in the herds.

6 I. R. Franklin et al. Thus, either older AMZ COWS are producing better than their predecessors or the increase in the proportion of heifers (which in itself will tend to decrease mean production) allows more intensive culling within herds, which more than offsets the inherent low production of heifers. No substantial genetic improvement is expected until 1972, when the first daughters of selected bulls enter the milking herds. Fig. 2. Milk production by age in AMZ cattle. A direct comparison of production in AMZ and European cattle will have to await the results of experimental trials in suitable tropical environments. We can, however, predict the expected rate of genetic improvement in the nucleus population. This is discussed later. Table 5. Means and variances amongst heifers Coeff. of Trait Mean Variance SD variation Milk (kg) % Fat (kg) % Protein (kg) % % fat % % protein % Estimates of Phenotypic and Genetic Parameters Means, variances and correlations have been estimated from the first 7 years' data, collected between 1966 and Means and phenotypic variances, for heifers only, are shown in Table 5. Herd effects have been removed by analysis of variance. Estimates of genetic parameters were obtained from the regression of offspring on female parents by using: (a) production figures in contemporary years, i.e, regression of heifer production on mature cow production;

7 Crossbred Dairy Cattle. IV (b) production of both offspring and dam in the first lactation, additional environmental variation being introduced because of seasonal effects. The heritability estimates obtained are shown in Table 6. The heritability estimates for milk, fat and protein yield clearly do not differ significantly from each other, and are in good agreement with estimates obtained from other breeds. A value of h2 = 0.27 has been used in subsequent calculations. Similarly the estimated heritabilities for percentage fat and percentage protein agree with previously reported figures. Table 6. Heritability estimates for milk, fat and protein Standard errors of estimates are shown in parenthesis Trait Contemporary lactation First lactation Milk yield (0,068) (0.091) Fat (0.070) (0.100) Protein (0,104) - A % fat (0.090) (0.114) % protein (0.126) - A A Protein determinations were not made during , and there were insufficient data for estimation. The estimated genetic correlations between total milk and percentage fat, and between total milk and percentage protein are very close to zero. The genetic correlation between percentage fat and percentage protein was with a standard error of This estimate was based on 256 parent-offspring pairs, and clearly more data are necessary if good estimates of genetic correlations are to be obtained. The phenotypic correlations between these three traits among heifers, and among their dams, are shown in Table 7. Since the heifers are all crossbred animals and their dams are primarily purebred European, the two populations are genetically different. It is perhaps not surprising therefore that the phenotypic correlations are different in the two groups. Table 7. Phenotypic correlations for milk, percentage fat and percentage protein Heifers Dams Milk-% fat Milk-% protein i % fat-% protein Rate of Genetic Improvement Milk production The theory of response to selection in a progeny test program was presented in detail by Robertson and Rendel (1950). The selection process can be divided into four pathways, namely, Bulls to breed Bulls, Bulls to breed Cows, Cows to breed Bulls and Cows to breed Cows. The selection pressure in each of these pathways is evaluated separately, and the total genetic gain is obtained by dividing the total

8 I. R. Franklin et al. genetic improvement (XI) by the sum of the generation lengths (EL) in each pathway. i.e. genetic improvement = 1 I L. I For mass selection, where individuals with the highest phenotype are chosen to be the parents of the next generation, we have where i is the standardized selection differential, h2 is the heritability, and o, is the phenotypic standard deviation. If selection is by means of a progeny test, the appropriate expression is where n is the number of daughters tested per sire. We will now consider each pathway in detail. Bulls to Breed Bulls During the first generation of the progeny test, approximately 50 bulls were tested each year, with approximately 30 daughters for each sire. If only one of these bulls is chosen, the appropriate selection differential (i) is With h2 = 0.27 and n = 30, therefore I(BB)= x x JO.27 x o, = ,. The phenotypic standard deviations for milk and fat yield are 420 kg and 21 a6 kg respectively (Table 5), hence the expected improvement through selection among sires is 210 kg (milk) or 10.8 kg (fat) per generation. During the first 7 years of the program bulls were chosen on the fat yield of their daughters, since the demand in northern New South Wales was primarily for manufacturing rather than market milk. Recently the demand has changed, and selection is now directed at milk yield. It is of little consequence whether fat or milk yield is used as the selection criterion, as they have the same heritability, and the phenotypic and genetic correlations are very high (v, = 0.95, r, = 0-87). Table 8 shows the results of the progeny test during the first 7 years of the program, representing the first generation of bulls in the progeny test. In 1968 and 1969 the bulls chosen were not those with the highest mean values, and this was due to difficulties in statistical analysis at that time. Also note that in three of the seven years two bulls rather than one was chosen, and this was either to avoid inbreeding or to keep the level of Zebu ancestry as high as possible. The estimated relative breeding value (contemporary comparison) of each selected bull is shown in the last column of the table. The average contemporary comparison of the bulls is 147 kg, but if we average only the top bulls in each year the mean is

9 Crossbred Dairy Cattle. IV 188 kg, which is quite close to the theoretical gain of 210 kg. The agreement is good despite the fact that the wrong bull was chosen in two of the seven years. The testing of five bulls per year is less than optimal for this breeding program (see Robertson 1957), and currently eight bulls are progeny-tested each year. By bulls, each with 20 daughters, will be used. The contribution of the Bull to breed Bull pathway will then be Cows to Breed Bulls As indicated earlier, bulls used in the first generation of the progeny test were obtained primarily from the McMaster Field Station, whereas those used in the second generation have been bred almost exclusively in cooperating farmers' herds. The dams of the first generation bulls were drawn from a highly selected group of F, and F, crossbred animals, the details of which can be found in Hayman (1972). Table 8. Progeny test results for the first generation of sires Total No. of No. of No. of Contemporary Year no. of sires sires daughters comparison (kg) proven daughters tested selecteda tested Milk Fat (i) (ii) 40 $ (i) (ii) (i) 14 +I (ii) A All bulls selected were half-breed Sahiwal x Jersey, except in 1967 when (i) was one-quarter Sahiwal and (ii) was one-half Sindhi x Jersey, and in 1969 where the selected sire was a one-quarter Sahiwal, three-quarters Jersey from a cooperating herd. In the second generation 90 cows were chosen from the total breeding population by selecting the top 12 % of cows in each herd. These dams are approximately evenly distributed in age from 3 to 7 years, and are mated with the most recently selected sire to breed a further generation of young bulls. The appropriate selection differential is 1.638, and the generation length of this pathway is approximately 5 years. Hence, I(CB) = x 0.27 x a, = 0.442~~. Bulls to Breed Cows All but 12 % of the population are mated to young bulls, hence the only contribution to progress from this pathway comes from the matings of selected bulls to 'elite' cows. These matings account for 12 % of replacement heifers each year.

