Postantibiotic and Sub-MIC Effects of Azithromycin and Isepamicin against Staphylococcus aureus and Escherichia coli

Size: px
Start display at page:

Download "Postantibiotic and Sub-MIC Effects of Azithromycin and Isepamicin against Staphylococcus aureus and Escherichia coli"

Transcription

1 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Feb. 1998, p Vol. 42, No /98/$ Copyright 1998, American Society for Microbiology Postantibiotic and Sub-MIC Effects of and against Staphylococcus aureus and Escherichia coli F. FUENTES, J. IZQUIERDO, M. M. MARTÍN, M. L. GOMEZ-LUS, AND J. PRIETO* Department of Microbiology, Faculty of Medicine, Complutense University of Madrid, Madrid 28040, Spain Received 22 November 1996/Returned for modification 15 April 1997/Accepted 21 August 1997 Investigations of pharmacodynamic parameters (postantibiotic effect [PAE], sub-mic effects [SMEs], etc.) have been progressively employed for the design of dosing schedules of antimicrobial agents. However, there are fewer in vivo than in vitro data, probably because of the simplicity of the in vitro procedures. In this study, we have investigated the in vitro PAE, SME, and previously treated (postantibiotic [PA]) SME (1/2 MIC, 1/4 MIC and 1/8 MIC) of azithromycin and isepamicin against standard strains of Staphylococcus aureus and Escherichia coli by using centrifugation to remove the antibiotics. In addition, the in vivo PAE and SME have been studied with the thigh infection model in neutropenic mice. Finally, in vivo killing curves with two dosing schedules were determined to examine whether the PAE can cover the time that antimicrobial agents are below the MIC. The two antimicrobial agents induced moderate-to-high in vitro PAEs, SMEs, and PA SMEs against S. aureus (>8 h) and E. coli (3.38 to >7.64 h). The in vivo PAEs were also high (from 3.0 to 3.6 h), despite the fact that isepamicin had lower times above the MIC in serum. Only azithromycin showed a high in vivo SME against the two strains (1.22 and 1.75 h), which indicated that the in vivo PAEs were possibly overestimated. In the killing kinetics, no great differences (<0.5 log 10 ) were observed between the schedule that took the PAE into account and the continuous administration of doses. These results are comparable with those of other authors and suggest that these antimicrobial agents could be administered at longer intervals without losing effectiveness. Over the last two decades, the number of studies of pharmacodynamic aspects of antimicrobial agents have progressively increased. The postantibiotic effect (PAE) is one of the parameters most extensively studied, and a great number of data have been obtained, especially in vitro. The PAE represents the suppression of growth of a microorganism after an exposure to an antimicrobial agent (16), and it is of important clinical interest, since longer dosing intervals could reduce toxicity and costs without a loss in effectiveness. To study this phenomenon in vivo, several models in animals have been used (12, 13, 20, 27, 29). The model of infection in the neutropenic mouse thigh (12) is one of the most employed models because it is faster and less laborious than others. We have previously observed long PAEs with quinolones (9) and aminoglycosides (18) by using this model, although meropenem did not induce significant values (8, 15). Other authors have also reported significant in vivo PAEs with macrolides (4) and aminoglycosides (4, 27) by using this model and others. The effect of subinhibitory concentrations on microorganisms, previously treated (postantibiotic [PA] SME) or not (SME), is another important pharmacodynamic parameter (2). These sub-mic concentrations may have a greater importance with some antimicrobial agents, such as the macrolides (with long half-lives) or the aminoglycosides (with high bactericidal activity). The SMEs have been studied in vitro with many antibiotics, including the groups studied here (19, 21 25). has been reported to exhibit in vitro long PA SMEs and SMEs against some respiratory tract pathogens (25), but isepamicin has not been investigated. Among the aminoglycoside antibiotics, only amikacin exhibited long PA SMEs and SMEs against some gram-negative microorganisms (24). * Corresponding author. Mailing address: Department of Microbiology, Faculty of Medicine, Complutense University of Madrid, Av. Complutense s/n, Madrid 28040, Spain. Phone: (91) Fax: (91) jprieto@eucmax.sim.ucm.es. The study of the PA SME or SME in vivo has never been carried out according to the in vitro specifications or similar methods. However, complementary experiments to ensure that the suppression of the microorganism growth was a true PAE have generally been reported when the thigh infection model in mice had been performed (9, 18, 30). We have previously carried out these experiments and applied the formula of the in vitro SME to determine the analogous in vivo effect (9), but no significant values were obtained. In the case of macrolides, which have long half-lives, the importance of these assays may be greater. The aim of the present study was to investigate the in vitro PAE, SME, and PA SME of azithromycin and isepamicin against standard strains of E. coli and S. aureus. Using the thigh infection model in neutropenic mice, we studied the in vivo PAE, as well as the possible in vivo SME (to ensure that the growth suppression was a true PAE). Finally, we applied this in vivo model to determine whether dosing schedules that include the PAE duration were as effective as continuous schedules that always maintained the levels of the antimicrobial agents in serum above the MIC. MATERIALS AND METHODS Microorganisms. S. aureus ATCC and E. coli ATCC were used in this study. s. The antibiotics were obtained as reference powders with known potencies from the following pharmaceutical companies: isepamicin was obtained from Schering Plough S.A. (Madrid, Spain), and azithromycin was obtained from Pfizer S.A. (Madrid, Spain). Dilutions were made on the same days of the experiments. The MICs were determined by the macrodilution standard method (14) in Mueller-Hinton (MH) broth. Animals. Female BALB/c mice weighing 26 to 28 g were rendered neutropenic by intraperitoneal injection of cyclophosphamide (Laboratorios Funk, Madrid, Spain) at 150 and 100 mg/kg of body weight on days 0 and 3, respectively (12). In vitro PAE. E. coli or S. aureus cells (10 7 CFU/ml in MH broth) in the logarithmic phase of growth were exposed to the drugs at 37 C in a shaking incubator for 0.5 to 1.5 h (depending on the activity against the strain) at the following therapeutic concentrations: E. coli, 80 mg/liter with azithromycin and 414

