Biomarker Discovery: Proteome Fractionation and

Size: px
Start display at page:

Download "Biomarker Discovery: Proteome Fractionation and"

Transcription

1 Page 1 of 20 Articles in PresS. Physiol Genomics (December 27, 2007). doi: /physiolgenomics Invited review Biomarker Discovery: Proteome Fractionation and Separation in Biological Samples Peter Matt 1,2, Zongming Fu 1, Qin Fu 1, Jennifer E. Van Eyk 1 Johns Hopkins Proteomics Center 1 and Howard Hughes Medical Institute 2, Johns Hopkins Medicine, Baltimore, USA Running head: Proteomic Biomarker Discovery Corresponding author: Peter Matt, MD 601 Mason F. Lord Building 5200 Eastern Avenue Baltimore, MD Phone: Fax: pmatt@uhbs.ch Copyright 2007 by the American Physiological Society.

2 Page 2 of 20 Abstract Proteomics, analogous with genomics, is the analysis of the protein complement present in a cell, organ or organism at any given time. While the genome provides information about the theoretical status of the cellular proteins, the proteome describes the actual content, which ultimately determines the phenotype. The broad application of proteomic technologies in basic science and clinical medicine has the potential to accelerate our understanding of the molecular mechanisms underlying disease and may facilitate the discovery of new drug targets and diagnostic disease markers. Proteomics is a rapidly developing and changing scientific discipline, and the last 5 years have seen major advances in the underlying techniques as well as expansion into new applications. Core technologies for the separation of proteins and/or peptides are one- and two-dimensional gel electrophoresis, and one- and two-dimensional liquid chromatography, and these are coupled almost exclusively with mass spectrometry. Proteomic studies have shown that the most effective analysis of even simple biological samples requires subfractionation and/or enrichment before protein identification by mass spectrometry. Selection of the appropriate technology or combination of technologies to match the biological questions is essential for maximum coverage of the selected subproteome and to ensure both the full interpretation and the downstream utility of the data. In this review, we describe the current technologies for proteome fractionation and separation of biological samples, based on our lab workflow for biomarker discovery and validation. Word count: 230

3 Page 3 of 20 Keywords Proteomics; Biomarker; Discovery; 2-dimensional gel electrophoresis; Liquid chromatograpy

4 Page 4 of 20 Introduction While the genome provides information about the theoretical status of the cellular proteins, the proteome describes the actual content, which ultimately determines the phenotype. Not every gene is transcribed and translated into a single protein, due to complex and regulated processes such as mrna splicing (producing protein isoforms), RNA editing, co- and posttranslational modifications (PTMs, e.g. phosphorylation, glycosylation, and acetylation), and protein processing, which extends the number of protein species that are possible within a cell [17]. Single-nucleotide polymorphism (SNP) and polymorphism inherent within the biological variation of the gene lead to additional variations between individuals. Interactions between modified proteins and the dynamics of protein expression under specific biological circumstances lead to an enormous molecular complexity, which exceeds that indicated by the genome sequence alone. Gene expression can be studied either at the mrna level or at the protein level, but full protein characterization is required to truly understand the proteome. Powerful techniques make the rapid screening of mrna expression possible; however, there is often a poor correlation between mrna abundance and the quantity of corresponding functional proteins [16]. Proteomics is an emerging scientific field that involves identification, characterization, and quantification of proteins in a cell, tissue or body fluid. The broad application of proteomics in basic science and clinical medicine, with its range of tools, will accelerate our understanding of disease processes, and may facilitate the discovery of new drug targets and diagnostic markers [7]. Clinical proteomics, defined as the application of proteomics in the field of medicine, has the potential to influence daily clinical practice in providing tools for diagnosis or prognosis, defining disease states, assessing risk profiles and outcomes, and setting up individual therapeutic strategies. With this objective, most clinical applications of proteomics focus on blood (serum or plasma) biomarkers although other body fluids can be used. Unlike cells or tissues, blood does not have a genome, making proteomic techniques one of the few options for discovering biomarkers. Effective biomarker discovery, even in simple biological samples, requires a combination of subfractionation and separation, or targeted protein or peptide

5 Page 5 of 20 enrichments, before identification and characterization of the markers by mass spectrometry (MS) [4]. The appropriate technology or combination of technologies to match the biological questions to be answered must be identified to allow for maximum coverage of the selected subproteome and to maximize the interpretation and downstream utility of the data. In this review, we describe the current technologies for proteome fractionation and separation from biological samples, based on our laboratory work in the discovery and validation of serum biomarkers. Biomarker Discovery In general, two different strategies are being used to discover biomarkers using proteomic technologies (Figure 1). The first strategy is a targeted approach based on the more traditional hypothesis-driven evaluation of specific biomarker candidates, selected either on the basis of a biological rationale or from analysis of candidates derived from other sources. The second strategy is a de nova discovery approach that uses different proteomic techniques and finally validates potential biomarker candidates. Both strategies are complementary, have advantages and disadvantages, and may be performed in parallel [4]. Regardless of the strategy used, we believe that the discovery and development of a robust biomarker candidate, using proteomics, demands a systematic in-depth approach in which discovery and validation are coupled. Figure 2 illustrates such an approach, as adopted in our laboratory for serum/plasma and tissue samples. Sample Preparation and Fractionation Before any proteomics analysis, blood samples must be collected and processed according to a standardized tightly regulated protocol, which is of great importance in obtaining reproducible proteomic data [3]. Whether plasma or serum should be collected for proteomic analyses is controversial. One study revealed that a large number of highly abundant peptides are detectable only in serum samples, and not in plasma [13]. The authors took the view that those peptides must be produced by ex vivo degeneration during the clotting

6 Page 6 of 20 procedure, and therefore, suggested that plasma may be superior to serum, in particular for low-molecular-weight proteins. However, there are considerable technical issues and many in the field use serum samples, collected and processed with proper control, for biomarker discovery. After all, the majority of clinical immunoassays are performed on serum. Because of the limitations in the dynamic range of proteomic technology, it is widely accepted that in order to detect proteins that are low in abundance, blood samples must be depleted of highly abundant proteins. The most common depletion method is affinity chromatography. Several companies market affinity columns that remove up to twelve of the most highly abundant proteins, e.g. the column from Beckman Coulter, Inc. (CA, USA) removes albumin, immunoglobulin G (IgG), IgA, IgM, transferrin, fibrinogen, apolipoprotein A- I and A-II, haptoglobin, alpha-1 antitrypsin, alpha-1 acid glycoprotein and alpha-2 macroglobulin. Although these columns are thought to have little non-specific binding, caution is required to prevent carryover (protein stuck to the column and then leaking) between sequential runs on the same column and the loss of proteins present in low abundance during the chromatography or downstream concentration step. Furthermore, these multiple antibody affinity columns are expensive for routine usage in academic laboratories. As an alternative to affinity-based depletion methods, our laboratory has developed a simple, reproducible and inexpensive chemical method for the depletion of lipids, immunoglobulins and albumin [2]. Following a high-speed centrifugation step to deplete lipids, and depletion of IgG with a protein A resin, the serum or plasma is fractionated into albuminenriched and depleted fractions by ethanol precipitation. Both fractions can be used for biomarker discovery using proteomic techniques. Although the observable proteome is significantly enhanced by such depletion procedures, the remaining proteins and peptides are still present in a wide range of concentrations. Therefore, depletion of serum or plasma samples serves only as a starting point for further proteomic analysis.

