Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Graphene Quantum Dot-MnO 2 Nanosheet-Based Optical Sensing Platform: a Sensitive Fluorescence Turn Off-On Nanosensor for Glutathione Detection and Intracellular Imaging Xu Yan 1,2,, Yang Song 2,, Chengzhou Zhu 2, Junhua Song 2, Dan Du *,1,3, Xingguang Su *,2 and Yuehe Lin *,1 1 School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States 2 Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, , China 3 Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, P. R. China and College of Chemistry, Central China Normal University, Wuhan, , P. R. China AUTHOR INFORMATION Corresponding Author * dan.du@mail.ccnu.edu.cn (D Du) * yuehe.lin@wsu.edu (YH Lin) * suxg@jlu.edu.cn (XG Su) S-1

2 Figure S1. (A) TEM of uniform MnO2 nanosheets. (B) XPS spectra and (C) Raman spectrum of MnO2 nanosheets. S-2

3 Figure S2. UV-vis absorption of MnO 2 nanosheet and the fluorescence excitation spectra of GQDs. S-3

4 Figure S3. (A) TEM image of the GQDs/MnO 2 mixture; (B) The lifetime of GQDs in absence and presence of MnO 2 nanosheets. S-4

5 Figure S4. (A) The effect of the ph value on the FL intensity ratio of GQDs-MnO 2 probe in the presence of 10 µmol L -1 GSH; (B) The effect of reaction time on the FL intensity of GQDs-MnO 2 system in the absence (black) and presence (red) of GSH (10 µmol L -1 ). F 0 and F were the FL intensity of the GQDs-MnO 2 system in the absence and presence of GSH, respectively. S-5

6 Figure S5. The UV vis absorption spectra of MnO 2-10 µmol L -1 GSH for 8 min. S-6

7 Figure S6. (A) Fluorescence spectra of GQDs-50 µg ml -1 MnO 2 sensing probe with different concentrations of GSH. The concentrations of GSH were 0, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0 and 100 µmol L -1, respectively. The inset was the change trend of FL intensity ratio with different GSH concentrations. (B) Relationship between the FL intensity ratio and the logarithm of the GSH concnentration. F and F 0 are fluorescence intensities of GQDs-MnO 2 sensing probe in the presence and absence of GSH, respectively. S-7

8 A 1.2 B 1.2 C 1.2 Cell Viability (%) Cell Viability (%) Cell Viability (%) Concentration (µg ml -1 ) Concentration (µg ml -1 ) Concentration (µg ml -1 ) 50 Figure S7. Relative viabilities of MCF-7 cells after treated with (A) MnO 2 nanosheets, (B) GQDs, and (C) MnO 2 /GQDs nanoprobe, respectively. In this experiment, MCF-7 cells were incubated with different concentration of MnO 2 nanosheets, GQDs, and MnO 2 /GQDs nanoprobe for 1 h. Afterwards cells were washed with PBS, placed into fresh cell medium, re-incubated for additional 24 h before the MTT assay. S-8

9 Figure S8. Confocal imaging of MCF-7 cells treated with GQDs only, GQDs with NMM and GQDs with BSO for 2 and 4 h. S-9

10 Figure S9. Confocal fluorescence microscope images showing MCF-7 cells pretreated with NMM, BSO and LPA for 1 h followed by incubation with the nanoprobes. S-10

11 Table S1. Comparison of the proposed method with other methods for GSH detection Method Linear range Detection Limit React time (µmol L -1 ) (µmol L -1 ) (min) Reference HPLC / 1 Surface Enhanced Raman Scattering Surface Enhanced Raman Scattering Colorimetry Colorimetry Colorimetry / 5 6 Electrochemiluminescence / 7 Electrochemiluminescence / 8 Electrochemiluminescence / 9 Fluorometry / 10 Fluorometry / Fluorometry / / 12 Fluorometry / 13 Fluorometry Fluorometry Fluorometry Fluorometry Fluorometry / 0.9 / 18 Fluorometry / 19 Fluorometry Fluorometry This work S-11