10 I. R. Franklin et al. and Therefore, I(BC) = (0.615 x 0.12)~~~ = , L(BC) = (2 x 0.88 x 4 x 0.12) = 2.4 years. Cows to Breed Cows This pathway is essentially under the control of the individual farmer, and genetic progress depends primarily on his efficiency at culling for production. In most dairy breeding programs this culling, theoretically at least, accounts for a small fraction of the total rate of improvement. For example, Rendel and Robertson (1950) showed that only limited improvement was possible through farmer culling, and Skjervold (1967) in an investigation of optimum breeding structure in a progeny test program calculated that the dam-daughter pathway accounts for only 6% of the annual improvement. A theoretical analysis of the expected improvement through this pathway is aot simple, since it depends on the age structure in the herd, loss of individuals through causes not related to production, and the individual farmers' judgment. A detailed study is beyond the scope of this paper, but we can get some idea of the improvement by examining the difference in production between those cows saved and those discarded within each age group. The first line in Table 9 shows the difference in Table 9. Difference in production between selected and unselected cows, averaged over years Lactation Selected Total Ratio A Milk A fat A protein A % fat A % protein First Seconci first lactation production between those heifers which were milked the following year, and the mean production for all heifers. The figures are averaged over all herds and over the 4-year period The second line shows the same calculation for the second lactation. The first conclusion that may be drawn from Table 9 is that culling within herds is quite effective. The theoretical difference between the top 62% of heifers and the mean for all heifers is 257 kg, and the observed difference of 176 kg compares favourably with this. The effective selection on first lactation heifers corresponds to a culling of about 25% of animals for production. Culling on the second lactation is also quite effective. The difference of 169 kg corresponds to about 145 kg at the first lactation, compared with a theoretical difference of 245 kg. Assuming then that all selection is concentrated in these first two lactations, and that 30% of all producers are first lactation, 19 % second lactation and 51 % third or greater, we have a weighted selection differential of (0-3 x 0) + (0.19 x 176) + (0.51 x 321) = 197 kg, which is 0.47 phenotypic standard deviations. Therefore the expected genetic progress is The average age of cows at calving is c. 4-4 years (Table 3). We can now add each of these pathways to obtain the overall rate of genetic gain.

11 Crossbred Dairy Cattle. IV That is, = 31.4 kg per year This corresponds to a rate of improvement of 2.6% per year, which is greater than might have been predicted for a progeny test program based upon a breeding population of 650 cows. For example, Skjervold (1967) calculated a maximum rate of 1.7% per year for a population of 2000 cattle. The difference is largely due to the high coefficient of variation (34 %) for milk production, and this is characteristic of crossbred B. taurus by B. indicus cattle (Branton et al. 1966). Almost all of the improvement is expected through the sire pathways, and hence we have to await the production of the daughters of second and third generation bulls to see if these predictions are realized. Table 10. Means and variances for tick counts, Year: Average Number of cattle tested Mean no. of adult ticks Mean In (ti~ks)~ Variance In (ticks) Standard deviation A Following Wharton et al. (1970) we have used a log transformation on the tick numbers. Tick resistance Tick resistance is assessed each year by three successive infestations with 40,000 tick larvae of the young bulls prior to progeny testing. The number of ticks on one side of each animal is counted, and the scores on the third infestation are used to rank the bulls (see Wharton and Utech 1970). The eight animals with the lowest tick counts enter the progeny test. Table 10 shows the means and variances for tick counts in the years Prior to 1973, bulls were infested and counted in stalls, rather than in the field, and because this regime resulted in much higher mean values for the number of adult ticks these data have not been included in the table. There are considerable differences from year to year which can be attributed to seasonal variations in test conditions, and to genetic causes, since each group of animals differ in the mean proportion of Zebu ancestry and are the sons of different selected sires. The final column of Table 10 shows the averages over the three years. The expected rate of improvement is i h2 o,, as discussed in the previous section. Selecting the top eight of 20 animals tested we have i = The heritability has been estimated as c. 0.4 (Wharton et al. 1970; Hewetson 1972). Then ih2op = x 0.40 x = Dividing by 2, since selection is among males only, we have Expected genetic change = 0-13 per generation = per year.

12 I. R. Franklin et al. - In terms of the original variate, tick numbers, we have the approximate relationship Ax l Alogx = 532 x = 9.9 ticks per year. This represents an annual improvement of about 2% per year in tick resistance. Heat tolerance A climate room test for heat tolerance is used in the selection of young bulls, and the procedure is described in detail in a recent paper by Allen and Donegan (1974). Their data show that the measurements have a significant repeatability, and there is some suggestion that an index of heat tolerance, used for ranking bulls, is positively associated with high milk production. However, not enough data have yet been collected to obtain satisfactory estimates of the heritabilities of each of the components of heat tolerance, nor to adequately measure the association between heat tolerance and milk production in a hot environment. Accordingly we are currently measuring the performance in the climate room of c. 80 progeny test heifers each year; the subsequent records of these animals, and heat tolerance tests of their daughters, should provide us with the necessary heritabilities and correlations. Discussion The data and estimates presented in this paper must be considered as a preliminary anaiysis of the genetic and phenotypic parameters of the AMZ population. Most of the heifers in the first generation are the daughters of purebred European dams and crossbred sires, and this means, for example, that the heritabilities and genetic correlations were obtained by regression of daughters from one population on dams from another. We would not expect the heritability estimates to be greatly affected, but the genetic correlations may be more seriously in error. Similarly, the progeny test in the first few years was based almost entirely on the performance of daughters of Bos taurus dams. Since the bulls differed in the proportion of Bos indicus, the possibility of heterosis due to the breed cross may have biased the results. Note, however, that the bulls used in the program were drawn from F, and F, populations, so heterotic and more general specific combining ability effects would not be as serious as if purebred B. indicus or F, bulls were used. In the second generation such potential biases do not exist. The parent population consists of a relatively uniform crossbred population, and the sires are dravn from the same population. Hence, we can be much more confident that the calculated contemporary comparisons accurately reflect differences in breeding value among the tested sires. Estimation of the actual rate of genetic improvement will have to await the production figures from second generation bulls. It was indicated earlier that the production estimates shown in Table 4 and Figs. 1 and 2 represent the progeny of first generation sires, which are expected to be genetically similar. However, because of the firm control exercised by CSIRO over the entire breeding program, there is no reason to suppose that the realized response to selection will fall far short of that predicted. The major difficulty associated with the program is ensuring the continuity of the breeding population, as individual farmers retire from dairying through old age and