7 Page 7 of 20 Sample Separation Because of its complexity, the serum or plasma proteome cannot be resolved completely using a single proteomic technology. Multiple proteomics techniques for protein separation must be combined to analyse and cover a large spectrum of the proteome (Figure 3). Which methods are needed depends on the underlying biological and clinical questions to be answered. Core technologies for protein separation are one- and two-dimensional gel electrophoresis (1-DE, 2-DE) and, for protein or peptide separation, one- and twodimensional liquid chromatography (1DLC, 2DLC), all coupled with mass spectrometry (MS). Two-Dimensional Gel Electrophoresis The first technology to be used in proteomics was 2-DE, which was developed independently in the laboratories of O`Farrell and Klose more than three decades ago [6, 10]. In standard 2- DE, proteins are separated in the first dimension, known as isoelectric focusing, by their molecular charge (pi). The second dimension separates the proteins according to their molecular mass (or molecular weight, MW). The MW separation is done in a polyacrylamide matrix in a sodium dodecylsulfate (SDS) milieu; the most common procedure utilizes an acrylamide gradient of 10 to 20%. Proteins can be visualized in 2-D gels using different detection methods. The more common protein staining methods include Coomassie blue and silver staining, use of fluorescence dye (e.g. Cy dyes, LAVAPurple, Sypro dyes), radiolabeling, and immunodetection. Using standard format SDS-gels for 2-DE, it is possible to routinely separate up to 2000 protein spots from serum/plasma or tissue extracts, which reflects ~ different proteins, depending on the ph gradient used in the first dimension. Although 2-DE is an important and popular protein separation technique, it is limited by the solubility and mass of the separated proteins. Differential in-gel electrophoresis (2D-DIGE) is a recent improvement of the 2-DE technology. It improves gel reproducibility, minimizes alignment issues and allows better quantitative comparison between samples. In 2D-DIGE, proteins from different disease states are separately labeled with different fluorescent dyes,

8 Page 8 of 20 and an internal pooled standard is labeled with another dye. The labeled samples are then combined and subjected to 2-DE, and the gel is scanned at different emission wavelengths generating multiple images that can be overlaid. Figure 4 shows an example of a 2D-DIGE, which allows the differentially regulated proteins to be viewed as changed in color. 2-D gel images are evaluated and analyzed using specialized software packages. The software stores all of the relevant information on each and all of the spots of a 2-D gel in a database, compares gel patterns using complex algorithms, and highlights differences between gel images. 2-D image analysis can be time-consuming and difficult, particularly if there are marked differences between samples. Software packages can be purchased and used in-house for analysis, or companies will now provide image analysis on a contract basis. However, by using strict inclusion and exclusion criteria one can sieve out the high probability markers (or protein spot changes). Multidimensional Liquid Chromatography Recently, other methods for separating proteins have been exploited in proteomic analysis. Many involve liquid chromatography technologies that use solid- and liquid-phase media to separate proteins and/or their peptide fragments. The basic principle is a soluble sample that is separated in a liquid-phase through a column, which is usually a tube packed with small particles of specific surface chemistry [9, 15]. The sample is resolved as it traverses the length of the column based on protein- or peptide-specific chemical or physical interactions with the solid-phase. The time when the separated sample is detected at the end of the column (e.g. by UV absorbance at 210 nm, which essentially measures the number and quantity of peptide bonds) is the retention time and is quantitative if the peak contains a single protein/peptide (which in proteomics is rare and therefore, peak volume or intensity in this case is semi-quantitative). One-dimensional liquid chromatography (1DLC) can be used to separate proteins according to their molecular mass, isoelectric point, or hydrophobicity, which are the three chemical characteristics that define any given protein. The most commonly used 1DLC is reversed

9 Page 9 of 20 phase chromatography, in which proteins are separated based on hydrophobicity. Reversed phase chromatography can also be used to concentrate and/or desalt samples. In 2DLC, proteins are separated in the first dimension by chromatographic focusing (pi) and in the second dimension by reversed phase chromatography (hydrophobicity). Thus, 2DLC increases the extent of protein fractionation, which facilitates analysis of a larger spectrum of the proteome, including specific isoforms, PTMs and low-abundance proteins. As with 1DLC, this method has been used in proteomics primarily for peptide separation before MS analysis (due to its compatibility with ESI instruments); however it is increasingly used to separate complex intact protein mixtures, which are then enzymatically digested for LC or MALDI (matrix-assisted laser desorption/ionization) MS/MS analysis. 2DLC requires a larger quantity of sample for a single run (>2.5 ml) as compared to 1DLC ( µl), which can be a difficulty if available sample volumes are small (e.g. from mouse models). It is important both to quantify and to identify proteins present in fractions generated by 1DLC or 2DLC. One strategy is to normalize, overlay and compare elution profiles between different samples using specialized software packages (for which there is currently a need especially when analyzing a large number of samples) and analyze, using MS, only the fraction that varies between samples. Current data suggests that using multiple proteomic technologies dramatically increases the number of proteins detected, especially of those present in the sample at very low abundance [4]. 2-DE, 1DLC and 2DLC are synergistic separation techniques that, coupled with MS identification, expand the observable proteome and will provide a large dynamic protein spectrum for biomarker discovery. In fact, we recently compared 2-DE and 2DLC by creating a large database for serum and isolated inner mitochondrial subproteome, and revealed that only about 12% of identified proteins were common to both platforms [8, 14].

10 Page 10 of 20 Protein Identification Mass spectrometry Mass spectrometry techniques have greatly advanced proteomics and proteomics-based biomarker discovery in recent years. 2-DE coupled with MS is widely used for tissue and serum analyses. Spots from 2-D gels are excised, the proteins subjected to in-gel digestion and the resulting peptide fragments identified by MS. For identification of 2-D gel spots matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) MS is commonly used [4]. If information on protein isoforms, PTMs or absolute identification of proteins in complex mixtures such as fractions generated by 1DLC and 2DLC are needed, then tandem MS (commonly referred as MS/MS) is required. MS/MS spectra are usually generated by an ion trap or quadrupole time-of-flight mass spectrometer, which allows to generate de novo sequencing and exact localization of PTMs. For protein quantitation in MS analysis, several isotopic labeling techniques (e.g. itraq, 16 O/ 18 O, SILCA) and, recently, label-free methods have been developed, though these are not further described in this review. Biomarker Validation Biomarker candidates have traditionally been evaluated with quantitative immunoassays (e.g. ELISA) that are unique for one analyte [3]. With the rapid development of new potential biomarkers, it is important to develop quantitative assay platforms that can simultaneously measure many proteins in many samples at a small sample volume. A variety of multiplex immunoassays have been developed in recent years, which offer some advantages over traditional quantitative assays [11]. Multiplex immunoassays are essentially the same as an ELISA except that multiple analytes are quantified simultaneously. Thus, many biomarkers can be evaluated at one time under the same standardized conditions, quantitative information can be obtained in a highly parallel analysis, and reagent costs are substantially reduced. The most common multiplex assay used is an array of antibodies printed on slides/or plates at high density. It is now possible to print hundreds of antibodies, although issues with analyte and antibody cross reactivity and matrix affects make smaller numbers