2 VOL. 42, 1998 POSTANTIBIOTIC AND SUB-MIC EFFECTS ON DRUG KINETICS 415 TABLE 1. MICs, times of exposure to antimicrobial agent, and in vitro PAEs, SMEs, and PA SMEs of isepamicin and azithromycin against S. aureus and E. coli MIC (mg/liter) Concn (mg/liter) Time preexposure PAE SME at indicated fraction of MIC PA SME at indicated fraction of MIC 1/2 1/4 1/8 1/2 1/4 1/8 S. aureus E. coli S. aureus E. coli mg/liter with isepamicin; S. aureus, 20 mg/liter with azithromycin and 7 mg/liter with isepamicin. One culture with the same microorganism was not exposed to the antimicrobial agent and remained as a nonexposed control culture. The antimicrobial agent was removed by centrifugation (5 min at 1,200 g). Nonexposed control cultures were also centrifuged. The treated and control cultures were then both divided into four tubes, with one of each used to determine the PAE by reincubation at 37 C for another 10 h. Samples were withdrawn, and viable bacteria were determined every hour. Each antibioticmicroorganism combination was studied at least two times on different occasions. The PAE was calculated by the formula (4) PAE T C, where T is the time for the preexposed cultures to increase by 1 log 10 above the number of CFU present immediately after drug removal and C is the corresponding time for the nonpreexposed control. SME and PA SME. The remaining three tubes of preexposed and nonpreexposed cultures were exposed to azithromycin or isepamicin at concentrations of 1/2 MIC, 1/4 MIC, and 1/8 MIC. All of these cultures were incubated at 37 C for another 10 h. Samples were withdrawn, and viable bacteria were determined every hour as described above. The SME and PA SME were calculated by the formulas (23) SME T s C and PA SME T PA C, respectively, where T s is the time for the nonpreexposed cultures that have been exposed to different sub-mics to increase by 1 log 10 above the number of CFU present immediately after drug removal, T PA is the time for the preexposed cultures that have been exposed to different sub-mics to increase by 1 log 10 above the number of CFU present immediately after drug removal, and C is the corresponding time for the nonpreexposed control. In vivo PAE. All procedures were conducted in accordance with Institutional Animal Care and Use Committee guidelines. The in vivo PAE was determined according to the experimental procedure of Gudmundsson et al. (12). On the day of the experiment, all neutropenic mice were inoculated intramuscularly (i.m.) into one thigh with 0.1 ml of a bacterial suspension (10 6 to 10 7 CFU/ml) in the log phase of growth. Two hours later (time zero), 0.2 ml of saline solution with the antimicrobial agent was injected subcutaneously (s.c.) into the treated mice, with saline solution administered alone to the control group. The concentrations of the antimicrobial agents were as follows: azythromycin, 80 mg/kg for E. coli and 20 mg/kg for S. aureus; isepamicin, 7 mg/kg for E. coli and S. aureus. Groups of three to four animals from the treated and control groups were then killed every hour for the 1st 4 h and every 2huptothe10th h after drug administration. At each sampling time, thigh muscles were removed and immediately homogenized in 9 ml of ice-cold 0.85% NaCl, and viable counts on MH agar plates were determined. The in vivo PAE was calculated by the formula (27) PAE T C, where T is the time required for the mean count of CFU in the thighs of treated mice to increase 1 log 10 above its value at the time that the antibiotic concentrations in serum fell below the MIC and C is the time required for the mean count of CFU in the thighs of control mice to increase 1 log 10 above the viable count at time zero. Pharmacokinetics. After s.c. administration of the two drugs to the mice (three mice per group) at the same doses employed in the in vivo PAE, the blood was collected from the retroorbital sinus at 5, 15, 30, 45, and 60 min and every 30 min up to 6 h. The activity of the drug in serum was assayed with a group of three control mice administered a saline solution. Drug levels in plasma were determined by using a standard agar well diffusion assay (28), with S. aureus ATCC as a patron strain with azythromycin and E. coli ATCC as a patron strain with isepamicin. The time that levels in serum exceeded the MIC, as well as peak level, time for peak level, and area under the concentration-time curve (AUC), was calculated with a BASIC subroutine, based on a one-compartment open model. All assays were performed at least three times on separate occasions. In vivo determination of the SME. To ensure that the persistent growth suppression represented a true PAE and was not due to residual drug in the thigh tissue, a group of mice were injected with the antimicrobial agents at the same doses employed in the in vivo PAE experiments. Another group of mice (control) were injected with saline solution. A bacterial suspension (0.1 ml with 10 6 to 10 7 CFU/ml) of microorganisms in the log phase of growth was injected i.m. into the thighs of treated and control groups after the antibiotic levels in serum were below the MIC. The precise times were as follows: isepamicin, 1.1 h for S. aureus and E. coli; azithromycin, 4.5 h for S. aureus and 1.7 h for E. coli. During the next 10 h, three to four animals of the treated and control groups were killed every hour, and numbers of CFU were determined as described above. This method determined whether drug concentrations below the sensitivity of the microbiological assay were active in vivo. The SME was determined according to the formula SME T PA C, where T PA and C are the times required for the mean count of CFU in the thighs of pretreated and control mice, respectively, to increase by 1 log 10 above its initial value. This formula is similar to that described by Odenholt et al. (23) to determine the in vitro SME. In vivo killing curves. After the determination of the PAEs, their application in the dosing schedules was evaluated according to the in vivo killing kinetics. Neutropenic mice were divided into three different groups. All of them were inoculated i.m. into one thigh with 0.1 ml of a bacterial suspension (10 7 CFU/ml) in the log phase of growth. Two hours later (time zero), 0.2 ml of saline solution with the antimicrobial agent (at the same doses employed in the in vivo PAE experiments) was administered s.c. to two groups of mice (treated groups), with saline solution administered alone to the other group (control group). The first treated group was then injected s.c. with the antimicrobial agent every time that drug levels in serum fell below the MIC for this antibiotic as follows: isepamicin, at time zero and every 1.1 h for S. aureus and E. coli; azithromycin, at time zero every 4.5 h for S. aureus and every 1.7 h for E. coli. The second treated group was injected with the same doses approximately every time that drug levels in serum fell below the MIC plus the time of PAE as follows: isepamicin, at times zero and 5hforS. aureus and at times zero, 4, and 8 h for E. coli; azithromycin, at times zero and 8hforS. aureus and at times zero and 5 h for E. coli. Groups of three to four animals of the treated and control groups were then killed every hour for the 1st 4 h and every 2huptothe10th h after drug administration. At each sampling time, thigh muscles were removed and homogenized as described above, and viable counts on MH agar plates were determined. The in vivo lethal effect was expressed as the log 10 difference between each treatment curve and nontreated control at the end of the experiment (8, 9). RESULTS MICs. The MICs of azythromycin and isepamicin for S. aureus and E. coli are shown in Table 1. Since macrolide antibiotics have no great activity against gram-negative strains, the MIC of azythromycin for E. coli was moderate (8 mg/liter). In vitro PAE, SME, and PA SME. The results of all experiments are shown in Table 1. All of the in vitro PAEs were moderate, those of azithromycin generally being longer than those of isepamicin (2 h more with E. coli). Generally, the SME and PA SME values were also long, even if the PAE was subtracted from them. induced longer PAEs and SMEs on S. aureus than on E. coli, with PA SMEs greater than 8 h at all fractions of MICs. Nevertheless, the time of preexposure was also shorter (0.5 h), and it was reduced because it was too bactericidal and no counts were obtained in the PA SME assays. On the other hand, azithromycin induced longer PAEs and SMEs on E. coli (with T MIC longer than S. aureus), while the latter microorganism showed higher PA SMEs (greater than 8 h). Some PA SMEs were not determined exactly, because at the

