Spectroscopy and Microscopy of Single Molecules and Single Gold Nanoparticles

Size: px
Start display at page:

Download "Spectroscopy and Microscopy of Single Molecules and Single Gold Nanoparticles"

Transcription

1 Spectroscopy and Microscopy of Single Molecules and Single Gold Nanoparticles W. Zhang, B. Pradhan, A. Carattino, L. Hou, N. Verhart S. Faez M. Orrit Molecular Nano-Optics and Spins Leiden University (Netherlands) FRISNO 13, Aussois, 19 March 2015

2 Outline Introduction Plasmonic sensing with gold nanorods Fluorescence enhancement by the SPR of gold nanorods Dynamics of vapor nanobubbles around heated plasmonic nanospheres

3 Optical microscope V 1 m 3 illum µ. about 10 9 molecules in focal spot

4 Room Temperature σ σ abs abs ( Room T.) ( Low T.) 10 6 DiI in Zeonex 10 µm

5 Optical Microscopy of single gold nanoparticles 5 µm Third Harmonic, 100 nm; M. Lippitz et al., NanoLett 5 (2005) 799

6 Dr Peter Zijlstra Dr. Pedro Paulo

7 Plasmons in gold nanoparticles ω = k m k m Harmonic oscillator, spring constant depends on shape

8 TEM images

9 Optical scattering and SEM images local index probe

10 Plasmonic sensing with a single gold nanorod P. Zijlstra et al., Nat. Nanotechn., 7 (2012) 379

11 Principle of the sensing

12 Preferential conjugation at the tips P. Zijlstra et al., Angew. Chem., 51 (2012) 8352

13 Binding of Streptavidin-phycoerythrin

14 Histograms of steps for different proteins

15 Fluorescence enhancement by a single gold nanorod HF Yuan et al., Angew. Chem. 52 (2013) 1217 S. Khatua et al. ACS Nano 8 (2014) 4440 S. Khatua et al. PCCP DOI /c4cp03057e

16 Haifeng Yuan Dr Saumyakanti Khatua

17 Spectra and Setup

18 Fluorescence bursts 2 E E nm 10 enhancement ~ 1000-fold

19 Influence of spectral overlap Surface plasmon resonance Excitation wavelength

20 Fluorescence lifetime during bursts

21 Plasmonic Nanobubbles Lei Hou et al., New J. Phys. 17 (2015)

22 Lei Hou Nico Verhart

23 Boiling occurs at higher temperature

24 Threshold in water Photothermal detection of scattered probe.

25 Dynamics of nanobubble in pentane Fast explosive events (25 ns).

26 Acoustic echoes trigger new nanobubbles

27 Persistent nanobubble

28 Conclusions Plasmonic sensing with a single gold nanorod Intensity (Counts/ms) SPR 648 nm SPR 690 nm SPR 545 nm Wavelength (nm) Intensity (a.u.) Time (s) 1000 fluorescence enhancement with spectral matching Explosive nanobubbles upon plasmonic heating

29

30

31 Themes Quantum optics and plasmonics Probes and sensors for molecular biophysics Superresolution and imaging of soft and biological matter Nonlinear optics and coherence in biophysics Upcoming deadlines Oral abstract deadline - 8 December 2014 Poster abstract deadline - 6 July 2015 Early bird registration - 27 July 2015 Standard registration - 17 August 2015 Speakers Maxime Dahan Ronald Hanson Stefan W. Hell Brahim Lounis Jens Michaelis W E Moerner Lukas Novotny Jörg Wrachtrup Haw Yang Xiaowei Zhuang

32 Local probing of supercooled liquids Perylene-di-imide (a) in glycerol (b)

33 Dr. Florian Kulzer Dr. Rob Zondervan Dr. Ted Xia Haifeng Yuan Saumyakanti Khatua

34 Polarized single-molecule fluorescence

35 Anticorrelation of polarization channels

36 T-dep. of tumbling rates for 69 molecules

37 Extremely long memory of diffusion rate evidence for solid walls? Seen already for colloidal suspensions in the glass phase: E. R. Weeks et al., Science 287(2000) 627 A solid matrix should be elastic : rheology

38 Correlation of linear dichroism

39 Correction for volume

40 Molecules and rods on the same plot

41 Vibrational transient with FT and angular dependence

42 Gold nanoparticle in an optical trap - Advantages: no perturbation by the substrate; manipulations possible

43 Imaging Absorption by Photothermal Contrast Interferometric detection of the temperature rise due to absorption Au colloids, diameter 5 nm from D. Boyer et al., Science 297 (2002) 1160

44 Dr. Alexander Gaiduk Mustafa Yorulmaz

45 Signal/Noise in photothermal detection P probe σ - signal Pprobe 1 n heat hν VC T P τ P P heat - noise P probe hν t Pprobe t ( SNR) phototh. = n s at hν 1 n nsat = Psat τ VC T P is limited by saturation, but SNR is not (in principle).

46 Simultaneous imaging of 5 nm and 20 nm Au NP s Gaiduk et al., Chemical Science 1 (2010) 343.

47 Optical setup Similar to: Berciaud et al., PRB 73 (2006) Fluorescence and photothermal Point spread function: about 200 nm FWHM

48 Single-molecule absorption

49 Single-step photobleaching Gaiduk et al., Science 330 (2010) 353

50 Intrinsic luminescence quantum yield Gaiduk et al., ChemPhysChem 2011 Dulkeith et al. PRB 2004 (ensembles)

51 Dr. Markus Lippitz Dr. Meindert van Dijk Dr. Anna Tchebotareva Paul Ruijgrok

52 Single gold nanoparticles

53 Why single nanoparticles? Ø=60 nm M. A. van Dijk et al. PRL 95 (2005)

54 Gold Nanorods collab. P. Zijlstra, J. Chon, M. Gu Swinburne U. (Melbourne, Australia) SEM and TEM images Plasmons and scattering Acoustic modes

55 Trapping individual gold nanorods ~ real time 60 µ m

56 Orientation of gold nanorod along trap polarization

57 Fluctuations of orientation by autocorrelation nm 2 glycerol in water nm 2

58 Local temperature and viscosity Single 60x25 nm 2 nanorod in the optical trap Polarization of scattered light, rotational time, translational time as functions of trapping power Maximum temperature change about 80 K Ruijgrok et al., PRL 107 (2011)

59 Vibrational damping in a liquid environment Ruijgrok et al., Nanolett. 11 (2011) 1063

60 Nanospheres

61 Nanorods

62

63 Fluorescence bursts

64

65 Influence of plasmon resonance Intensity (Counts/ms) SPR 648 nm SPR 690 nm SPR 545 nm Wavelength (nm) Intensity (a.u.) Time (s)

66 Related work Stimulated Raman scattering Freudiger et al. Science 2008: sensitivity ~ 3000 mol. Stimulated emission Min et al. Nature 2009: sensitivity ~ 5 molecules Single-molecule absorption Kukura et al., JPC Lett. 2010: linear, background Chong et al. JPC Lett 2010: ground state depletion, akin to photothermal

67 Optical setup (photothermal and scattering)

68 Binding traces of different molecules

69 Power spectrum of lateral fluctuations 10-4 with rod P (f) (arb. u.) without rod f (Hz) Single 40x20 nm nanorod in the optical trap (P~120 mw) Cut-off frequency ~ 400 Hz Trap stiffness ~ 0.01 pn/nm/w

70 Ensemble binding experiments

71 Extrapolation of single-molecule data