11 Page 11 of 20 (<20) the preferred choice of many. The current issues with multiplex arrays is their inter- and intra-assay reproducibility, matrix affects, background limits and the specificity and sensitivity of the antibody assay. There are many other quantitative and semiquantitative multiplex immunoassays, such as miniature sandwich immunoassays, bead-based multiplex immunoassays and assays for specific signaling pathways, but investigators must take care to ensure the specificity and reproducibility of each assay within the multiplex [5, 12, 13]. The ultimate success of a multiplex assay depends upon its ability to quantitatively detect proteins at concentrations likely to be present in serum samples, which range from less than 1 pg/ml to over 1 mg/ml. Multiplex assays can be used as powerful validation tool for candidate biomarkers identified by a de nova proteomic discovery approach. In addition, multiplex assays are often used for evaluating a variety of candidate biomarkers in a targeted approach. In either case, the multiplex assay requires the added flexibility of allowing the investigator to mount their own analytes. To test whether or not a newly discovered biomarker is of clinical utility, we recommend evaluating all candidates in relation to existing biomarkers if such exist. Multiplex immunoassays again are a desirable platform for this approach as it provides quantitative information in a higher-throughput format [3]. Perspectives Proteomic technologies applied in basic science will complement genomic-based and physiological approaches. Proteomics will not only reveal new insights into complex molecular processes underlying diseases, but will provide tools to develop novel diagnostic and prognostic biomarker(s) that include unique information about the patient. Such biomarkers could have tremendous benefits for patient management, and may accelerate the development of new therapeutic strategies. In this context, it may be important to integrate proteomic biomarker information with that available from genetic biomarkers, which could provide a powerful integrated risk stratification [1]. Proteomics is a rapidly changing field because of extensive advances in the underlying technologies including the fractionation, separation and identification of proteins in biological samples. Although proteomics is

12 Page 12 of 20 evolving quickly and providing extensive protein databases with potential biomarkers, the translation of promising disease markers from bench to bedside is another challenge. This requires both close collaboration between basic scientists and clinicians, and well-designed studies with appropriate statistical power, blinding and validation. With the application of such an endeavor proteomics could lead to an optimized and more personalized medicine.

13 Page 13 of 20 Acknowledgments Peter Matt thanks the Hippocrate Foundation Basel and the Howard Hughes Medical Institute Johns Hopkins Medicine, Baltimore, for financial support. Disclosures Peter Matt is supported by the Hippocrate Foundation Basel and the Howard Hughes Medical Institute Johns Hopkins Medicine, Baltimore. Jennifer Van Eyk is supported by grants from the National Heart, Lung, and Blood Institute Proteomic Initiative (contract NO- HV-28120) and the Daniel P. Amos Family Foundation.

14 Page 14 of 20 References 1. Arab S, Gramolini AO, Ping P, Kislinger T, Stanley B, van Eyk J, Ouzounian M, MacLennan DH, Emili A and Liu PP. Cardiovascular proteomics: tools to develop novel biomarkers and potential applications. J Am Coll Cardiol. 48: , Fu Q, Bovenkamp DE and Van Eyk JE. A rapid, economical, and reproducible method for human serum delipidation and albumin and IgG removal for proteomic analysis. Methods Mol Biol. 357: , Fu Q and Van Eyk JE. Proteomics and heart disease: identifying biomarkers of clinical utility. Expert Rev Proteomics. 3: , Guo Y, Fu Z and Van Eyk JE. A proteomic primer for the clinician. Proc Am Thorac Soc. 4: 9-17, Khan SS, Smith MS, Reda D, Suffredini AF and McCoy JP. Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B Clin Cytom. 61: 35-9, Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 26: , Matt P, Carrel T, White M, Lefkovits I and Van Eyk J. Proteomics in cardiovascular surgery. J Thorac Cardiovasc Surg. 133: 210-4, McDonald T, Sheng S, Stanley B, Chen D, Ko Y, Cole RN, Pedersen P and Van Eyk JE. Expanding the subproteome of the inner mitochondria using protein separation technologies: one- and two-dimensional liquid chromatography and twodimensional gel electrophoresis. Mol Cell Proteomics. 5: , Neverova I and Van Eyk JE. Role of chromatographic techniques in proteomic analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 815: 51-63, O`Farrel P. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 250: , 1975.

15 Page 15 of Pang S, Smith J, Onley D, Reeve J, Walker M and Foy C. A comparability study of the emerging protein array platforms with established ELISA procedures. J Immunol Methods. 302: 1-12, Perlee L, Christiansen J, Dondero R, Grimwade B, Lejnine S, Mullenix M, Shao W, Sorette M, Tchernev V, Patel D and Kingsmore S. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics. Proteome Sci. 2: 9, Schweitzer B, Roberts S, Grimwade B, Shao W, Wang M, Fu Q, Shu Q, Laroche I, Zhou Z, Tchernev VT, Christiansen J, Velleca M and Kingsmore SF. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol. 20: , Sheng S, Chen D and Van Eyk JE. Multidimensional liquid chromatography separation of intact proteins by chromatographic focusing and reversed phase of the human serum proteome: optimization and protein database. Mol Cell Proteomics. 5: 26-34, Stastna M and van Eyk J. Liquid Chromatography. In: Clinical Proteomics: From Diagnosis to Therapy. WiLEY-VCH Verlag GmbH&Co. KGaA, Weinheim, Van Eyk J and Dunn M. Proteomics, a step beyond Genomics. In: Proteomic and Genomic Analysis of Cardiovascular Disease. WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim, Zerkowski HR, Grussenmeyer T, Matt P, Grapow M, Engelhardt S and Lefkovits I. Proteomics strategies in cardiovascular research. J Proteome Res. 3: 200-8, 2004.

16 Page 16 of 20 Figure legends Figure 1 Two strategies for biomarker discovery and validation: a targeted approach, based on hypothesis-driven evaluation of specific biomarker candidates, and a de nova discovery approach using different proteomic technologies followed by validation of potential biomarker candidates. Figure 2 The platform for biomarker discovery in serum and tissue samples at our institution combines multiple synergistic protein fractionation and separation methods including one- and twodimensional gel electrophoresis (1-DE, 2-DE), differential in-gel electrophoresis (2D-DIGE), and one- and two-dimensional liquid chromatography (1DLC, 2DLC), coupled with mass spectrometry (MS) identification and validation methods, using multiplex arrays. Figure 3 2-DE, 1DLC and 2DLC are synergistic proteomic separation technologies with minimal overlap that, coupled with MS identification, expand the observable proteome. The figure illustrates the dynamic protein spectrum of the three technologies. Figure 4 2D-DIGE analysis of two different serum samples. One serum sample is labeled with Cy3 (green color in this example), whilst the other is labeled with Cy5 (blue), and equal concentrations of both samples are labeled with Cy2 (red). All three labeled samples are then combined, separated on the same 2-D gel, and scanned at different emission wavelengths which allows the differentially expressed proteins to be viewed as changed in color, see arrows for green or blue spots in enlarged gel area. Proteins that are equally expressed in both samples appear as white spots.

17 Page 17 of x277mm (72 x 72 DPI)

18 374x277mm (72 x 72 DPI) Page 18 of 20

19 Page 19 of x216mm (72 x 72 DPI)

20 353x261mm (72 x 72 DPI) Page 20 of 20

Proteomics And Cancer Biomarker Discovery. Dr. Zahid Khan Institute of chemical Sciences (ICS) University of Peshawar. Overview. Cancer.