3 416 FUENTES ET AL. ANTIMICROB. AGENTS CHEMOTHER. and E. coli, respectively) could indicate that azithromycin is highly bacteriostatic in subinhibitory concentrations. In vivo killing curves. Table 3 shows the lethal effects of azithromycin and isepamicin on S. aureus and E. coli with the two schedules of antimicrobial administration. There were not large differences between the two dosing schedules. The greatest difference was observed with isepamicin and S. aureus, but it was not greater than 0.5 log 10 CFU. The results are also shown in Fig. 2, where the administrations in schedule B (which takes into account the PAE) are pointed out. The total doses administered are also shown in Table 3. It can be observed that schedule B reduced the amount of antimicrobial agent administered by 33 to 80%, corresponding to the largest reductions with isepamicin. DISCUSSION FIG. 1. In vivo PAE of isepamicin and azithromycin. :, control; F, treated with 7 mg/kg at zero hour for E. coli and S. aureus. :, control; F, treated with 80 mg/kg for E. coli and 20 mg/kg for S. aureus at time zero. end of the experiment, the cultures did not increase 1 log 10 CFU. The differences among the times of preexposure were due to previous results that indicated the exposures that were adequate (not excessively bactericidal). In vivo PAE. Figure 1 shows the in vivo PAE curves of the two antimicrobial agents, and Table 2 shows the results of the in vivo delay of growth. The highest PAE was that of isepamicin against S. aureus (3.6 h), but it was very similar to those of azithromycin (3.5 h). Although all values are highly significant, the PAE/T MIC ratio is very low for azithromycin against S. aureus in comparison with those of the other microorganism-drug combinations (0.77 against 2.05 to 3.27). The pharmacokinetic parameters are also shown in Table 2. The peak drug levels were rapidly reached (0.25 to 1 h), while the AUCs were similar for isepamicin and the 20-mg/kg dose of azithromycin. In vivo determination of the SME. The in vivo SMEs are also shown in Table 2. The negative values can be explained by the different levels of growth of the microorganisms in the different mice, and only when isepamicin was assayed against S. aureus was a significant negative value ( 0.5 h) found. On the other hand, azithromycin induced high SMEs against the two strains tested. The values of 1.75 and 1.22 h (with S. aureus The PAE is one of the most important and best known pharmacodynamic parameters. This effect has been intensively studied since it was described in the late 1940s (1, 6). However, there are fewer data available in vivo than in vitro (4), probably because of the simplicity of the in vitro procedures. The study of the in vivo PAE began when this effect was described (6), but reliable and standardized methods have not been employed until the last 2 decades (12, 16). The thigh infection model in neutropenic mice has been one of the most employed, and a great amount of data have been obtained (3). With aminoglycosides, the PAEs against most of the standard strains have been considerably long. Against S. aureus, PAEs of 3.4 to 6.7 h have been obtained with gentamicin by this model (4, 11, 18), while a PAE of 2.3 h has been reported with amikacin and other techniques (27). With E. coli, a wide range of PAEs have been reported: 1.4 to 4.5 h with gentamicin (4, 11, 18), 1.7 to 2.9 h with netilmicin, and 1.8 to 2.1 h with tobramicin (10). With amikacin and with another model, a PAE of 3.8 h has been determined (27)., as well as netilmicin, is a compound related to gentamicin, and the PAEs obtained in the present study are similar to those of these two antibiotics. The in vivo PAE of azithromycin has not yet been studied. The in vitro results show a moderate PAE from 2.2 to 4.7 h against other strains than those studied here (5, 25). However, the in vivo PAEs of other macrolides have already been investigated. Erythromycin induced PAEs up to 6.8 h against S. aureus and other gram-positive microorganisms (3, 4), and clindamycin also showed high values (7.1 h) with this strain (4). Nevertheless, the high values obtained with these macrolides could be due in part to their long periods above the MIC in serum, since they have long half-lives. In our study, this interval was also long in the case of S. aureus, despite the fact that its TABLE 2. Doses, pharmacokinetic parameters, times that levels of antimicrobial agent in serum exceeded the MIC, in vivo PAEs, and in vivo SMEs of isepamicin and azithromycin against S. aureus and E. coli Peak drug level ( g/ml) Time for peak level AUC (mg/liter h) Dose T MIC In vivo PAE a PAE/T MIC In vivo SME a S. aureus E. coli S. aureus E. coli a Each value represents the mean of three experiments standard error.