13 Crossbred Dairy Cattle. IV other causes. Already there has been a demand for these cattle from some countries in south-east Asia, and this has inflated their market value over other European breeds. Hence farmers are tempted to sell their cattle overseas rather than to cooperating farmers entering the scheme. Finally, it should be emphasized that the low production figures reported in this paper reflects the level of management in the northern New South Wales area, and the inclusion of all records, regardless of length of lactation, in the estimates. These figures cannot be taken as an indication of production under improved husbandry. Acknowledgments We wish to thank Mr B. J. Thompson and Mr R. H. Clarke for their excellent technical assistance, Mr A. Packham for his supervision of many aspects of the program, and above all, Dr J. M. Rendel for his guidance. References Allen, T. E., and Donegan, S. M. (1974). Bos indicus and Bos taurus crossbred dairy cattle in Australia A climate room test of heat tolerance used in the selection of young sires for progeny testing. Aust. J. Agric. Res. 25, Branton, C., McDowell, R. E., and Brown, M. A. (1966). Zebu-European crossbreeding as a basis of dairy cattle improvement in the U.S.A. U.S. Dep. Agric. Sth. Co-op. Ser. Bull. No Hayman, R. H. (1972). Bos indicw and Bos taurus crossbred dairy cattle in Australia. I. Crossbreeding with selection among filial generations. Aust. J. Agric. Res. 23, Hewetson, R. W. (1968). Resistance of cattle to cattle tick, Boophilus microplus. 11. The inheritance of resistance to experimental infestations. Aust. J. Agric. Res. 19, Hewetson, R. W. (1972). The inheritance of resistance to cattle tick. Aust. Vet. J. 48, Rendel, J. M., and Robertson, A. (1950). Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle. J. Genet. 50, 1-8. Robertson, A. (1957). Optimum group size in progeny testing and family selection. Biometries 13, Robertson, A., and Rendel, J. M. (1950). The use of progeny testing with artificial insemination in dairy cattle. J. Genet. 50, Skjervold, H. (1967). Selection schemes in relation to artificial selection. Proc. Int. Congr. Anim. Prod., Edinburgh, vol. 27, pp Wharton, R. H., and Utech, K. B. W. (1970). The relation between engorgement and dropping of Boophilus microplus (Canestrini) (Ixodidae) to the assessment of tick numbers on cattle. J. Aust. Entomol. Soc. 9, Wharton, R. H., Utech, K. B. W., and Turner, H. G. (1970). Resistance to the cattle tick, Boophilus microplus in a herd of Australian Illawarra Shorthorn cattle: its assessment and heritability. Aust. J. Agric. Res. 21, Manuscript received 11 July 1975 Corrigendum Volume 26, Number 6 Page 1066, subheads to Table 1. For [3H] isomer, [I4C] isomer, read [3H] leucine, [14C] leucine respectively.

Strategy for Applying Genome-Wide Selection in Dairy Cattle

Strategy for Applying Genome-Wide Selection in Dairy Cattle Strategy for Applying Genome-Wide Selection in Dairy Cattle L. R. Schaeffer Centre for Genetic Improvement of Livestock Department of Animal & Poultry Science University of Guelph, Guelph, ON, Canada N1G

More information

Challenges and Opportunities for Improvement in Dairy Production and Genetic Progress in Thailand ABSTRACT

Challenges and Opportunities for Improvement in Dairy Production and Genetic Progress in Thailand ABSTRACT Challenges and Opportunities for Improvement in Dairy Production and Genetic Progress in Thailand S. Koonawootrittriron 1 and M.A. Elzo 2 1 Department of Animal Science, Kasetsart University, Bangkok 10900,

More information

Dairy Cattle Backgrou d I for atio

Dairy Cattle Backgrou d I for atio Dairy Cattle Backgrou d I for atio Dairying is another major Australian rural industry in which production significantly exceeds domestic requirements and Australia has emerged as one of the world s major

More information

REALISED RESPONSES TO DIVERGENT SELECTION FOR YEARLING GROWTH RATE IN ANGUS CATTLE

REALISED RESPONSES TO DIVERGENT SELECTION FOR YEARLING GROWTH RATE IN ANGUS CATTLE REALISED RESPONSES TO DIVERGENT SELECTION FOR YEARLING GROWTH RATE IN ANGUS CATTLE P.F. PARNELL1, R. BARLOW2, and B. TIER3, AUSTRALIA 1 Agricultural Research Centre, Trangie, NSW, 2 Agricultural Research

More information

6 Breeding your cows and heifers

6 Breeding your cows and heifers 6 Breeding your cows and heifers 6 Breeding your cows and heifers Regardless of the bulls you use, breeding your herd replacements from your best cows and heifers is essential if you want to achieve the

More information

Genetics of dairy production

Genetics of dairy production Genetics of dairy production E-learning course from ESA Charlotte DEZETTER ZBO101R11550 Table of contents I - Genetics of dairy production 3 1. Learning objectives... 3 2. Review of Mendelian genetics...

More information

Strategy for applying genome-wide selection in dairy cattle

Strategy for applying genome-wide selection in dairy cattle J. Anim. Breed. Genet. ISSN 0931-2668 ORIGINAL ARTICLE Strategy for applying genome-wide selection in dairy cattle L.R. Schaeffer Department of Animal and Poultry Science, Centre for Genetic Improvement

More information

TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS

TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS P.E.Thurn 1, A.E. McClintock 1 1 Genetics Australia, Bacchus Marsh, Vic 334 SUMMARY Australian Holsteins have made significant genetic progress

More information

Development of the Sunandini cattle breed in India

Development of the Sunandini cattle breed in India Development of the Sunandini cattle breed in India C.T. Chacko http://www.fao.org/livestock/agap/war/warall/t4650b/t4650b0v.htm The author's address is: Kerala Livestock Development Board, Muvattupuzha

More information

Farm Management Decisions in the Era of Genomics

Farm Management Decisions in the Era of Genomics Farm Management Decisions in the Era of Genomics Brian Van Doormaal and Gerrit Kistemaker Canadian Dairy Network, Guelph, Ontario. E-mail: Brian@cdn.ca Take Home Messages Genomics has had a major impact

More information

Philippine Dairy Buffalo Breeding Program

Philippine Dairy Buffalo Breeding Program Philippine Dairy Buffalo Breeding Program ESTER B FLORES Project Development Officer IV Philippine Carabao Center Workshop on Breeding for Milk Production in Tropical / Non- Temperate Environments Nov

More information

Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth

Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth First Current Reality August 2016 US CDCB-AGIL Genetic Breed Difference From Holstein Breed Milk Fat Protein Productive

More information

Improving Genetics in the Suckler Herd by Noirin McHugh & Mark McGee

Improving Genetics in the Suckler Herd by Noirin McHugh & Mark McGee Section 4 23 by Noirin McHugh & Mark McGee Introduction Carefully identifying better animals and breeding them with other superior animals will gradually improve the genetics of a herd. Enhanced genetics

More information

11/30/2018. Introduction to Genomic Selection OUTLINE. 1. What is different between pedigree based and genomic selection? 2.