Proteomics And Cancer Biomarker Discovery. Dr. Zahid Khan Institute of chemical Sciences (ICS) University of Peshawar. Overview. Cancer. Proteomics And Cancer Biomarker Discovery Dr. Zahid Khan Institute of chemical Sciences (ICS) University of Peshawar Overview Proteomics Cancer Aims Tools Data Base search Challenges Summary 1 Overview

More information

Proteomics and some of its Mass Spectrometric Applications

Proteomics and some of its Mass Spectrometric Applications Proteomics and some of its Mass Spectrometric Applications What? Large scale screening of proteins, their expression, modifications and interactions by using high-throughput approaches 2 1 Why? The number

More information

Identification of human serum proteins detectable after Albumin removal with Vivapure Anti-HSA Kit

Identification of human serum proteins detectable after Albumin removal with Vivapure Anti-HSA Kit Andreas Kocourek, Pieter Eyckerman, Robert Zeidler, Pascal Bolon and Birgit Thome-Kromer Introduction The analysis of the complete proteome is a major interest of many researchers. Of particular importance

More information

Strategies in proteomics

Strategies in proteomics Strategies in proteomics Systems biology - understand cellpathways, network, and complex interacting (includes Genomics, Proteomics, Metabolomics..) Biological processes - characterize protein complexes,

More information

LECTURE-3. Protein Chemistry to proteomics HANDOUT. Proteins are the most dynamic and versatile macromolecules in a living cell, which

LECTURE-3. Protein Chemistry to proteomics HANDOUT. Proteins are the most dynamic and versatile macromolecules in a living cell, which LECTURE-3 Protein Chemistry to proteomics HANDOUT PREAMBLE Proteins are the most dynamic and versatile macromolecules in a living cell, which regulates essential activities of the cell. The classical protein

More information

Proteomics. Proteomics is the study of all proteins within organism. Challenges

Proteomics. Proteomics is the study of all proteins within organism. Challenges Proteomics Proteomics is the study of all proteins within organism. Challenges 1. The proteome is larger than the genome due to alternative splicing and protein modification. As we have said before we

More information

Faster, easier, flexible proteomics solutions

Faster, easier, flexible proteomics solutions Agilent HPLC-Chip LC/MS Faster, easier, flexible proteomics solutions Our measure is your success. products applications soft ware services Phospho- Anaysis Intact Glycan & Glycoprotein Agilent s HPLC-Chip

More information

Lecture 5: 8/31. CHAPTER 5 Techniques in Protein Biochemistry

Lecture 5: 8/31. CHAPTER 5 Techniques in Protein Biochemistry Lecture 5: 8/31 CHAPTER 5 Techniques in Protein Biochemistry Chapter 5 Outline The proteome is the entire set of proteins expressed and modified by a cell under a particular set of biochemical conditions.

More information

Reducing dynamic range with Proteominer

Reducing dynamic range with Proteominer Reducing dynamic range with Proteominer Dynamic Range of the Plasma Proteome Albumin Apolipo-A1 Apolipo-B AGP Lipoprotein A IgG Transferrin Fibrinogen IgA α2 macroglobulin IgM α1-at C3 Comp factor Haptoglobulin

More information

Proteomics and Cancer

Proteomics and Cancer Proteomics and Cancer Japan Society for the Promotion of Science (JSPS) Science Dialogue Program at Niitsu Senior High School Niitsu, Niigata September 4th 2006 Vladimir Valera, M.D, PhD JSPS Postdoctoral

More information

Introduction to Proteomics

Introduction to Proteomics Introduction to Proteomics Tasso Miliotis, PhD AstraZeneca R&D Gothenburg Translational Sciences tasso.miliotis@astrazeneca.com 1 Site Management Mölndal May 2008 Outline Drug Discovery AZ R&D Sample Preparation

More information

Capabilities & Services

Capabilities & Services Capabilities & Services Accelerating Research & Development Table of Contents Introduction to DHMRI 3 Services and Capabilites: Genomics 4 Proteomics & Protein Characterization 5 Metabolomics 6 In Vitro

More information

MagSi Beads. Magnetic Silica Beads for Life Science and Biotechnology study

MagSi Beads. Magnetic Silica Beads for Life Science and Biotechnology study MagSi Beads Magnetic Silica Beads for Life Science and Biotechnology study MagnaMedics Diagnostics B.V. / Rev. 9.2 / 2012 Wide range of products for numerous applications MagnaMedics separation solutions

More information

Increasing Sensitivity In LC-MS. Simplification and prefractionation of complex protein samples

Increasing Sensitivity In LC-MS. Simplification and prefractionation of complex protein samples Increasing Sensitivity In LC-MS Simplification and prefractionation of complex protein samples Protein Analysis Workflow Simplify Fractionate Separate Identify High Abundant Protein Removal reduction of

More information

Overview. Tools for Protein Sample Preparation, 2-D Electrophoresis, and Imaging and Analysis

Overview. Tools for Protein Sample Preparation, 2-D Electrophoresis, and Imaging and Analysis Expression Proteomics // Tools for Protein Separation and Analysis www.expressionproteomics.com 1 2 3 4 Overview Tools for Protein Sample Preparation, 2-D Electrophoresis, and Imaging and Analysis overview

More information

Advances in analytical biochemistry and systems biology: Proteomics

Advances in analytical biochemistry and systems biology: Proteomics Advances in analytical biochemistry and systems biology: Proteomics Brett Boghigian Department of Chemical & Biological Engineering Tufts University July 29, 2005 Proteomics The basics History Current

More information

Computing with large data sets

Computing with large data sets Computing with large data sets Richard Bonneau, spring 2009 Lecture 14 (week 8): genomics 1 Central dogma Gene expression DNA RNA Protein v22.0480: computing with data, Richard Bonneau Lecture 14 places

More information

ProteoMiner Protein Enrichment Technology

ProteoMiner Protein Enrichment Technology Sample Preparation ProteoMiner Protein Enrichment Technology Digging Deeper in the Proteome Detect More Proteins With ProteoMiner Technology Than With Immunodepletion ProteoMiner Technology vs. an Agilent

More information

SGN-6106 Computational Systems Biology I

SGN-6106 Computational Systems Biology I SGN-6106 Computational Systems Biology I A View of Modern Measurement Systems in Cell Biology Kaisa-Leena Taattola 21.2.2007 1 The cell a complex system (Source: Lehninger Principles of Biochemistry 4th

More information

Proteomics Background and clinical utility

Proteomics Background and clinical utility Proteomics Background and clinical utility H.H. Helgason MD Antoni van Leeuwenhoek Hospital The Netherlands Cancer Institute Amsterdam Introduction Background Definitions Protein biomarkers Technical aspects

More information

Alternative to 2D gel electrophoresis OFFGEL electrophoresis combined with high-sensitivity on-chip protein detection.

Alternative to 2D gel electrophoresis OFFGEL electrophoresis combined with high-sensitivity on-chip protein detection. Alternative to 2D gel electrophoresis OFFGEL electrophoresis combined with high-sensitivity on-chip protein detection Application Note Christian Wenz Andreas Rüfer Abstract Agilent Equipment Agilent 3100

More information

MBios 478: Mass Spectrometry Applications [Dr. Wyrick] Slide #1. Lecture 25: Mass Spectrometry Applications

MBios 478: Mass Spectrometry Applications [Dr. Wyrick] Slide #1. Lecture 25: Mass Spectrometry Applications MBios 478: Mass Spectrometry Applications [Dr. Wyrick] Slide #1 Lecture 25: Mass Spectrometry Applications Measuring Protein Abundance o ICAT o DIGE Identifying Post-Translational Modifications Protein-protein

More information

Strategies for Quantitative Proteomics. Atelier "Protéomique Quantitative" La Grande Motte, France - June 26, 2007

Strategies for Quantitative Proteomics. Atelier Protéomique Quantitative La Grande Motte, France - June 26, 2007 Strategies for Quantitative Proteomics Atelier "Protéomique Quantitative", France - June 26, 2007 Bruno Domon, Ph.D. Institut of Molecular Systems Biology ETH Zurich Zürich, Switzerland OUTLINE Introduction

More information

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE.