4 VOL. 42, 1998 POSTANTIBIOTIC AND SUB-MIC EFFECTS ON DRUG KINETICS 417 TABLE 3. s administered and lethal effects of two different administrations of isepamicin and azithromycin against S. aureus and E. coli on in vivo killing kinetics Lethal effect a Schedule A Lethal effect Schedule B Lethal effect Difference between schedules A and B S. aureus E. coli S. aureus E. coli a Difference in log 10 CFU between control and treated growth curves at the end of the in vivo killing kinetics. PAE was very similar to that of isepamicin (3.5 and 3.6 h, respectively). The effect of subinhibitory concentrations is another important pharmacodynamic parameter. By standardized in vitro techniques, significant values have been observed with many antimicrobial agents (2), even though this activity is not the same against bacteria in the PAE phase (PA SME) or SME phase. These effects have been studied with three macrolides (including azithromycin) against respiratory tract pathogens (25), with values higher than 12 h against Streptococcus pneumoniae. In this study, azithromycin induced long SMEs and PA SMEs against the two microorganisms, but if the in vitro PAE is subtracted, the SMEs are clearly lower than those of S. aureus ( 8 h). The SMEs of the aminoglycosides have not been examined in detail. Only the PA SMEs and SMEs of amikacin against E. coli are reported (24), in which the values were higher ( 22.3 h with 0.3 MIC) than those obtained in the present assay with isepamicin (although the preexposure period was 2 h). Our PA SMEs against S. aureus were longer than 9.28 h, and the SMEs were also long. Although the sub-mics for E. coli were lower than those for S. aureus, the relative effect on this microorganism is greater, because the time of preexposure is only 0.5 h. This lower time was chosen because no CFU counts were detected with an assay of 1 h. The in vivo investigation of the SMEs is more difficult than in vitro, and consequently the number of investigations reported are considerably lower. In one of the first in vivo experiments, Oshida et al. (26) observed that the inactivation of aspoxicillin by an injection of penicillinase in mice shortened the duration of the PAE. On the other hand, almost all of the in vivo PAE experiments performed with the thigh infection model in mice have included killing curves to examine the possible SMEs (9, 18, 26, 30). Moreover, those killing curves have been determined by a method similar to that used for our in vivo SME lethality curves, although they have not employed the formula described above. With this assay, some authors have observed that the subinhibitory concentrations of some antibiotics were active and increased the PAE period (26, 30). We were interested in carrying out an in vivo experiment similar to that employed in the in vitro PA SME determination. In the design of the technique, we included the inoculation of in vitro-pretreated microorganisms approximately at the time that the antimicrobial drug levels in serum fell below the MIC, since it was not possible to inactivate these compounds. Unfortunately, in the present study, we employed microorganisms in the log phase because reliable results were not obtained, since microorganisms in the PAE phase did not infect the thigh and were rapidly killed (data not shown). Despite the use of microorganisms in the log phase, azithromycin induced a short significant SME against the two strains tested (1.75 and 1.22 h), suggesting that the 3.5 h determined for the in vivo PAE really reflects the combined action of sub-mics and PAE. The importance of this subinhibitory effect of azithromycin could be greater considering the following circumstances. First, the microorganisms were in the log phase instead of the PAE phase, with the in vitro PA SMEs of this antibiotic being considerably high. Second, the elimination rate in small animals is approximately six times higher than that in humans (25, 26), and the exposure time could be increased notably. Finally, the high accumulation of azithromycin in tissues (including polymorphonuclear leukocytes and macrophages) and posterior release (7, 10, 17) also increase the exposure time in some of these tissues. All of these factors, together with the action of the defensive system, indicate that longer dosing intervals for FIG. 2. In vivo killing kinetics of isepamicin and azithromycin. :, control; F, 7 mg/kg at zero hour and every hour; }, 7 mg/kg at zero hour and at the end of PAE plus time that drug levels in serum exceeded the MIC. :, control; F, 20 mg/kg at time zero and every 4.5 h for S. aureus and 80 mg/kg at zero hour and every2hfore. coli; }, 20 and 80 mg/kg for S. aureus and E. coli, respectively, at zero hour and at the end of the PAE plus time that drug levels in serum exceeded the MIC. The arrows represent drug administrations in schedule B.

5 418 FUENTES ET AL. ANTIMICROB. AGENTS CHEMOTHER. this antimicrobial agent could be allowed. With this objective, we examined the in vivo killing curves with two different dosing schedules. In terms of the lethal effect, the schedule B treatment with azithromycin (which included the PAE) was only 13% less effective than schedule A against the two strains. With isepamicin, which did not show SMEs in vivo, the effectiveness was even higher (90 to 97%), probably because of its greater bactericidal (lethal) effect (Table 3). We conclude that the pharmacodynamic parameters of azithromycin and isepamicin are important enough to have an influence on the dosing designs of these antimicrobial agents. They showed long PAEs not only in vitro but also in vivo, and the in vitro SMEs or PA SMEs also seem to be high; the in vivo SMEs are also significant in the case of azithromycin. The effectiveness could then be maintained, and longer dosing intervals could also reduce costs and toxicity (which is important in the case of aminoglycosides). However, further experiments should be performed to confirm these findings and study new ones (e.g., predictive pharmacokinetic parameter for efficacy and emergence of resistance). REFERENCES 1. Bigger, J. W The bactericidal action of penicillin on Staphylococcus pyogenes. Ir. J. Med. Sci. 227: Cars, O., and I. Odenholt-Tornqvist The post-antibiotic sub-mic effect in vitro and in vivo. J. Antimicrob. Chemother. 31(Suppl. D): Craig, W. A Post-antibiotic effects in experimental infection models: relationship to in vitro phenomena and to treatment of infection in man. J. Antimicrob. Chemother. 31(Suppl. D): Craig, W. A., and S. Gudmundsson The postantibiotic effect, p In V. Lorian (ed.), Antibiotics in laboratory medicine, 3rd ed. Williams & Wilkins Co., Baltimore, Md. 5. Debbia, E. A., G. Molinari, P. Paglai, and G. C. Schito Postantibiotic effect of azithromycin on respiratory tract pathogens. Drugs Exp. Clin. Res. 16: Eagle, H., R. Fleischman, and A. D. Musselman The bactericidal action of penicillin in vivo: the participation of the host, and the slow recovery of the surviving organisms. Ann. Intern. Med. 33: Foulds, G., R. M. Shepard, and R. B. Johnson The pharmacokinetics of azithromycin in human serum and tissues. J. Antimicrob. Chemother. 25(Suppl. A): Fuentes, F., M. M. Martin, J. Izquierdo, M. L. Gomez-Lus, and J. Prieto In vivo and in vitro pharmacodynamic effects of meropenem. Scand. J. Infect. Dis. 27: Fuentes, F., M. M. Martin, J. Izquierdo, M. L. Gomez-Lus, and J. Prieto Pharmacodynamic effects of ciprofloxacin, fleroxacin and lomefloxacin in vivo and in vitro. Chemotherapy 42: Gladue, R. P., G. M. Bright, R. E. Isaacson, and M. F. Newborg In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob. Agents Chemother. 33: Gudmundsson, S., S. Einarsson, H. Erlendsdottir, J. Moffat, W. Bayer, and W. A. Craig The postantibiotic effect of antimicrobial combinations in neutropenic murine thigh infection model. J. Antimicrob. Chemother. 31 (Suppl. D): Gudmundsson, S., B. Vogelman, and W. A. Craig The in vivo postantibiotic effect of imipenem and other new antimicrobials. J. Antimicrob. Chemother. 18(Suppl. E): Hesen, M. T., P. G. Pitsakis, and M. E. Levison Absence of postantibiotic effect in experimental Pseudomonas endocarditis treated with imipenem, with or without gentamicin. J. Infect. Dis. 158: Jones, R. N., A. L. Barry, T. L. Gavan, and J. A. Washington II Susceptibility tests: microdilution and macrodilution broth procedures, p In E. H. Lennette, A. Balows, W. J. Hausler, Jr., and H. J. Shadomy (ed.), Manual of clinical microbiology, 4th ed. American Society for Microbiology, Washington, D.C. 15. Martín, M. M., F. Fuentes, J. Izquierdo, M. L. Gómez-Lus, and J. Prieto In-vivo and in-vitro study of the postantibiotic effect of meropenem. J. Antimicrob. Chemother. 32: (Letter.) 16. McDonald, P. J., W. A. Craig, and C. M. Kunin Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J. Infect. Dis. 135: McDonald, P. J., and H. Pruul Phagocyte uptake and transport of azithromycin. Eur. J. Clin. Microbiol. Infect. Dis. 10: Minguez, F., J. Izquierdo, M. M. Martin, F. Fuentes, and J. Prieto In vivo postantibiotic effect of isepamicin and other aminoglycosides in a thigh infection model in neutropenic mice. Chemotherapy 38: Odenholt, I., S. E. Holm, and O. Cars Effects of benzylpenicillin on Streptococcus pyogenes during the postantibiotic phase in vitro. J. Antimicrob. Chemother. 24: Odenholt, I., S. E. Holm, and O. Cars Effects of supra and sub-mic benzylpenicillin concentrations on group A -haemolytic streptococci during the postantibiotic phase in vivo. J. Antimicrob. Chemother. 26: Odenholt-Tornqvist, I Studies on the postantibiotic sub-mic effect of meropenem. J. Antimicrob. Chemother. 31: Odenholt-Tornqvist, I., and S. Bengtsson Postantibiotic effect and postantibiotic effect of subinhibitory concentrations of sparfloxacin on Gram-negative bacteria. Chemotherapy 40: Odenholt-Tornqvist, I., E. Löwdin, and O. Cars Pharmacodynamic effects of subinhibitory concentrations of -lactam antibiotics in vitro. Antimicrob. Agents Chemother. 35: Odenholt-Tornqvist, I., E. Löwdin, and O. Cars Postantibiotic sub- MIC effects for vancomycin, roxithromycin, sparfloxacin, and amikacin. Antimicrob. Agents Chemother. 36: Odenholt-Tornqvist, I., E. Löwdin, and O. Cars Postantibiotic effects and postantibiotic sub-mic effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens. Antimicrob. Agents Chemother. 39: Oshida, T., T. Onta, N. Nakanishi, T. Matsushita, and T. Yamaguchi Activity of sub-minimal inhibitory concentrations of aspoxicillin in prolonging the postantibiotic effect against Staphylococcus aureus. J. Antimicrob. Chemother. 26: Renneberg, J., and M. Walder Postantibiotic effects of imipenem, norfloxacin, and amikacin in vitro and in vivo. Antimicrob. Agents Chemother. 33: Roosendaal, R., I. A. J. M. Bakker-Woudenberg, J. C. Van den Berg, and M. F. Michel Therapeutic efficacy of continuous versus intermittent administration of ceftazidime in an experimental Klebsiella pneumoniae pneumonia in rats. J. Infect. Dis. 152: Sande, M. A., O. M. Korzeniowski, G. M. Allegro, R. O. Brennan, O. Zak, and W. M. Scheld Intermittent or continuous therapy of experimental meningitis due to S. pneumoniae in rabbits: preliminary observations on the postantibiotic effect in vivo. Rev. Infect. Dis. 3: Vogelman, B., S. Gudmundsson, J. Turnidge, J. Leggett, and W. A. Craig In vivo postantibiotic effect in a thigh infection model in neutropenic mice. J. Infect. Dis. 157:

ABC. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. Volume 19 Number 18

ABC. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. Volume 19 Number 18 M26-A ISBN 1-56238-384-1 September 1999 ISSN 0273-3099 Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline Volume 19 Number 18 Arthur L. Barry, Ph.D. William A. Craig,

More information

Postantibiotic effect of roxithromycin, erytfaromycin, and clindamycin against selected Gram-positive bacteria and Haemophilus influenzae

Postantibiotic effect of roxithromycin, erytfaromycin, and clindamycin against selected Gram-positive bacteria and Haemophilus influenzae Journal of Antimicrobial Chemotherapy (1987) 20, Suppl. B, 39-46 Postantibiotic effect of roxithromycin, erytfaromycin, and clindamycin against selected Gram-positive bacteria and Haemophilus influenzae

More information

Pharmacodynamics of a New Streptogramin, XRP 2868, in Murine Thigh and Lung Infection Models

Pharmacodynamics of a New Streptogramin, XRP 2868, in Murine Thigh and Lung Infection Models ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Jan. 2006, p. 243 249 Vol. 50, No. 1 0066-4804/06/$08.00 0 doi:10.1128/aac.50.1.243 249.2006 Copyright 2006, American Society for Microbiology. All Rights Reserved.

More information

Use of the Microbial Growth Curve in Postantibiotic Effect Studies of Legionella pneumophila

Use of the Microbial Growth Curve in Postantibiotic Effect Studies of Legionella pneumophila ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Mar. 2003, p. 1081 1087 Vol. 47, No. 3 0066-4804/03/$08.00 0 DOI: 10.1128/AAC.47.3.1081 1087.2003 Copyright 2003, American Society for Microbiology. All Rights Reserved.

More information

Identification of the In Vivo Pharmacokinetics and Pharmacodynamic Drivers of Iclaprim

Identification of the In Vivo Pharmacokinetics and Pharmacodynamic Drivers of Iclaprim AAC Accepted Manuscript Posted Online 29 January 2018 Antimicrob. Agents Chemother. doi:10.1128/aac.02550-17 Copyright 2018 American Society for Microbiology. All Rights Reserved. 1 Identification of the

More information

Use of Pharmacodynamic Indices To Predict Efficacy of Combination Therapy In Vivo

Use of Pharmacodynamic Indices To Predict Efficacy of Combination Therapy In Vivo ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Oct. 1999, p. 2473 2478 Vol. 43, No. 10 0066-4804/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Use of Pharmacodynamic Indices

More information

In Vivo Pharmacodynamic Characterization of a Novel Plectasin Antibiotic, NZ2114, in a Murine Infection Model

In Vivo Pharmacodynamic Characterization of a Novel Plectasin Antibiotic, NZ2114, in a Murine Infection Model ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, July 2009, p. 3003 3009 Vol. 53, No. 7 0066-4804/09/$08.00 0 doi:10.1128/aac.01584-08 Copyright 2009, American Society for Microbiology. All Rights Reserved. In Vivo

More information

Factors Influencing Detection of Tolerance in Staphylococcus aureus

Factors Influencing Detection of Tolerance in Staphylococcus aureus ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 1982, p. 364-368 Vol. 22, No. 3 0066-4804/82/090364-0$02.00/0 Copyright 1982, American Society for Microbiology Factors Influencing Detection of Tolerance in

More information

Comparative in vitro pharmacodynamics of BO-2727, meropenem and imipenem against Gram-positive and Gram-negative bacteria

Comparative in vitro pharmacodynamics of BO-2727, meropenem and imipenem against Gram-positive and Gram-negative bacteria ORIGINAL ARTICLE Comparative in vitro pharmacodynamics of BO-2727, meropenem and imipenem against Gram-positive and Gram-negative bacteria Inga Odenholt, Elisabeth Liiwdin and Otto Cars Antibiotic Research

More information

In Vivo Pharmacodynamic Activities of Two Glycylcyclines (GAR-936 and WAY 152,288) against Various Gram-Positive and Gram-Negative Bacteria