11/30/2018. Introduction to Genomic Selection OUTLINE. 1. What is different between pedigree based and genomic selection? 2. Introduction to Genomic Selection imagefriend.com OUTLINE 1. What is different between pedigree based and genomic selection? 2. Selection tools - Selection Indexes - Genotyping resources 3. DNA-based markers

More information

Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies

Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies Sipke Joost Hiemstra 13 April 2018, Addis, Ethiopia Centre for Genetic Resources, the Netherlands

More information

ESTIMATION OF BREEDING VALUES OF SAHIWAL CATTLE USING TEST DAY MILK YIELDS

ESTIMATION OF BREEDING VALUES OF SAHIWAL CATTLE USING TEST DAY MILK YIELDS ESTIMATION OF BREEDING VALUES OF SAHIWAL CATTLE USING TEST DAY MILK YIELDS M. S. KHAN, G. BILAL, I. R. BAJWA, Z. REHMAN 1 AND S. AHMAD 2 Department of Animal Breeding & Genetics, University of Agriculture,

More information

The development of breeding strategies for the large scale commercial dairy sector in Zimbabwe

The development of breeding strategies for the large scale commercial dairy sector in Zimbabwe The development of breeding strategies for the large scale commercial dairy sector in Zimbabwe Ntombizakhe Mpofu (2002) ZaBelo Livestock Consultancy, P.O. Box 911, Bulawayo, Zimbabwe Background The Zimbabwean

More information

Placing: 1 st 2 nd 3 rd 4 th

Placing: 1 st 2 nd 3 rd 4 th 2012 North Dakota FFA Convention Pedigree Evaluation [50 points] Given the following scenario, place the attached four (4) pedigrees in the order best suited to meet the long term goals of the purebred

More information

Establishment of a Single National Selection Index for Canada

Establishment of a Single National Selection Index for Canada Establishment of a Single National Selection Index for Canada Brian Van Doormaal, Gerrit Kistemaker and Filippo Miglior Canadian Dairy Network, Guelph, Ontario, Canada Introduction Ten years ago, in 1991,

More information

Understanding and Using Expected Progeny Differences (EPDs)

Understanding and Using Expected Progeny Differences (EPDs) Agriculture and Natural Resources FSA3068 Understanding and Using Expected Progeny Differences (EPDs) Brett Barham Associate Professor Animal Science Arkansas Is Our Campus Visit our web site at: http://www.uaex.edu

More information

Beef Production and the Brahman-Influenced Cow in the Southeast

Beef Production and the Brahman-Influenced Cow in the Southeast Beef Production and the Brahman-Influenced Cow in the Southeast J. W. Turner Department of Animal Science Texas A&M University The importance of the brood cow to efficient beef production is often overlooked

More information

Calving Pattern- The Most Important Decision on Your Farm?

Calving Pattern- The Most Important Decision on Your Farm? Calving Pattern- The Most Important Decision on Your Farm? October 24th 2017 Joe Patton, Teagasc Dairy KT Dept. Joe.patton@teagasc.ie Presentation Outline Background trends in calving & fertility 2012-17

More information

Genetic evaluations for crossbred Holstein x bos indicus cattle in India

Genetic evaluations for crossbred Holstein x bos indicus cattle in India 26/08/2013: 2nd Symposium on SUSTAINABLE ANIMAL PRODUCTION IN THE TROPICS (SAPT2) and high constraint areas Genetic evaluations for crossbred Holstein x bos indicus cattle in India Use of a test day model

More information

ESTIMATION OF GENETIC TRENDS FOR ECONOMIC TRAITS IN CROSSBRED CATTLE BY USING REGRESSION METHODS

ESTIMATION OF GENETIC TRENDS FOR ECONOMIC TRAITS IN CROSSBRED CATTLE BY USING REGRESSION METHODS Indian J. Anim. Res., 48 (6) : 527-531, 214 doi:1.5958/976-555.214.25.9 AGRICULTURAL RESEARCH COMMUNICATION CENTRE www.arccjournals.com / www.ijaronline.in ESTIMATION OF GENETIC TRENDS FOR ECONOMIC TRAITS

More information

Evidence of improved fertility arising from genetic selection: weightings and timescale required

Evidence of improved fertility arising from genetic selection: weightings and timescale required Department of Animal and Aquacultural Sciences Evidence of improved fertility arising from genetic selection: weightings and timescale required Torstein Steine Department of Animal and Aquacultural Sciences,

More information

Crossbreeding for the Commercial Beef Producer Alison Van Eenennaam, University of California, Davis

Crossbreeding for the Commercial Beef Producer Alison Van Eenennaam, University of California, Davis 2017-2 Crossbreeding for the Commercial Beef Producer Alison Van Eenennaam, University of California, Davis alvaneenennaam@ucdavis.edu Dr. Darrh Bullock Dr. Jared Decker Dr. Megan Rolf Dr. Matthew Spangler

More information

Developing a Large Scale Data Platform. Dr Rod Polkinghorne, OAM

Developing a Large Scale Data Platform. Dr Rod Polkinghorne, OAM Developing a Large Scale Data Platform Dr Rod Polkinghorne, OAM BIG DATA Coming from many sources NIR, Hyperspectral Vision systems, FLIR CT, DEXA Whole genome sequencing Too much DATA Need to identify

More information

Dr. Gatot Ciptadi. Fac. Of Animal Husbandry, UB. gatotciptadi.lecture.ub.ac.id. Dr.Gatot Ciptadi,Fac.Of Anim.

Dr. Gatot Ciptadi. Fac. Of Animal Husbandry, UB.   gatotciptadi.lecture.ub.ac.id. Dr.Gatot Ciptadi,Fac.Of Anim. Dr. Gatot Ciptadi Fac. Of Animal Husbandry, UB Email: ciptadi@ub.ac.id gatotciptadi.lecture.ub.ac.id Animal Breeding Practices Genetic Impact Breeding has an important impact on animal production, as breeding

More information

STUDY OF SOME PERFORMANCE TRAITS IN SAHIWAL COWS DURING DIFFERENT PERIODS

STUDY OF SOME PERFORMANCE TRAITS IN SAHIWAL COWS DURING DIFFERENT PERIODS STUDY OF SOME PERFORMANCE TRAITS IN SAHIWAL COWS DURING DIFFERENT PERIODS A. H. ZAFAR, M. AHMAD 1 AND S. U. REHMAN Livestock Production Research Institute, Bahadurngar, Okara; 1 Buffalo Research Institute,

More information

Dr. Gatot Ciptadi. Fac. Of Animal Husbandry, UB. gatotciptadi.lecture.ub.ac.id.