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE. User Protocol 122643 Rev. 12 May 2005 JSW Page 1 of 7 ProteoExtract Albumin/IgG Removal Kit, Maxi Cat. No. 122643 1. Introduction One of the major challenges in functional proteomics is the handling of

More information

Application Manual ProteoSpin Abundant Serum Protein Depletion Kit

Application Manual ProteoSpin Abundant Serum Protein Depletion Kit Application Manual ProteoSpin Abundant Serum Protein Depletion Kit For Use with P/N 17300 ProteoSpin Abundant Serum Protein Depletion Kit Basic Features Efficient removal of highly abundant proteins 1

More information

Chromatography column for therapeutic protein analysis

Chromatography column for therapeutic protein analysis PRODUCT SPECIFICATIONS ProPac Elite WCX Column Chromatography column for therapeutic protein analysis Benefits Superior resolution power for proteins, monoclonal antibodies, and associated charge variants

More information

Understanding life WITH NEXT GENERATION PROTEOMICS SOLUTIONS

Understanding life WITH NEXT GENERATION PROTEOMICS SOLUTIONS Innovative services and products for highly multiplexed protein discovery and quantification to help you understand the biological processes that shape life. Understanding life WITH NEXT GENERATION PROTEOMICS

More information

Kinetics Review. Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets)

Kinetics Review. Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets) Quiz 1 Kinetics Review Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets) I will post the problems with solutions on Toolkit for those that can t make

More information

Quantitative mass spec based proteomics

Quantitative mass spec based proteomics Quantitative mass spec based proteomics Tuula Nyman Institute of Biotechnology tuula.nyman@helsinki.fi THE PROTEOME The complete protein complement expressed by a genome or by a cell or a tissue type (M.

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Proteogenomic Testing for Patients with Cancer (GPS Cancer Test) File Name: Origination: Last CAP Review: Next CAP Review: Last Review: proteogenomic_testing_for_patients_with_cancer_gps_cancer_test

More information

DISCOVERY AND VALIDATION OF TARGETS AND BIOMARKERS BY MASS SPECTROMETRY-BASED PROTEOMICS. September, 2011

DISCOVERY AND VALIDATION OF TARGETS AND BIOMARKERS BY MASS SPECTROMETRY-BASED PROTEOMICS. September, 2011 DISCOVERY AND VALIDATION OF TARGETS AND BIOMARKERS BY MASS SPECTROMETRY-BASED PROTEOMICS September, 2011 1 CAPRION PROTEOMICS Leading proteomics-based service provider - Biomarker and target discovery

More information

Quantitative Proteomics: From Technology to Cancer Biology

Quantitative Proteomics: From Technology to Cancer Biology Quantitative Proteomics: From Technology to Cancer Biology Beyond the Genetic Prescription Pad: Personalizing Cancer Medicine in 2014 February 10-11, 2014 Thomas Kislinger Molecular Biomarkers in Body

More information

Improving Productivity with Applied Biosystems GPS Explorer

Improving Productivity with Applied Biosystems GPS Explorer Product Bulletin TOF MS Improving Productivity with Applied Biosystems GPS Explorer Software Purpose GPS Explorer Software is the application layer software for the Applied Biosystems 4700 Proteomics Discovery

More information

Agilent Human 14 Multiple Affinity Removal System Spin Cartridges for the Depletion of High-Abundant Proteins from Human Proteomic Samples

Agilent Human 14 Multiple Affinity Removal System Spin Cartridges for the Depletion of High-Abundant Proteins from Human Proteomic Samples Agilent Human 14 Multiple Affinity Removal System Spin Cartridges for the Depletion of High-Abundant Proteins from Human Proteomic Samples Instructions Second edition October 2008 General Information Introduction

More information

Application Note # ET-20 BioPharma Compass: A fully Automated Solution for Characterization and QC of Intact and Digested Proteins

Application Note # ET-20 BioPharma Compass: A fully Automated Solution for Characterization and QC of Intact and Digested Proteins Application Note # ET-20 BioPharma Compass: A fully Automated Solution for Characterization and QC of Intact and Digested Proteins BioPharma Compass TM is a fully automated solution for the rapid characterization

More information

Advanced Therapeutic Antibody Discovery with Multiplexed Screening

Advanced Therapeutic Antibody Discovery with Multiplexed Screening Advanced Therapeutic Antibody Discovery with Multiplexed Screening White Paper Scientists need powerful tools that can deliver results to fully understand the ability of candidate antibodies to interrupt

More information

MicroRNA profiling directly from low amounts of plasma or serum using the Multiplex Circulating mirna Assay with Firefly particle technology

MicroRNA profiling directly from low amounts of plasma or serum using the Multiplex Circulating mirna Assay with Firefly particle technology Technical note MicroRNA profiling directly from low amounts of plasma or serum using the Multiplex Circulating mirna Assay with Firefly particle technology Abstract We introduce a new assay that enables

More information

Innovations for Protein Research. Protein Research. Powerful workflows built on solid science

Innovations for Protein Research. Protein Research. Powerful workflows built on solid science Innovations for Protein Research Protein Research Powerful workflows built on solid science Your partner in discovering innovative solutions for quantitative protein and biomarker research Applied Biosystems/MDS

More information

Biomarkers for Delirium

Biomarkers for Delirium Biomarkers for Delirium Simon T. Dillon, Ph. D. Director of Proteomics BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center DF/HCC Proteomics Core Div. of Interdisciplinary Medicine and

More information

Proteomics and Vaccine Potency Testing

Proteomics and Vaccine Potency Testing Proteomics and Vaccine Potency Testing Louisa B. Tabatabai, PhD Respiratory Diseases of Livestock Research Unit National Animal Disease Center, ARS, USDA, Ames, Iowa What is proteomics Methodologies of

More information

Proteome Purify TM 12

Proteome Purify TM 12 Proteome Purify TM 12 Human Serum Protein Immunodepletion Resin Catalog Number IDR012-020 Catalog Number IDR012-040 For the removal of twelve high-abundance proteins from human serum or plasma. This package

More information

Lecture 23: Clinical and Biomedical Applications of Proteomics; Proteomics Industry

Lecture 23: Clinical and Biomedical Applications of Proteomics; Proteomics Industry Lecture 23: Clinical and Biomedical Applications of Proteomics; Proteomics Industry Clinical proteomics is the application of proteomic approach to the field of medicine. Proteome of an organism changes

More information

Exam MOL3007 Functional Genomics

Exam MOL3007 Functional Genomics Faculty of Medicine Department of Cancer Research and Molecular Medicine Exam MOL3007 Functional Genomics Tuesday May 29 th 9.00-13.00 ECTS credits: 7.5 Number of pages (included front-page): 5 Supporting

More information

12/6/12. Dr. Sanjeeva Srivastava IIT Bombay

12/6/12. Dr. Sanjeeva Srivastava IIT Bombay Dr. Sanjeeva Srivastava IIT Bombay Gel-based proteomics 2-DE work-flow 1 Isoelectric focusing (first dimension) 2 Equilibration of IPG strips 3 SDS-PAGE (second dimension) 4 Staining gel visualization