In Vivo Pharmacodynamic Activities of Two Glycylcyclines (GAR-936 and WAY 152,288) against Various Gram-Positive and Gram-Negative Bacteria ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2000, p. 943 949 Vol. 44, No. 4 0066-4804/00/$04.00 0 Copyright 2000, American Society for Microbiology. All Rights Reserved. In Vivo Pharmacodynamic Activities

More information

In vitro studies of the pharmacodynamics of teicoplanin against Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium

In vitro studies of the pharmacodynamics of teicoplanin against Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium ORIGINAL ARTICLE In vitro studies of the pharmacodynamics of teicoplanin against Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium I. Odenholt, E. LoÈwdin and O. Cars Antibiotic

More information

Pharmacodynamics of Ampicillin-Sulbactam in an In Vitro Infection Model against Escherichia coli Strains with Various Levels of Resistance

Pharmacodynamics of Ampicillin-Sulbactam in an In Vitro Infection Model against Escherichia coli Strains with Various Levels of Resistance ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Feb. 1998, p. 231 235 Vol. 42, No. 2 0066-4804/98/$04.00 0 Copyright 1998, American Society for Microbiology Pharmacodynamics of Ampicillin-Sulbactam in an In Vitro

More information

Postantibiotic Effect of,3-lactam Antibiotics on Escherichia coli Evaluated by Bioluminescence Assay of Bacterial ATP

Postantibiotic Effect of,3-lactam Antibiotics on Escherichia coli Evaluated by Bioluminescence Assay of Bacterial ATP ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Jan. 199, p. 12-16 Vol. 34, No. 1 66-484/9/112-5$2./ Copyright 199, American Society for Microbiology Postantibiotic Effect of,3-lactam Antibiotics on Escherichia

More information

In Vivo Pharmacodynamics of New Lipopeptide MX-2401

In Vivo Pharmacodynamics of New Lipopeptide MX-2401 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Dec. 2010, p. 5092 5098 Vol. 54, No. 12 0066-4804/10/$12.00 doi:10.1128/aac.00238-10 Copyright 2010, American Society for Microbiology. All Rights Reserved. In Vivo

More information

INFLUENCE OF A SUB INHIBITORY CONCENTRATION OF ANTIBIOTICS ON OPSONO-PHAGOCYTIC FUNCTIONS OF KLEBSIELLA PNEUMONIAE BY HUMAN PHAGOCYTES

INFLUENCE OF A SUB INHIBITORY CONCENTRATION OF ANTIBIOTICS ON OPSONO-PHAGOCYTIC FUNCTIONS OF KLEBSIELLA PNEUMONIAE BY HUMAN PHAGOCYTES Influence of sub-mic of antibiotics on phagocytes 1487 INFLUENCE OF A SUB INHIBITORY CONCENTRATION OF ANTIBIOTICS ON OPSONO-PHAGOCYTIC FUNCTIONS OF KLEBSIELLA PNEUMONIAE BY HUMAN PHAGOCYTES YASUO ONO,

More information

Optimal Times above MICs of Ceftibuten and Cefaclor in

Optimal Times above MICs of Ceftibuten and Cefaclor in ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, May 14, p. 1112-111 Vol. 3, No. 5 0066-404/4/$04.00 + 0 Optimal Times above MICs of Ceftibuten and Cefaclor in Experimental Intra-Abdominal Infections CYPRIAN 0.

More information

Pharmacokinetic and Pharmacodynamic Models of the Antistaphylococcal Effects of Meropenem and Cloxacillin In Vitro and in Experimental Infection

Pharmacokinetic and Pharmacodynamic Models of the Antistaphylococcal Effects of Meropenem and Cloxacillin In Vitro and in Experimental Infection ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Oct. 1997, p. 2083 2088 Vol. 41, No. 10 0066-4804/97/$04.00 0 Copyright 1997, American Society for Microbiology Pharmacokinetic and Pharmacodynamic Models of the

More information

Pharmacokinetics/pharmacodynamics of antofloxacin hydrochloride in a neutropenic murine thigh model of Staphylococcus aureus infection

Pharmacokinetics/pharmacodynamics of antofloxacin hydrochloride in a neutropenic murine thigh model of Staphylococcus aureus infection Acta Pharmacol Sin 2008 Oct; 29 (10): 1253 1260 Full-length article Pharmacokinetics/pharmacodynamics of antofloxacin hydrochloride in a neutropenic murine thigh model of Staphylococcus aureus infection

More information

Animal models for the study of. staphylococci. Niels Frimodt Møller Professor, MD DMSc Dept. of Clinical Microbiology Hvidovre Hospital Denmark

Animal models for the study of. staphylococci. Niels Frimodt Møller Professor, MD DMSc Dept. of Clinical Microbiology Hvidovre Hospital Denmark Animal models for the study of antibiotic PKPD against staphylococci Niels Frimodt Møller Professor, MD DMSc Dept. of Clinical Microbiology Hvidovre Hospital Denmark Animal models for antibiotic acitivity

More information

Meropenem: in-vitro activity and kinetics of activity against organisms of the Bacteroides fragilis group

Meropenem: in-vitro activity and kinetics of activity against organisms of the Bacteroides fragilis group Journal of Antimicrobial Chemotherapy (99) 7, 599-606 Meropenem: in-vitro activity and kinetics of activity against organisms of the Bacteroides fragilis group J. A. Garcia-Rodriguez, J. E. Garcia Sanchez,

More information

group C /8-hemolytic streptococci, a-hemolytic been exposed to penicillin, on the removal of the drug there follows a variable recovery period during

group C /8-hemolytic streptococci, a-hemolytic been exposed to penicillin, on the removal of the drug there follows a variable recovery period during THE RECOVERY OF BACTERIA FROM THE TOXIC EFFECTS OF PENICILLIN1 By HARRY EAGLE (From the Section on Experimental Therapeutics, National Institutes of Health, U. S. Public Health Service, Bethesda 14, Maryland)

More information

10/2/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics

10/2/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics Control of Microbial Growth Disinfectants and Antiseptics 1 Method Three approaches for the control of microbial growth Chemical Disinfectants and antiseptics Physical Heat Ultraviolet Irradiations Mechanical

More information

6/28/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics

6/28/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics Control of Microbial Growth Disinfectants and Antiseptics 1 Method Three approaches for the control of microbial growth Chemical Disinfectants and antiseptics Physical Heat Ultraviolet Irradiations Mechanical

More information

Susceptibility Tests

Susceptibility Tests JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 1982, p. 213-217 Vol. 16, No. 2 0095-1137/82/080213-05$02.00/0 In Vitro Studies with Cefotaxime: Disk Diffusion Susceptibility Tests SMITH SHADOMY* AND EDWARD L.