12 Reference (1) McDermott, G. P.; Francis, P. S.; Holt, K. J.; Scott, K. L.; Martin, S. D.; Stupka, N.; Barnett, N. W.; Conlan, X. A. Determination of Intracellular Glutathione and Glutathione Disulfide Using High Performance Liquid Chromatography with Acidic Potassium Permanganate Chemiluminescence Detection. Analyst 2011, 136, (2) Huang, G. G.; Han, X. X.; Hossain, M. K.; Ozaki, Y. Development of a Heat-Induced Surface-Enhanced Raman Scattering Sensing Method for Rapid Detection of Glutathione in Aqueous Solutions. Anal Chem. 2009, 81, (3) Ouyang, L.; Zhu, L.; Jiang, J.; Tang, H. A surface-enhanced Raman Scattering Method for Detection of Trace Glutathione on the Basis of Immobilized Silver Nanoparticles and Crystal Violet Probe. Anal. Chim. Acta 2014, 816, (4) Ni, P. J.; Sun, Y. J.; Dai, H. C.; Hu, J. T.; Jiang, S.; Wang, Y. L.; Li, Z. Highly Sensitive and Selective Colorimetric Detection of Glutathione based on Ag [I] Ion 3, 3, 5, 5 -Tetramethylbenzidine (TMB). Biosens. Bioelectron. 2015, 63, (5) Shamsipur, M.; Safavi, A.; Mohammadpour, Z. Indirect Colorimetric Detection of Glutathione based on its Radical Restoration Ability Using Carbon Nanodots as Nanozymes. Sens. Actuators, B 2014, 199, (6) Shi, Y.; Pan, Y.; Zhang, H.; Zhang, Z.; Li, M.; Yi, C.; Yang, M. A Dual-Mode Nanosensor based on Carbon Quantum Dots and Gold Nanoparticles for Discriminative Detection of Glutathione in Human Plasma. Biosens. Bioelectron. 2014, 56, (7) Ji, Y.; Ma, Y.; Sun, X. Determination of Glutathione in Individual Ramos Cells by Capillary Electrophoresis with Electrochemiluminescence Detection. Anal. Methods 2013, 5, (8) Lee, P.; Compton, R. Electrochemical Detection of Nadh, Cysteine, or Glutathione Using a Caffeic Acid Modified Glassy Carbon Electrode. Electroanalysis 2013, 25, (9) Niu, W. J.; Zhu, R. H.; Cosnier, S.; Zhang, X. J.; Shan, D. Ferrocyanide-Ferricyanide Redox Couple Induced Electrochemiluminescence Amplification of Carbon Dots for Ultrasensitive Sensing of Glutathione. Anal. Chem. 2015, 87, S-12

13 (10) Zhou, L.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Carbon Nanodots as Fluorescence Probes for Rapid, Sensitive, and Label-Free Detection of Hg 2+ and Biothiols in Complex Matrices. Chem. Commun. 2012, 48, (11) Wei, M., Yin, P., Shen, Y., Zhang, L., Deng, J., Xue, S., Li, H., Guo, B., Zhang, Y., Yao, S. A New Turn-On Fluorescent Probe for Selective Detection of Glutathione and Cysteine in Living Cells. Chem. Commun. 2013, 49, (12) Banerjee, S.; Kar, S.; Perez, J. M.; Santra, S. Quantum Dot-Based OFF/ON Probe for Detection of Glutathione. J. Phys. Chem. C 2009, 113, (13) Li, Q. H.; Zhang, L.; Bai, J. M.; Liu, Z. C.; Liang, R. P.; Qiu, J. D. Preparation of Novel Fluorescent DNA Bio-Dots and Their Application for Biothiols and Glutathione Reductase Activity Detection. Biosens. Bioelectron. 2015, 74, (14) Chen, T. H.; Tseng, W. L. (Lysozyme Type VI)-Stabilized Au 8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8, (15) Cai, Q. Y.; Li, J.; Ge, J.; Zhang, L.; Hu, Y. L.; Li, Z. H.; Qu, L. B. A Rapid Fluorescence Switch-On Assay for Glutathione Detection by Using Carbon Dots MnO 2 Nanocomposites. Biosens. Bioelectron. 2015, 72, (16) Li, N.; Diao, W.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. Hierarchical MoS 2 Shells Supported on Carbon Spheres for Highly Reversible Lithium Storage. Chem. Eur. J. 2014, 20, 1-5. (17) Zhang, X. L.; Zheng, C.; Guo, S. S.; Li, J.; Yang, H. H.; Chen, G. N. Turn-On Fluorescence Sensor for Intracellular Imaging of Glutathione Using g-c 3 N 4 Nanosheet-MnO 2 Sandwich Nanocomposite. Anal. Chem. 2014, 86, S-13

14 (18) Deng, R.; Xie, X.; Vendrell, M.; Chang, Y. T.; Liu, X. Intracellular Glutathione Detection Using MnO 2 -Nanosheet-Modified Upconversion Nanoparticles. J. Am. Chem. Soc. 2011, 133, (19) Yang, P.; Xu, Q.; Jin, S.; Zhao, Y.; Lu, Y.; Xu, X.; Yu, S. Synthesis of Fe 3 O Phenol Formaldehyde Resin Core-Shell Nanospheres Loaded with Au Nanoparticles as Magnetic FRET Nanoprobes for Detection of Thiols in Living Cells. Chem. Eur. J., 2012, 18, (20) Zhang, N.; Qu, F.; Luo, H. Q.; Li, N. B. Sensitive and Selective Detection of Biothiols Based on Target-Induced Agglomeration of Silver Nanoclusters. Biosens. Bioelectron. 2013, 42, S-14