More information

IMPROVE SPEED AND ACCURACY OF MONOCLONAL ANTIBODY BIOANALYSIS USING NANOTECHNOLOGY AND LCMS

IMPROVE SPEED AND ACCURACY OF MONOCLONAL ANTIBODY BIOANALYSIS USING NANOTECHNOLOGY AND LCMS IMPROVE SPEED AND ACCURACY OF MONOCLONAL ANTIBODY BIOANALYSIS USING NANOTECHNOLOGY AND LCMS As scientists gain an advanced understanding of diseases at the molecular level, the biopharmaceutical industry

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Proteogenomic Testing for Patients with Cancer (GPS Cancer Test) File Name: Origination: Last CAP Review: Next CAP Review: Last Review: proteogenomic_testing_for_patients_with_cancer_gps_cancer_test

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Proteogenomic Testing for Patients with Cancer (GPS Cancer Test) File Name: Origination: Last CAP Review: Next CAP Review: Last Review: proteogenomic_testing_for_patients_with_cancer_gps_cancer_test

More information

Biomarker Discovery using Surface Plasmon Resonance Imaging

Biomarker Discovery using Surface Plasmon Resonance Imaging F e a t u r e A r t i c l e Feature Article Biomarker Discovery using Surface Plasmon Resonance Imaging Elodie LY-MORIN, Sophie BELLON, Géraldine MÉLIZZI, Chiraz FRYDMAN Surface Plasmon Resonance (SPR)

More information

Agilent Multiple Affinity Removal Spin Cartridges for the Depletion of High-Abundant Proteins from Human Proteomic Samples.

Agilent Multiple Affinity Removal Spin Cartridges for the Depletion of High-Abundant Proteins from Human Proteomic Samples. Agilent Multiple Affinity Removal Spin Cartridges for the Depletion of High-Abundant Proteins from Human Proteomic Samples Instructions Third edition July 2005 General Information Introduction The Agilent

More information

Thermo Scientific Peptide Mapping Workflows. Upgrade Your Maps. Fast, confident and more reliable peptide mapping.

Thermo Scientific Peptide Mapping Workflows. Upgrade Your Maps. Fast, confident and more reliable peptide mapping. Thermo Scientific Peptide Mapping Workflows Upgrade Your Maps Fast, confident and more reliable peptide mapping. Smarter Navigation... Peptide mapping is a core analytic in biotherapeutic development.

More information

rapiflex Innovation with Integrity Designed for Molecules that Matter. MALDI TOF/TOF

rapiflex Innovation with Integrity Designed for Molecules that Matter. MALDI TOF/TOF rapiflex Designed for Molecules that Matter. Innovation with Integrity MALDI TOF/TOF rapiflex TM The first MALDI-TOF/TOF that adapts to your needs. The rapiflex is the most advanced MALDI TOF/TOF system

More information

Bioinformatics (Lec 19) Picture Copyright: the National Museum of Health

Bioinformatics (Lec 19) Picture Copyright: the National Museum of Health 3/29/05 1 Picture Copyright: AccessExcellence @ the National Museum of Health PCR 3/29/05 2 Schematic outline of a typical PCR cycle Target DNA Primers dntps DNA polymerase 3/29/05 3 Gel Electrophoresis

More information

LECTURE-8 2D-DIGE CLINICAL APPLICATIONS HANDOUT. Two Dimensional Electrophoresis (2DE) continues to be one of the most commonly

LECTURE-8 2D-DIGE CLINICAL APPLICATIONS HANDOUT. Two Dimensional Electrophoresis (2DE) continues to be one of the most commonly LECTURE-8 2D-DIGE CLINICAL APPLICATIONS HANDOUT PREAMBLE Two Dimensional Electrophoresis (2DE) continues to be one of the most commonly used techniques for proteomic studies. The technique mainly involves

More information

Antibody Analysis by ESI-TOF LC/MS

Antibody Analysis by ESI-TOF LC/MS Application Note PROTEOMICS METABOLOMICS GENOMICS INFORMATICS GLYILEVALCYSGLUGLNALASERLEUASPARG CYSVALLYSPROLYSPHETYRTHRLEUHISLYS Antibody Analysis by ESI-TOF LC/MS Authors Lorenzo Chen, Merck & Company,

More information

Towards unbiased biomarker discovery

Towards unbiased biomarker discovery Towards unbiased biomarker discovery High-throughput molecular profiling technologies are routinely applied for biomarker discovery to make the drug discovery process more efficient and enable personalised

More information

Jet Stream Proteomics for Sensitive and Robust Standard Flow LC/MS

Jet Stream Proteomics for Sensitive and Robust Standard Flow LC/MS Jet Stream Proteomics for Sensitive and Robust Standard Flow LC/MS Technical Overview Authors Yanan Yang, Vadiraj hat, and Christine Miller Agilent Technologies, Inc. Santa Clara, California Introduction

More information

Thermo Scientific Proteomics & Metabolomics Seminar Tour

Thermo Scientific Proteomics & Metabolomics Seminar Tour Proteomics & Seminar Tour Ignite your workflows with our with Cutting Edge LC-MS Technology Stop by to learn the latest advances in mass spectrometry workflows, technologies launched at 2012 ASMS and talk

More information

Simultaneous Quantitation of a Monoclonal Antibody and Two Proteins in Human Plasma by High Resolution and Accurate Mass Measurements

Simultaneous Quantitation of a Monoclonal Antibody and Two Proteins in Human Plasma by High Resolution and Accurate Mass Measurements Simultaneous Quantitation of a Monoclonal Antibody and Two Proteins in Human Plasma by High Resolution and Accurate Mass Measurements Paul-Gerhard Lassahn 1, Kai Scheffler 2, Myriam Demant 3, Nathanael

More information

BR-10455A. Automated Multiplexed Gene Expression Profiling Process Solutions. Multiplex Quantitative High-throughput

BR-10455A. Automated Multiplexed Gene Expression Profiling Process Solutions. Multiplex Quantitative High-throughput BR-10455A Automated Multiplexed Gene Expression Profiling Process Solutions Multiplex Quantitative High-throughput As a scientist, you understand the challenges of working with limited amounts of sample,

More information

A Highly Accurate Mass Profiling Approach to Protein Biomarker Discovery Using HPLC-Chip/ MS-Enabled ESI-TOF MS

A Highly Accurate Mass Profiling Approach to Protein Biomarker Discovery Using HPLC-Chip/ MS-Enabled ESI-TOF MS Application Note PROTEOMICS METABOLOMICS GENOMICS INFORMATICS GLYILEVALCYSGLUGLNALASERLEUASPARG CYSVALLYSPROLYSPHETYRTHRLEUHISLYS A Highly Accurate Mass Profiling Approach to Protein Biomarker Discovery

More information

Chapter 5: Proteins: Primary Structure

Chapter 5: Proteins: Primary Structure Instant download and all chapters Test Bank Fundamentals of Biochemistry Life at the Molecular Level 4th Edition Donald Voet https://testbanklab.com/download/test-bank-fundamentals-biochemistry-life-molecular-level-

More information

The BioPharmaSpec Approach : Mass Spectrometry Based Host Cell Protein Identification and Quantitation

The BioPharmaSpec Approach : Mass Spectrometry Based Host Cell Protein Identification and Quantitation The BioPharmaSpec Approach : Mass Spectrometry Based Host Cell Protein Identification and Quantitation 1. Introduction As part of the development of any biopharmaceutical product, the impurities present