More information

Antibiotic Susceptibility Testing (ABST/AST)

Antibiotic Susceptibility Testing (ABST/AST) Antibiotic Susceptibility Testing (ABST/AST) Goal Offer guidance to physicians in selecting effective antibacterial therapy for a pathogen in a specific body site. Performed on bacteria isolated from clinical

More information

01/08/2018. Control of Microbial Growth. Methods. Terminology. Disinfectants and Antiseptics. Three approaches. Cleaning. Chemical.

01/08/2018. Control of Microbial Growth. Methods. Terminology. Disinfectants and Antiseptics. Three approaches. Cleaning. Chemical. Control of Microbial Growth Disinfectants and Antiseptics 1 Methods 2 Three approaches Chemical Disinfectants and antiseptics Physical Heat Ultraviolet Irradiations Mechanical elimination Cleaning Filtration

More information

obtained from the infected and treated tissues, Fleming's2 technic of hemolytic streptococcus B. Immediately following the infection, 1.0 ml.

obtained from the infected and treated tissues, Fleming's2 technic of hemolytic streptococcus B. Immediately following the infection, 1.0 ml. THE SENSITIVITY OF STREPTOCOCCI TO PENICILLIN G AFTER EXPOSURE TO THE ANTIBIOTIC IN VIVO* E. GRUNBERG, C. UNGER, AND D. ELDRIDGE Previous investigations by Grunberg, Schnitzer, and Unger3 on the topical

More information

Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coli

Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coli Journal of Antimicrobial Chemotherapy (2004) 54, 139 143 DOI: 10.1093/jac/dkh275 Advance Access publication 18 May 2004 Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus

More information

Characterization and Quantitation of the Pharmacodynamics of Fluconazole in a Neutropenic Murine Disseminated Candidiasis Infection Model

Characterization and Quantitation of the Pharmacodynamics of Fluconazole in a Neutropenic Murine Disseminated Candidiasis Infection Model ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 1999, p. 2116 2120 Vol. 43, No. 9 0066-4804/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Characterization and Quantitation

More information

Determination of MIC & MBC

Determination of MIC & MBC 1 Determination of MIC & MBC Minimum inhibitory concentrations (MICs) are defined as the lowest concentration of an antimicrobial that will inhibit the visible growth of a microorganism after overnight

More information

Determination of MIC & MBC

Determination of MIC & MBC 1 Determination of MIC & MBC Minimum inhibitory concentrations (MICs) are defined as the lowest concentration of an antimicrobial that will inhibit the visible growth of a microorganism after overnight

More information

Technical Performance and Clinical Relevance

Technical Performance and Clinical Relevance CLINICAL MICROBIOLOGY REVIEWS, Oct. 1992, p. 420-432 0893-8512/92/040420-13$02.00/0 Copyright 1992, American Society for Microbiology Vol. 5, No. 4 Tests for Bactericidal Effects of Antimicrobial Agents:

More information

Received 23 December 1996/Returned for Modification 26 April 1997/Accepted 30 June 1997

Received 23 December 1996/Returned for Modification 26 April 1997/Accepted 30 June 1997 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 1997, p. 1910 1915 Vol. 41, No. 9 0066-4804/97/$04.00 0 Copyright 1997, American Society for Microbiology Activities of Vancomycin and Teicoplanin against Penicillin-Resistant

More information

Study Title Antibacterial Activity and Efficacy of KHG FiteBac Technology Test Substance Using a Suspension Time-Kill Procedure

Study Title Antibacterial Activity and Efficacy of KHG FiteBac Technology Test Substance Using a Suspension Time-Kill Procedure Study Title Antibacterial Activity and Efficacy of KHG FiteBac Technology Test Substance Using a Suspension Time-Kill Procedure Test Method ASTM International Method E2315 Assessment of Antimicrobial Activity

More information

Mechanisms of the post-antibiotic effects induced by rifampicin and gentamicin in Escherichia coli

Mechanisms of the post-antibiotic effects induced by rifampicin and gentamicin in Escherichia coli Journal of Antimicrobial Chemotherapy (26) 58, 444 448 doi:1.193/jac/dkl225 Advance Access publication 3 May 26 Mechanisms of the post-antibiotic effects induced by rifampicin and gentamicin in Escherichia

More information

Pharmacokinetics as applied to in vitro and animal models

Pharmacokinetics as applied to in vitro and animal models Pharmacokinetics as applied to in vitro and animal models Michael R. Jacobs, MD, PhD Case Western Reserve University University Hospitals of Cleveland Cleveland, OH Topics In vitro pharmacodynamic models

More information

Biofilm Protocol Optimization For Pseudomonas aeruginosa. Introduction. Materials and Methods. Culture Media, Incubation Time, and Biofilm Measurement

Biofilm Protocol Optimization For Pseudomonas aeruginosa. Introduction. Materials and Methods. Culture Media, Incubation Time, and Biofilm Measurement Biofilm Protocol Optimization For Pseudomonas aeruginosa Culture Media, Incubation Time, and Biofilm Measurement Introduction In addition to the conventional arsenal of antibiotic resistance mechanisms

More information

Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents

Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents EUCAST DEFINITIVE DOCUMENT E.Def 1.2 MAY 2000 Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents European Committee forantimicrobial SusceptibilityTesting

More information

by author How to effectively report laboratory findings to clinicians (Breakpoints and Interpretation)

by author How to effectively report laboratory findings to clinicians (Breakpoints and Interpretation) How to effectively report laboratory findings to clinicians (Breakpoints and Interpretation) A Vatopoulos National School of Public Health & Central Public Health Laboratory KEELPNO Antibiotic Activity

More information

DETERMINATION OF THE ID50 VALUES OF ANTIBACTERIAL AGENTS IN AGAR. TAKAKO KATO, SATONORI KURASHIGE, Y. A. CHABBERT* and SUSUMU MITSUHASHI

DETERMINATION OF THE ID50 VALUES OF ANTIBACTERIAL AGENTS IN AGAR. TAKAKO KATO, SATONORI KURASHIGE, Y. A. CHABBERT* and SUSUMU MITSUHASHI 1299 DETERMINATION OF THE ID50 VALUES OF ANTIBACTERIAL AGENTS IN AGAR TAKAKO KATO, SATONORI KURASHIGE, Y. A. CHABBERT* and SUSUMU MITSUHASHI Department of Microbiology, School of Medicine, Gunma University,

More information

Rate of Penicillin Killing of Staphylococcus aureus and

Rate of Penicillin Killing of Staphylococcus aureus and JOURNAL OF CLINICAL MICROBIOLOGY, Feb. 1982, p. 27-274 95-1137/82/227-5$2./ Vol. 15, No. 2 Rate of Penicillin Killing of Staphylococcus aureus and Autobac 1 Susceptibility Test Results JO-ANN HARRIS' AND