Dr. Gatot Ciptadi. Fac. Of Animal Husbandry, UB.   gatotciptadi.lecture.ub.ac.id. Dr. Gatot Ciptadi Fac. Of Animal Husbandry, UB Email: ciptadi@ub.ac.id gatotciptadi.lecture.ub.ac.id Animal Breeding Practices Genetic Impact Breeding has an important impact on animal production, as breeding

More information

Genomic selection in cattle industry: achievements and impact

Genomic selection in cattle industry: achievements and impact Genomic selection in cattle industry: achievements and impact Dr. Fritz Schmitz-Hsu Senior Geneticist Swissgenetics CH-3052 Zollikofen Scientific Seminar WBFSH 2016 1 Source: https://i.ytimg.com/vi/cuvjxlhu79a/hqdefault.jpg

More information

Statistical Indicators

Statistical Indicators Statistical Indicators E-7 Breeding value estimation of milk production traits with test-day model Introduction What really counts in the livestock industry is to breed a subsequent generation of cattle

More information

Breed Utilization and Production Efficiency

Breed Utilization and Production Efficiency Breed Utilization and Production Efficiency Merlyn Nielsen 1 1 University of Nebraska-Lincoln Introduction Maximizing production efficiency, or perhaps more specifically economic efficiency, is a goal

More information

The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland. Kevin Downing 27 th October, 2016

The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland. Kevin Downing 27 th October, 2016 The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland Kevin Downing 27 th October, 2016 Introduction Working with ICBF since 2002 in the farm services area Owner

More information

Sakon Nakhon Agricultural Research and Training Center Pungkone, Sakon Nakhon 47160, Thailand. Abstract

Sakon Nakhon Agricultural Research and Training Center Pungkone, Sakon Nakhon 47160, Thailand. Abstract Estimation of Covariance Components and Prediction of Additive Genetic Effects for First Lactation 305-d Milk and Fat Yields in a Thai Multibreed Dairy Population 1/ Skorn Koonawootrittriron *, Mauricio

More information

Using Genomics to Improve the Genetic Potential and Management of Your Herd

Using Genomics to Improve the Genetic Potential and Management of Your Herd Using Genomics to Improve the Genetic Potential and Management of Your Herd Pedigree-Based Selection Dr. Kent A. Weigel Department of Dairy Science University of Wisconsin Madison 1675 Observatory Drive

More information

Herd Improvement Roadshow Presented by: Greg Hamill

Herd Improvement Roadshow Presented by: Greg Hamill Herd Improvement Roadshow 2017 Presented by: Greg Hamill Our National Breeding Objective Revenue Cost Protein Fat Fertility Body Condition Survival Volume Somatic cells Liveweight Liveweight 50kg = 1 bale

More information

Matching Cow Type to the Nutritional Environment

Matching Cow Type to the Nutritional Environment Matching Cow Type to the Nutritional Environment Don D. Hargrove Animal Science Department University of Florida The goal in planning a management program for a commercial cow-calf operation is to maximize

More information

Weight and Grade of Calf at Weaning as a Criterion for Selection of the Female Beef Breeding Herd

Weight and Grade of Calf at Weaning as a Criterion for Selection of the Female Beef Breeding Herd Weight and Grade of Calf at Weaning as a Criterion for Selection of the Female Beef Breeding Herd L. G. W ILLIAMS* AND W. J. B. M URPHY Summary The weight and grade of a calf at weaning can be used to

More information

HETEROSIS RETENTION FOR LIVE WEIGHT IN ADVANCED GENERATIONS OF A HEREFORD AND ANGUS CROSSBREEDING EXPERIMENT

HETEROSIS RETENTION FOR LIVE WEIGHT IN ADVANCED GENERATIONS OF A HEREFORD AND ANGUS CROSSBREEDING EXPERIMENT HETEROSIS RETENTION FOR LIVE WEIGHT IN ADVANCED GENERATIONS OF A HEREFORD AND ANGUS CROSSBREEDING EXPERIMENT C.A. MORRIS, R.L. BAKER, W.D. HOHENBOKEN, D.L. JOHNSON, N.G. CULLEN Ruakura Animal Research

More information

DAIRY CATTLE CROSSBREEDING- POLICY AND RESPONSIBILITY

DAIRY CATTLE CROSSBREEDING- POLICY AND RESPONSIBILITY DAIRY CATTLE CROSSBREEDING- POLICY AND RESPONSIBILITY Dr. Musarrat Abbas Khan (Research Officer) Livestock Research Institute, Bahadurnagar, Okara POPULATION CENSUS OF PAKISTAN AND PUNJAB Pakistan Total

More information

The role and power of ultrasound in predicting marbling

The role and power of ultrasound in predicting marbling The role and power of ultrasound in predicting marbling Wayne Upton 1 and Matt Wolcott 2 1 Animal Genetics and Breeding Unit. University of New England, Armidale, NSW 2351. Phone: 02 6773 3141; Email:

More information

Genetics to meet pastoral farming requirements in the 2020 s a dairy perspective. Phil Beatson, R&D Manager CRV Ambreed

Genetics to meet pastoral farming requirements in the 2020 s a dairy perspective. Phil Beatson, R&D Manager CRV Ambreed Genetics to meet pastoral farming requirements in the 2020 s a dairy perspective Phil Beatson, R&D Manager CRV Ambreed Content About CRV Ambreed Some issues facing pastoral farming and CRV Ambreed initiatives

More information

ORGANIZATION OF ON-FARM BREEDING PLANS FOR BEEF CATTLE R.G. BEILHARZ* Summary

ORGANIZATION OF ON-FARM BREEDING PLANS FOR BEEF CATTLE R.G. BEILHARZ* Summary ' hoc. Aust. Soc. Anim. Prod. (1974) 10; 25 ORGANIZATION OF ON-FARM BREEDING PLANS FOR BEEF CATTLE R.G. BEILHARZ* Summary The steps for deriving an optimum breeding plan for any particular breeding situation

More information

Development of an Economic Breeding Index EBI for Ireland. Ross Evans (ICBF)

Development of an Economic Breeding Index EBI for Ireland. Ross Evans (ICBF) Development of an Economic Breeding Index EBI for Ireland Ross Evans (ICBF) ICBF Strategy for increasing profit for Irish dairy farmers Maintain a comprehensive database of Irish animal performance information