More information

Focus on right spots using. Ettan DIGE

Focus on right spots using. Ettan DIGE Focus on right spots using Ettan DIGE GEHC is part of a family of businesses aligned with our customers needs and acting as one company to drive growth. Commercial Finance Infrastructure Industrial Healthcare

More information

Mass Spectrometry. Kyle Chau and Andrew Gioe

Mass Spectrometry. Kyle Chau and Andrew Gioe Mass Spectrometry Kyle Chau and Andrew Gioe Computation of Molecular Mass - Mass Spectrum is a plot of intensity as a function of masscharge ratio, m/z. - Mass-charge ratio can be determined through accelerating

More information

sample preparation Accessing Low-Abundance Proteins in Serum and Plasma With a Novel, Simple Enrichment and Depletion Method tech note 5632

sample preparation Accessing Low-Abundance Proteins in Serum and Plasma With a Novel, Simple Enrichment and Depletion Method tech note 5632 sample preparation tech note 5632 Accessing Low-Abundance Proteins in Serum and Plasma With a Novel, Simple Enrichment and Depletion Method Aran Paulus, Steve Freeby, Katrina Academia, Vanitha Thulasiraman,

More information

Solutions Guide. MX Series II Modular Automation for Nano and Analytical Scale HPLC And Low Pressure Fluid Switching Applications

Solutions Guide. MX Series II Modular Automation for Nano and Analytical Scale HPLC And Low Pressure Fluid Switching Applications Solutions Guide MX Series II Modular Automation for Nano and Analytical Scale HPLC And Low Pressure Fluid Switching Applications Page 1 of 12 Table of Contents Sample Injection... 3 Two- Selection... 4

More information

FirePlex mirna Assay. Multiplex microrna profiling from low sample inputs

FirePlex mirna Assay. Multiplex microrna profiling from low sample inputs FirePlex mirna Assay Multiplex microrna profiling from low sample inputs Abstract We introduce a new assay for multiplex microrna (mirna) discovery and verification that enables simultaneous profiling

More information

timstof Innovation with Integrity Powered by PASEF TIMS-QTOF MS

timstof Innovation with Integrity Powered by PASEF TIMS-QTOF MS timstof Powered by PASEF Innovation with Integrity TIMS-QTOF MS timstof The new standard for high speed, high sensitivity shotgun proteomics The timstof Pro with PASEF technology delivers revolutionary

More information

Pushing the Leading Edge in Protein Quantitation: Integrated, Precise, and Reproducible Protein Quantitation Workflow Solutions

Pushing the Leading Edge in Protein Quantitation: Integrated, Precise, and Reproducible Protein Quantitation Workflow Solutions 2017 Metabolomics Seminars Pushing the Leading Edge in Protein Quantitation: Integrated, Precise, and Reproducible Protein Quantitation Workflow Solutions The world leader in serving science 2 3 Cancer

More information

Thermo Scientific Mass Spectrometric Immunoassay (MSIA) Pipette Tips. Next generation immunoaffinity. Robust quantitative platform

Thermo Scientific Mass Spectrometric Immunoassay (MSIA) Pipette Tips. Next generation immunoaffinity. Robust quantitative platform Thermo Scientific Mass Spectrometric Immunoassay (MSIA) Pipette Tips Next generation immunoaffinity Robust quantitative platform Immunoaffinity sample preparation Thermo Scientific Mass Spectrometric Immunoassay

More information

ARE YOU LOOKING FOR 1-D OR 2-D HIGH RESOLOTION GEL ELECTROPHORESIS SYSTEM, WE HAVE A SOLUTION

ARE YOU LOOKING FOR 1-D OR 2-D HIGH RESOLOTION GEL ELECTROPHORESIS SYSTEM, WE HAVE A SOLUTION ARE YOU LOOKING FOR 1-D OR 2-D HIGH RESOLOTION GEL ELECTROPHORESIS SYSTEM, WE HAVE A SOLUTION We are pleased to inform that Unigenetics Instruments Pvt. Ltd. now is a distributors of WITA GmbH, Germany

More information

11/22/13. Proteomics, functional genomics, and systems biology. Biosciences 741: Genomics Fall, 2013 Week 11

11/22/13. Proteomics, functional genomics, and systems biology. Biosciences 741: Genomics Fall, 2013 Week 11 Proteomics, functional genomics, and systems biology Biosciences 741: Genomics Fall, 2013 Week 11 1 Figure 6.1 The future of genomics Functional Genomics The field of functional genomics represents the

More information

sample preparation Accessing Low-Abundance Proteins in Serum and Plasma With a Novel, Simple Enrichment and Depletion Method tech note 5632

sample preparation Accessing Low-Abundance Proteins in Serum and Plasma With a Novel, Simple Enrichment and Depletion Method tech note 5632 sample preparation tech note 5632 Accessing Low-Abundance Proteins in Serum and Plasma With a Novel, Simple Enrichment and Depletion Method Aran Paulus, Steve Freeby, Katrina Academia, Vanitha Thulasiraman,

More information

Hichrom Limited 1 The Markham Centre, Station Road, Theale, Reading, Berkshire, RG7 4PE, UK Tel: +44 (0) Fax: +44 (0)

Hichrom Limited 1 The Markham Centre, Station Road, Theale, Reading, Berkshire, RG7 4PE, UK Tel: +44 (0) Fax: +44 (0) Hichrom Limited 1 The Markham Centre, Station Road, Theale, Reading, Berkshire, RG7 4PE, UK Tel: +44 (0)118 930 3660 Fax: +44 (0)118 932 3484 Email: www.hichrom.co.uk Table of Contents Sample Injection...

More information

Proteomics: A Challenge for Technology and Information Science. What is proteomics?

Proteomics: A Challenge for Technology and Information Science. What is proteomics? Proteomics: A Challenge for Technology and Information Science CBCB Seminar, November 21, 2005 Tim Griffin Dept. Biochemistry, Molecular Biology and Biophysics tgriffin@umn.edu What is proteomics? Proteomics

More information

Combining Techniques to Answer Molecular Questions

Combining Techniques to Answer Molecular Questions Combining Techniques to Answer Molecular Questions UNIT FM02 How to cite this article: Curr. Protoc. Essential Lab. Tech. 9:FM02.1-FM02.5. doi: 10.1002/9780470089941.etfm02s9 INTRODUCTION This manual is

More information

N-Glycan Profiling Analysis of a Monoclonal Antibody Using UHPLC/FLD/Q-TOF

N-Glycan Profiling Analysis of a Monoclonal Antibody Using UHPLC/FLD/Q-TOF N-Glycan Profiling Analysis of a Monoclonal Antibody Using UHPLC/FLD/Q-TOF Application Note Authors Xianming Liu, Wei Zhang, Yi Du, Sheng Yin, Hong Que, and Weichang Zhou WuXi AppTec iopharmaceuticals

More information

mirna from serum and plasma samples

mirna from serum and plasma samples REFERENCE GUIDE mirna from serum and plasma samples Publication Number MAN0017497 Revision A.0 Introduction... 1 Use of serum or plasma... 2 Sample collection and handling... 2 Sample storage... 4 Extraction

More information

392 Index. peptide N-glycosidase F. treatment, 331

392 Index. peptide N-glycosidase F. treatment, 331 Index 391 Index A Albumins, seed protein extraction, 20, 21, 23 Antibody screening, see Protein microarray Arabidopsis thaliana, see Chloroplast; Plasma membrane B Blue-native polyacrylamide gel (BN-PAGE),

