Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Self-Assembled DNA Tetrahedral Scaffolds for the Construction of Electrochemiluminescence Biosensor with Programmable DNA Cyclic Amplification Qiu-Mei Feng, Yue-Hua Guo, Jing-Juan Xu, * and Hong-Yuan Chen School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou , P. R. China State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing , P. R. China * Corresponding author. Phone/fax: xujj@nju.edu.cn S-1

2 Table S1. DNA sequences employed in this work. name Sequences (5 to 3 ) S1 S2 S3 S4 P S CGTAGGGTATTGAATGAGGGACATTCCTAAGTCTGAATTTATTACAGC TTGCTACACGTTGAAGAGCCGCCATAGTAG NH 2 -TATCAGCAGGCAGTTGACTTCGTGTAGCAAGCTGTAATTTATG CGAGGGTCCAATACT NH 2 -GTCAACTGCCTGCTGATATTACGACACTACGTAACGGTTTCTAC TATGGCGGCTCTTC NH 2 -ATTCAGACTTAGGAATGTTTACCGTTACGTAGTGTCGTTTAGTA TTGGACCCTCGCAT CTTTCCTACACCTACGTCTCCAACTAACTTACGG HS-CCACATACATCATATTCCCTCATTCAATACCCTACG TGGAGACGTAGGGTATTGAATGAGGGCCGTAAGTTAGTTGGAGAC L GTAGG A CCTACGTCTCCAACTAACTTACGGCCCTCATTCAATACCCTACG Target DNA CATTCAATACCCTACGTCTCCA One-base mismatched CATTCAATACCCAACGTCTCCA DNA Three-base mismatched CATTCAACACGCAACGTCTCCA DNA The same color portion was complementary each other and the mutant base was highlighted in the box. Characterization of the DNA tetrahedron S-2

3 Figure S1. Gel electrophoresis image of (lane 1) S1S2S3S4 (DNA tetrahedron), (lane 2) S1S2S3, (lane 3) S1S2S4, (lane 4) S1S3S4, (lane 5) S2S3S4, (lane 6) S1, (lane 7) S2, (lane 8) S3, (lane 9) S4. Comparison of ECL signal with and without help DNA Figure S2. ECL emission from BSA/TN/{RuSi NPs} 4 /ABA/GCE with the treatment of 10 pm target DNA and S-GOD in absence of help DNA (a) and in the presence of help DNA (b). The stability of ECL sensor Figure S3. Stabilization of ECL emission from BSA/TN/{RuSi NPs} 4 /ABA/GCE with the treatment of 10 pm target DNA and S-GOD under a continuous cyclic potential scan fifteen S-3

4 cycles. Comparison for existing DNA detection methods Table S2. Comparison of the current approach and previous reports on DNA detection Methods Dynamic range Detection limit Reference Colorimetric 0.05 nm 50 nm nm S1 Colorimetric 5 nm nm 2 nm S2 Fluorescent 0.5 nm 50 nm 91 pm S3 Fluorescent 5.0 nm 10 µm 290 pm S4 Electrochemical 3.2 pm 320 nm 2.3 pm S5 Electrochemical 50 fm 200 fm 20 fm S6 ECL 25 fm 100 pm 15 fm S7 ECL 100 am - 10 pm 40 am This work REFERENCES (S1) Guo, Y. H.; Yang, K. L.; Sun, J. C.; Wu, J.; Ju, H. X. A ph-responsive Colorimetric Strategy for DNA Detection by Acetylcholinesterase Catalyzed Hydrolysis and Cascade Amplification. Biosens. Bioelectron. 2017, 94, (S2) Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin-Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism. ACS Nano, 2011, 5, (S3) Zhao, H. Z.; Dong, J. J.; Zhou, F. L.; Li, B. X. G-quadruplex-based Homogenous Fluorescence Platform for Ultrasensitive DNA Detection through Isothermal Cycling and Cascade Signal Amplification. Microchim. Acta 2015, 182, S-4

5 (S4) Zhao, H. Y.; Wang, L.; Zhu, J.; Wei, H. P.; Jiang, W. Label-Free Nucleic Acids Detection Based on DNA Templated Silver Nanoclusters Fluorescent Probe. Talanta 2015, 138, (S5) Hong, N.; Cheng, L.; Wei, B. G.; Chen, C. D.; He, L. L.; Kong, D. R.; Ceng, J. X.; Cui, H. F.; Fan, H. An Electrochemical DNA Sensor without Electrode Pre-modification. Biosens. Bioelectron. 2017, 91, (S6) Lin C. S.; Wu, Y. F.; Luo, F.; Chen, D. M.; Xi, C. A Label-free Electrochemical DNA Sensor using Methylene Blue as Redox Indicator Based on an Exonuclease Ⅲ-Aided Target Recycling Strategy. Biosens. Bioelectron. 2014, 59, (S7) Chen, Y.; Xu, J.; Su, J.; Xiang, y.; Yuan, R.; Chai, Y. Q. In Situ Hybridization Chain Reaction Amplification for Universal and Highly Sensitive Electrochemiluminescent Detection of DNA. Anal. Chem. 2012, 84, S-5