More information

What dairy farmers should know about genetic selection

What dairy farmers should know about genetic selection 52nd Florida Dairy Production Conference 9 Gainesville, FL, April 6, 2016 Francisco Peñagaricano Department of Animal Sciences University of Florida Genetic selection decisions one of the most important

More information

Canadian Hereford Association

Canadian Hereford Association Canadian Hereford Association Pan American Hereford Cattle Evaluation Fall 2017 EPD Averages, Tools and Trends Includes: Introduction to Genomically Enhanced EPD Post-Weaning Gain EPD Residual Feed Intake

More information

Using EPDs in a Commercial Herd

Using EPDs in a Commercial Herd Using EPDs in a Commercial Herd R. R. Schalles and K. O. Zoellner Department of Animal Sciences and Industry Kansas State University Manhattan, KS 66506 Today, beef cattle producers have the best tools

More information

Calving Month Feed Budget Relative Cost

Calving Month Feed Budget Relative Cost Autumn Calving Pattern and Fertility Guidelines for Liquid Milk Herds Liquid milk herds are facing into the highest cost period of the annual production cycle, with concentrate feeds and conserved silage

More information

Dairy herd batch calving

Dairy herd batch calving Queensland the Smart State Dairy herd batch calving Findings from the Sustainable dairy farm systems for profit project M5 Project Information Series - Studies on Mutdapilly Research Station and subtropical

More information

EPD Info 1/5. Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs)

EPD Info 1/5. Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs) EPD Info gelbvieh.org/genetic-technology/epd-info/ Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs) Expected progeny differences (EPDs) can be used to predict the average

More information

Australian Hereford Selection Indexes

Australian Hereford Selection Indexes Australian Hereford Selection Indexes There are currently four different selection indexes calculated for Australian Hereford animals. These are: Supermarket Index Grass Fed Steer Index Grain Fed Steer

More information

Section 9- Guidelines for Dairy Cattle Genetic Evaluation

Section 9- Guidelines for Dairy Cattle Genetic Evaluation - Guidelines for Dairy Cattle Genetic Evaluation Section 9 Table of Contents Section 9 1 Background... 4 2 Pre-evaluation steps... 4 2.1 Assignment to a breed of evaluation... 4 2.2 Animal identification...

More information

Mike Davis, The Ohio State University 6/19/14

Mike Davis, The Ohio State University 6/19/14 2014 Beef Improvement Federation Meeting! The optimum beef cow is indeed an elusive beast. I have searched for her for more than 20 years, and have come up empty handed. But I believe I m getting close.!

More information

Dairy Recording in Kenya

Dairy Recording in Kenya Dairy Recording in Kenya E.A. Kenya Agricultural Research Institute P.O. Box 57811, Nairobi, Kenya Livestock production is an important sector in the economy of Kenya. The sector contributes to approximately

More information

Dr. D.R.T.G. Ratnayake & Dr. L.W.N. Samaranayake

Dr. D.R.T.G. Ratnayake & Dr. L.W.N. Samaranayake Dr. D.R.T.G. Ratnayake & Dr. L.W.N. Samaranayake Location of Sri Lanka in world map Eastern longitude between 79 and 82 Northern latitude between 5 and 10 Sri Lanka Total area 65,525 sq km 9 provinces

More information

Where can the greatest economic value of genomic testing be found?

Where can the greatest economic value of genomic testing be found? Where can the greatest economic value of genomic testing be found? Albert De Vries Department of Animal Sciences University of Florida Gainesville, FL 32611 devries@ufl.edu Dairy Genomics Workshop, Twin

More information

COW PRODUCTION MONTHLY REPORT

COW PRODUCTION MONTHLY REPORT COW PRODUCTION MONTHLY REPORT Report objectives to provide individual cow identification, age, calving and lactation number information; to provide individual cow current test day milk weights and milk

More information

New Zealand Simmental Selection Indexes

New Zealand Simmental Selection Indexes New Zealand Simmental Selection Indexes There are currently two different selection indexes calculated for New Zealand Simmental animals. These are: Maternal Index Terminal Index Each selection index describes

More information

Issues and challenges in improving dairy genetics for smallholders. Badi Besbes, Animal Production and Health Division, FAO

Issues and challenges in improving dairy genetics for smallholders. Badi Besbes, Animal Production and Health Division, FAO Issues and challenges in improving dairy genetics for smallholders Badi Besbes, Animal Production and Health Division, FAO Content Setting the scene: few figures on dairy genetics Characteristics of Small-Holder

More information

Breeding Program of the Bulgarian Murrah Buffalo

Breeding Program of the Bulgarian Murrah Buffalo Breeding Program of the Bulgarian Murrah Buffalo Tzonka PEEVA *, Plamen NIKOLOV, Tania NIKOLOVA, Pencho PENCHEV and Yordanka ILIEVA Bulgarian National Association for Development of Buffalo Breeding, 3

More information

Appendix 6 - Economic value of crossbreeding and grain-finishing tropically adapted cattle

Appendix 6 - Economic value of crossbreeding and grain-finishing tropically adapted cattle Appendix 6 - Economic value of crossbreeding and grain-finishing tropically adapted cattle H.M. Burrow, G.R. Griffith, S.A. Barwick and W.E. Holmes Summary 1 (Grassfed Base Model) Economic values derived

More information

15. Breeding Program Design Principles

15. Breeding Program Design Principles 15. Breeding Program Design Principles Julius van der Werf and Brian Kinghorn Learning objectives On completion of this topic you should be able to: Understand the issues involved in breeding program design

More information

GENETIC CONSIDERATIONS FOR HEIFER FERTILITY DR. HEATHER J. HUSON ROBERT & ANNE EVERETT ENDOWED PROFESSORSHIP OF DAIRY CATTLE GENETICS

GENETIC CONSIDERATIONS FOR HEIFER FERTILITY DR. HEATHER J. HUSON ROBERT & ANNE EVERETT ENDOWED PROFESSORSHIP OF DAIRY CATTLE GENETICS GENETIC CONSIDERATIONS FOR HEIFER FERTILITY DR. HEATHER J. HUSON ROBERT & ANNE EVERETT ENDOWED PROFESSORSHIP OF DAIRY CATTLE GENETICS OVERVIEW Genetic merit of the heifer Genetics as a management tool

More information

Choices in Breeding Programs to Fit Your Environment

Choices in Breeding Programs to Fit Your Environment Choices in Breeding Programs to Fit Your Environment Joe C. Paschal Livestock Specialist Texas Cooperative Extension Corpus Christi, Texas In Texas, climatic conditions, specifically temperature, precipitation,

More information

Implications of changing a Friesian dairy system to a Friesian- Jersey crossbred dairy system

Implications of changing a Friesian dairy system to a Friesian- Jersey crossbred dairy system Extension Farming Systems Journal volume 1 number 1 Research Forum 37 Implications of changing a Friesian dairy system to a Friesian- Jersey crossbred dairy system Bill Malcolm 1 and C Grainger 2 1 The