More information

Representing Errors and Uncertainty in Plasma Proteomics

Representing Errors and Uncertainty in Plasma Proteomics Representing Errors and Uncertainty in Plasma Proteomics David J. States, M.D., Ph.D. University of Michigan Bioinformatics Program Proteomics Alliance for Cancer Genomics vs. Proteomics Genome sequence

More information

Vivapure Anti-HSA/IgG Kits for Human Albumin and Human Albumin/IgG Depletion

Vivapure Anti-HSA/IgG Kits for Human Albumin and Human Albumin/IgG Depletion Vivapure Anti-HSA/IgG Kits for Human and Human /IgG Depletion Fisher Scientific Vivapure Anti-HSA/IgG Kits for Human and Human /IgG Depletion Introduction The Vivapure Anti-HSA and Anti-HSA/IgG kits are

More information

Motivation From Protein to Gene

Motivation From Protein to Gene MOLECULAR BIOLOGY 2003-4 Topic B Recombinant DNA -principles and tools Construct a library - what for, how Major techniques +principles Bioinformatics - in brief Chapter 7 (MCB) 1 Motivation From Protein

More information

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract Purification: Step 1 Lecture 11 Protein and Peptide Chemistry Cells: Break them open! Crude Extract Total contents of cell Margaret A. Daugherty Fall 2003 Big Problem: Crude extract is not the natural

More information

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open!

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open! Lecture 11 Protein and Peptide Chemistry Margaret A. Daugherty Fall 2003 Purification: Step 1 Cells: Break them open! Crude Extract Total contents of cell Big Problem: Crude extract is not the natural

More information

Really high sensitivity mass spectrometry and Discovery and analysis of protein complexes

Really high sensitivity mass spectrometry and Discovery and analysis of protein complexes Really high sensitivity mass spectrometry and Discovery and analysis of protein complexes The PRIME lab and AMS Importance of protein complexes in biology Methods for isolation of protein complexes In

More information

Repeatability of C100ht Biologics Analyzer, for High Throughput Glycan Screening

Repeatability of C100ht Biologics Analyzer, for High Throughput Glycan Screening Repeatability of C100ht Biologics Analyzer, for High Throughput Glycan Screening Marcia Santos, Tingting Li, Mervin Gutierrez, Anna Lou, and Clarence Lew SCIEX Separations, Brea, CA Introduction The ability

More information

S R E VA V Blu l e P ep Kit i s SERVA Blue Prep CBD Micro/MacroKit SERVA Blue Prep DetergentEx Micro/Macro Kit SERVA Blue

S R E VA V Blu l e P ep Kit i s SERVA Blue Prep CBD Micro/MacroKit SERVA Blue Prep DetergentEx Micro/Macro Kit SERVA Blue Kits Protein and Protein/Nucleic acid Isolation and Purification Kits SERVA BluePrep CBD Micro/MacroKit SERVA BluePrep DetergentEx Micro/Macro Kit SERVA BluePrep IB Isolation Micro/Macro Kit Cell Lysis

More information

Proteomics 6/4/2009 WESTERN BLOT ANALYSIS

Proteomics 6/4/2009 WESTERN BLOT ANALYSIS SDS-PAGE (PolyAcrylamide Gel Electrophoresis) Proteomics WESTERN BLOT ANALYSIS Presented by: Nuvee Prapasarakul Veterinary Microbiology Chulalongkorn University Proteomics has been said to be the next

More information

Introduction to Assay Development

Introduction to Assay Development Introduction to Assay Development A poorly designed assay can derail a drug discovery program before it gets off the ground. While traditional bench-top assays are suitable for basic research and target

More information

The Five Key Elements of a Successful Metabolomics Study

The Five Key Elements of a Successful Metabolomics Study The Five Key Elements of a Successful Metabolomics Study Metabolomics: Completing the Biological Picture Metabolomics is offering new insights into systems biology, empowering biomarker discovery, and

More information

Application Note 18 RNA/DNA/Protein Sample Preparation METHODS AND MATERIALS INTRODUCTION

Application Note 18 RNA/DNA/Protein Sample Preparation METHODS AND MATERIALS INTRODUCTION Application Note 18 /DNA/Protein Sample Preparation Sequential Purification of, DNA and Protein from a Single Sample using 's /DNA/Protein Purification Kit and Comparison to a Market B. Lam, PhD 1, C.

More information

2-Dimensional Electrophoresis

2-Dimensional Electrophoresis 2-Dimensional Electrophoresis Proteomics Pathway Proteomics Pathway History of 2-DE 1956 -paper & starch gel 1975 -Coupling of IEF & SDS-PAGE IPG-IEF 2DE-Techniques Immobilized ph Gradient IsoElectric

More information

Spectrum Mill MS Proteomics Workbench. Comprehensive tools for MS proteomics

Spectrum Mill MS Proteomics Workbench. Comprehensive tools for MS proteomics Spectrum Mill MS Proteomics Workbench Comprehensive tools for MS proteomics Meeting the challenge of proteomics data analysis Mass spectrometry is a core technology for proteomics research, but large-scale

More information

Proteome Profiling by Multidimensional Protein Separation and Automated Lab-on-a-Chip Technology Application

Proteome Profiling by Multidimensional Protein Separation and Automated Lab-on-a-Chip Technology Application Proteome Profiling by Multidimensional Protein Separation and Automated Lab-on-a-Chip Technology Application Proteomics Authors Peter Mrozinski, Bill Wilson, and Hongbin Liu Agilent Technologies, Inc.

More information

Genomics, Transcriptomics and Proteomics

Genomics, Transcriptomics and Proteomics Genomics, Transcriptomics and Proteomics GENES ARNm PROTEINS Genomics Transcriptomics Proteomics (10 6 protein forms?) Maturation PTMs Partners Localisation EDyP Lab : «Exploring the Dynamics of Proteomes»

More information

Cytomics in Action: Cytokine Network Cytometry

Cytomics in Action: Cytokine Network Cytometry Cytomics in Action: Cytokine Network Cytometry Jonni S. Moore, Ph.D. Director, Clinical and Research Flow Cytometry and PathBioResource Associate Professor of Pathology & Laboratory Medicine University

More information

Optimization of Protein Purification Using Small-Scale Separation Columns

Optimization of Protein Purification Using Small-Scale Separation Columns Optimization of Protein Purification Using Small-Scale Separation Columns Chris Suh, Ph.D Application Scientist, Inc. San Jose, Ca 2 nd Therapeutics & Drug Discovery Conference Presentation Outline 1.

More information

Proteomics and Protein Microarrays

Proteomics and Protein Microarrays Introduction to BioMEMS & Medical Microdevices Proteomics and Protein Microarrays Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/

More information

HOST CELL PROTEIN & BIOPROCESSING REAGENT DEVELOPMENT

HOST CELL PROTEIN & BIOPROCESSING REAGENT DEVELOPMENT HOST CELL PROTEIN & BIOPROCESSING REAGENT DEVELOPMENT INTRODUCTION Biopharmaceuticals require products to be free of residual host cell protein (HCP) contaminants from the bioprocessing workflow. To evaluate

More information

Protein purification prior to proteomics analysis

Protein purification prior to proteomics analysis Protein purification prior to proteomics analysis Stephen Barnes, PhD Department of Pharmacology & Toxicology and Mass Spectrometry Shared Facility, UAB The dynamic range of protein abundances Proteins

More information