More information

Quantitative Genetics

Quantitative Genetics Quantitative Genetics Polygenic traits Quantitative Genetics 1. Controlled by several to many genes 2. Continuous variation more variation not as easily characterized into classes; individuals fall into

More information

CULLING: REPLACEMENT HEIFER STRATEGIES

CULLING: REPLACEMENT HEIFER STRATEGIES CULLING: REPLACEMENT HEIFER STRATEGIES David B. Fischer TAKE HOME MESSAGES Reducing herd culling rate and heifer mortality rate by 5 percent will increase surplus replacements by 30 percent per 100 cow

More information

Goal Oriented Use of Genetic Prediction

Goal Oriented Use of Genetic Prediction Goal Oriented Use of Genetic Prediction Mark Johnson Inheritance of Quantitative Traits P = G + E Phenotype = Genotype + Environment Genotype Additive due to individual genes Non-additive due to combinations

More information

GENOMICS AND YOUR DAIRY HERD

GENOMICS AND YOUR DAIRY HERD GENOMICS AND YOUR DAIRY HERD Genomics uses DNA information to predict the genetic merit of bulls and cows. Available in Australia since 2011, genomic information is routinely used to calculate genomic

More information

Crossbreeding trials with Fleckvieh. Dr. Carel Muller Western Cape Dept. of Agriculture, Institute for Animal Production, Elsenburg, South Africa

Crossbreeding trials with Fleckvieh. Dr. Carel Muller Western Cape Dept. of Agriculture, Institute for Animal Production, Elsenburg, South Africa Crossbreeding trials with Fleckvieh Dr. Carel Muller Western Cape Dept. of Agriculture, Institute for Animal Production, Elsenburg, South Africa Background (1): Animal Scientist - on dairy cattle Elsenburg

More information

Beef cattle genetic evaluation in Australia ~ BREEDPLAN. Robert Banks AGBU

Beef cattle genetic evaluation in Australia ~ BREEDPLAN. Robert Banks AGBU Beef cattle genetic evaluation in Australia ~ BREEDPLAN Robert Banks AGBU Aims: Increase rate of progress in bull-breeding herds Bull-buyers have information (EBVs and $Indexes) Bull-buyers and users have

More information

BLUP and Genomic Selection

BLUP and Genomic Selection BLUP and Genomic Selection Alison Van Eenennaam Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis, USA alvaneenennaam@ucdavis.edu http://animalscience.ucdavis.edu/animalbiotech/

More information

Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population

Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population Petek Settar 1 and Joel I. Weller Institute of Animal Sciences A. R. O., The Volcani Center, Bet Dagan 50250, Israel Abstract The

More information

Session 1. Presentation of the seven most relevant cases of on-field buffalo recording

Session 1. Presentation of the seven most relevant cases of on-field buffalo recording Session 1. Presentation of the seven most relevant cases of on-field buffalo recording The Dairy Herd Improvement Programme Actions (DIPA) have been organized in a few selected districts in the State of

More information

DAIRY CATTLE EVALUATION CAREER DEVELOPMENT EVENT

DAIRY CATTLE EVALUATION CAREER DEVELOPMENT EVENT DAIRY CATTLE EVALUATION CAREER DEVELOPMENT EVENT 1. reeds of dairy cattle that may be used in this CDE include Ayrshire, rown Swiss, Guernsey, Holstein, Jersey and mixed breeds. Only one class may be mixed

More information

2/22/2012. Impact of Genomics on Dairy Cattle Breeding. Basics of the DNA molecule. Genomic data revolutionize dairy cattle breeding

2/22/2012. Impact of Genomics on Dairy Cattle Breeding. Basics of the DNA molecule. Genomic data revolutionize dairy cattle breeding Impact of Genomics on Dairy Cattle Breeding Bennet Cassell Virginia Tech 2012 VSFA/VA Tech Nutrition Cow College Genomic data revolutionize dairy cattle breeding Accuracy of selection prior to progeny

More information

RELATIONSHIPS AMONG UDDER SHAPE, UDDER CAPACITY, COW LONGEVITY AND CALF WEIGHTS ~

RELATIONSHIPS AMONG UDDER SHAPE, UDDER CAPACITY, COW LONGEVITY AND CALF WEIGHTS ~ RELATIONSHIPS AMONG UDDER SHAPE, UDDER CAPACITY, COW LONGEVITY AND CALF WEIGHTS ~ R. S. Kersey DeNise 2, D. E. Ray 2, A. M. Lane 2, V. L. Rundle 3 and M. Torabi 2 University of Arizona Tucson 85721 ABSTRACT

More information

Crossbreeding systems and appropriate levels of exotic blood: Examples from Kilifi Plantations

Crossbreeding systems and appropriate levels of exotic blood: Examples from Kilifi Plantations Crossbreeding systems and appropriate levels of exotic blood: Examples from Kilifi Plantations Alexander K. Kahi (2002) Department of Animal Science, Egerton University, P.O. Box 536, Njoro 20107, Kenya

More information

Genomic prediction. Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand. Nordisk Avlsværdi Vurdering. Nordic Cattle Genetic Evaluation

Genomic prediction. Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand. Nordisk Avlsværdi Vurdering. Nordic Cattle Genetic Evaluation Genomic prediction Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand STØTTET AF mælkeafgiftsfonden Present 2-step method (HOL), RDC,JER SNP and deregressed proof (DRP) Direct genomic values (DGV)

More information

Agricultural Science Past Exam Questions Animal Production Higher Level

Agricultural Science Past Exam Questions Animal Production Higher Level Agricultural Science Past Exam Questions Animal Production Higher Level 2013 Question 1 Part (a) (a) Name three breeds of pig including at least two breeds suitable for outdoor (non-intensive) rearing.

More information

Genetics Effective Use of New and Existing Methods

Genetics Effective Use of New and Existing Methods Genetics Effective Use of New and Existing Methods Making Genetic Improvement Phenotype = Genetics + Environment = + To make genetic improvement, we want to know the Genetic value or Breeding value for

More information

Statistical Indicators

Statistical Indicators Statistical Indicators E-42 Breeding value estimation for milk protein traits Introduction What really counts in the livestock industry is to breed a subsequent generation of cattle with a more profitable

More information

New Zealand Hereford Selection Indexes

New Zealand Hereford Selection Indexes New Zealand Hereford Selection Indexes There are currently four different selection indexes calculated for New Zealand Hereford animals. These are: Hereford Prime Index Export Index Dairy Maternal Index

More information

CHARACTERIZATION OF HEREFORD AND TWO-BREED ROTATIONAL CROSSES OF HEREFORD W ANGUS AND SIMMENTAL CAllLE: CALF PRODUCTION THROUGH WEANING

CHARACTERIZATION OF HEREFORD AND TWO-BREED ROTATIONAL CROSSES OF HEREFORD W ANGUS AND SIMMENTAL CAllLE: CALF PRODUCTION THROUGH WEANING CHARACTERIZATION OF HEREFORD AND TWO-BREED ROTATIONAL CROSSES OF HEREFORD W ANGUS AND SIMMENTAL CAllLE: CALF PRODUCTION THROUGH WEANING D. M. ~arshall', M. D. onf fore? and C. A. ~inke? Department of Animal

More information

1.1 Present improvement of breeding values for milking speed

1.1 Present improvement of breeding values for milking speed Use of data from electronic milk meters and perspectives in use of other objective measures Anders Fogh 1, Uffe Lauritsen 2 and Gert Pedersen Aamand 1 1 Knowledge Center for Agriculture, Agro Food Park

More information

THE USE OF CROSSBRED COWS TO INCREASE BEEF PRODUCTION PER HECTARE

THE USE OF CROSSBRED COWS TO INCREASE BEEF PRODUCTION PER HECTARE THE USE OF CROSSBRED COWS TO INCREASE BEEF PRODUCTION PER HECTARE J.H.L. MORGAN, AUSTRALIA Postoral Research Institute P.O. Box 180, Hamilton, Victoria, Australia SUMMARY Most beef producers in Victoria

More information

AGE OF COW AND AGE OF DAM EFFECTS ON MILK PRODUCTION OF HEREFORD COWS 1. ABSTRACt"

AGE OF COW AND AGE OF DAM EFFECTS ON MILK PRODUCTION OF HEREFORD COWS 1. ABSTRACt AGE OF COW AND AGE OF DAM EFFECTS ON MILK PRODUCTION OF HEREFORD COWS 1 D. L. Lubritz 2, K. Forrest 2 and O. W. Robison 2 North Carolina State University, Raleigh 27695-7621 ABSTRACt" Milk production in

More information

Genetics 472. Heritability. Heritability estimates 12/7/2015. Round Two

Genetics 472. Heritability. Heritability estimates 12/7/2015. Round Two Genetics 472 Round Two Heritability Phenotype=Genotype + Environment Genotype is the measure of heritability, the measure of genetic merit of one individual Milk 25 40% Fat 27 43% Fat% 32 87% Prot. % 48

More information

Breeding briefs. A guide to genetic indexes in dairy cattle

Breeding briefs. A guide to genetic indexes in dairy cattle Breeding briefs A guide to genetic indexes in dairy cattle 1 Contents Introduction 4 Genetic indexes: the theory 5 What are they and why do we need them? 5 How are they calculated? 5 The Test Day Model

More information

User Guide

User Guide User Guide get connected Welcome This Welcome Pack is aimed at helping you make full use of your HerdPlus membership. The HerdPlus service will furnish you with breeding and management tools you need to

More information

Economic Impact of Bull Choices... A.I. Or Otherwise

Economic Impact of Bull Choices... A.I. Or Otherwise Economic Impact of Bull Choices... A.I. Or Otherwise By Dr. Ben McDaniel Animal Science Department North Carolina State University P.O. Box 7621 Raleigh, NC 27695-7621 919-515-4023 fax 919-515-7780 Email:

More information

ABSTRACT. Key words: Genetic parameters, Holstein Friesian x Sahiwal, Most Probable Producing Ability, Production traits, Season of calving

ABSTRACT. Key words: Genetic parameters, Holstein Friesian x Sahiwal, Most Probable Producing Ability, Production traits, Season of calving GENETIC ANALYSIS OF THE PRODUCTION PERFORMANCE OF FRIESWAL CATTLE * B. Shubha Lakshmi, B. Ramesh Gupta, M. Gnana Prakash, K. Sudhakar 1 and Lt. Col. Susheel Sharma 2 Department of Animal Genetics and Breeding

More information

Development and implementation of genomic methods in beef cattle genetic improvement in Australia. Rob Banks (AGBU) Alex McDonald (ABRI)

Development and implementation of genomic methods in beef cattle genetic improvement in Australia. Rob Banks (AGBU) Alex McDonald (ABRI) Development and implementation of genomic methods in beef cattle genetic improvement in Australia Rob Banks (AGBU) Alex McDonald (ABRI) Background: Commercial population 12m cows Stud sector c. 0.25m cows

More information

Collecting Abattoir Carcase Information

Collecting Abattoir Carcase Information Collecting Abattoir Carcase Information Abattoir carcase information, along with live animal ultrasound scanning measurements and genomic information, is used to calculate Carcase EBVs within BREEDPLAN.

More information

A SEASONAL MATING SYSTEM FOR BEEF CATTLE IN CENTRAL QUEENSLAND

A SEASONAL MATING SYSTEM FOR BEEF CATTLE IN CENTRAL QUEENSLAND Proc. Aust. Soc. Anim. Prod. (1972) 9: 153 A SEASONAL MATING SYSTEM FOR BEEF CATTLE IN CENTRAL QUEENSLAND T. H. RUDDER* and K. D. McCAMLEY Summary In a central Queensland Hereford herd, data collected

More information

15. Breeding Program Design Principles

15. Breeding Program Design Principles 15. Breeding Program Design Principles Julius van der Werf and Brian Kinghorn Learning objectives On completion of this topic you should be able to: Understand the issues involved in breeding program design

More information

The Use of Crossbred Sires (Holstein-Friesian/Jersey) in the New Zealand Dairy Industry. A Farmers Perspective

The Use of Crossbred Sires (Holstein-Friesian/Jersey) in the New Zealand Dairy Industry. A Farmers Perspective The Use of Crossbred Sires (Holstein-Friesian/Jersey) in the New Zealand Dairy Industry A Farmers Perspective Assignee: Lianne Zonneveld Student number: 861104001 Company: CRV AmBreed NZ External Supervisor:

More information

Upgrading Dairy Cattle Evaluation System in Russian Federation

Upgrading Dairy Cattle Evaluation System in Russian Federation Upgrading Dairy Cattle Evaluation System in Russian Federation A.A. Kudinov 1,2, J. Juga 2, P. Uimari 2, E.A. Mäntysaari 3, I. Strandén 3, K.V. Plemyashov 1, E.I. Saksa 1 and M.G. Smaragdov 1 1 Russian

More information

Managing stock surplus to the milking herd

Managing stock surplus to the milking herd 10 Managing stock surplus to the milking herd This chapter discusses the classes of stock on the dairy farm that are sold to generate income. The main points in this chapter Milking cows can be culled

More information