More information

Pharmacodynamics of a Fluoroquinolone Antimicrobial Agent

Pharmacodynamics of a Fluoroquinolone Antimicrobial Agent ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Mar. 1993, p. 483-490 0066-4804/93/030483-08$02.00/0 Copyright 1993, American Society for Microbiology Vol. 37, No. 3 Pharmacodynamics of a Fluoroquinolone Antimicrobial

More information

Use of Pharmacodynamic Parameters To Predict Efficacy of Combination Therapy by Using Fractional Inhibitory Concentration Kinetics

Use of Pharmacodynamic Parameters To Predict Efficacy of Combination Therapy by Using Fractional Inhibitory Concentration Kinetics ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 1998, p. 744 748 Vol. 42, No. 4 0066-4804/98/$04.00 0 Copyright 1998, American Society for Microbiology Use of Pharmacodynamic Parameters To Predict Efficacy

More information

Investigational New Drug - Groundwork for in vitro antimicrobial susceptibility testing

Investigational New Drug - Groundwork for in vitro antimicrobial susceptibility testing Investigational New Drug - Groundwork for in vitro antimicrobial susceptibility testing Erika Matuschek, Ph D Lead Scientist/Operational Manager EUCAST Development Laboratory (EDL) Växjö, Sweden ASM/ESCMID

More information

JAC Comparison of in-vitro pharmacodynamics of once and twice daily ciprofloxacin

JAC Comparison of in-vitro pharmacodynamics of once and twice daily ciprofloxacin Journal of Antimicrobial Chemotherapy (1999) 44, 661 667 JAC Comparison of in-vitro pharmacodynamics of once and twice daily ciprofloxacin K. E. Bowker 1 *, M. Wootton 1, C. A. Rogers 1, R. Lewis 2, H.

More information

Different Patterns of Bacterial DNA Synthesis during Postantibiotic Effect

Different Patterns of Bacterial DNA Synthesis during Postantibiotic Effect ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, June 1995, p. 1314 1319 Vol. 39, No. 6 0066-4804/95/$04.00 0 Copyright 1995, American Society for Microbiology Different Patterns of Bacterial DNA Synthesis during

More information

Antimicrobial activity (in vitro) of polysaccharide gel from durian fruit-hulls

Antimicrobial activity (in vitro) of polysaccharide gel from durian fruit-hulls ORIGINAL ARTICLE Antimicrobial activity (in vitro) of polysaccharide gel from durian fruit-hulls Vimolmas Lipipun 1, Nantawan Nantawanit 2 and Sunanta Pongsamart 3 Abstract Lipipun, V., Nantawanit, N.

More information

Applicant Name Pharmaceutical form Strength Animal species Route of administration

Applicant Name Pharmaceutical form Strength Animal species Route of administration Annex I List of the names, pharmaceutical form, strength of the veterinary medicinal product, animal species, routes of administration, applicant in the Member States 1/11 Member State EU/EEA Applicant

More information

Received 26 April 2000/Returned for modification 21 October 2000/Accepted 26 December 2000

Received 26 April 2000/Returned for modification 21 October 2000/Accepted 26 December 2000 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Mar. 2001, p. 927 931 Vol. 45, No. 3 0066-4804/01/$04.00 0 DOI: 10.1128/AAC.45.3.927 931.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved.

More information

Alexander A. Vinks Hartmut Derendorf Johan W. Mouton Editors. Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics

Alexander A. Vinks Hartmut Derendorf Johan W. Mouton Editors. Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics Alexander A. Vinks Hartmut Derendorf Johan W. Mouton Editors Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics Alexander

More information

COMMITTEE FOR PROPRIETARY MEDICINAL PRODUCTS (CPMP)

COMMITTEE FOR PROPRIETARY MEDICINAL PRODUCTS (CPMP) The European Agency for the Evaluation of Medicinal Products Evaluation of Medicines for Human Use London, 27 July 2000 CPMP/EWP/2655/99 COMMITTEE FOR PROPRIETARY MEDICINAL PRODUCTS (CPMP) POINTS TO CONSIDER

More information

R IC H A R D C. T IL T O N, Ph.D. A N D L IN D A L IE B E R M A N, B.S.

R IC H A R D C. T IL T O N, Ph.D. A N D L IN D A L IE B E R M A N, B.S. A n n a l s o f C l i n i c a l a n d L a b o r a t o r y S c i e n c e, Vol. 4, No. 3 Copyright 1974, Institute for Clinical Science M icrodilution Assay o f Antibiotics in Body Flu ids R IC H A R D C.

More information

In Vitro and In Vivo Antibacterial Activities of the Tricyclic Ketolide. and Its Analogs

In Vitro and In Vivo Antibacterial Activities of the Tricyclic Ketolide. and Its Analogs VOL. 57 NO. 8, AUG. 2004 THE JOURNAL OF ANTIBIOTICS pp. 518-527 In Vitro and In Vivo Antibacterial Activities of the Tricyclic Ketolide TE-802 and Its Analogs TAKEO ONO, MASATO KASHIMURA*, KEIKO SUZUKI,

More information

Arnold Louie, Weiguo Liu, Robert Kulawy, and G. L. Drusano*

Arnold Louie, Weiguo Liu, Robert Kulawy, and G. L. Drusano* ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, July 2011, p. 3453 3460 Vol. 55, No. 7 0066-4804/11/$12.00 doi:10.1128/aac.01565-10 Copyright 2011, American Society for Microbiology. All Rights Reserved. In Vivo

More information

2016 Europe-Nordic-US Symposium New Frontiers in Antibacterial Resistance Research. Pharmacological Approaches to Address AR

2016 Europe-Nordic-US Symposium New Frontiers in Antibacterial Resistance Research. Pharmacological Approaches to Address AR 2016 Europe-Nordic-US Symposium New Frontiers in Antibacterial Resistance Research Pharmacological Approaches to Address AR G.L. Drusano, M.D. Professor and Director Institute for Therapeutic Innovation

More information

Adaptation of a Bacterial Growth Detection Assay on the VICTOR Nivo Multimode Plate Reader for Measurement of Antibiotic Effects

Adaptation of a Bacterial Growth Detection Assay on the VICTOR Nivo Multimode Plate Reader for Measurement of Antibiotic Effects APPLICATION NOTE Multimode Detection Authors: Maria Kuzikov Dr. Bernhard Ellinger Fraunhofer IME ScreeningPort Hamburg, Germany Adaptation of a Bacterial Growth Detection Assay on the VICTOR Nivo Multimode

More information

Human pharmacokinetics and rationale for once-weekly dosing of dalbavancin, a semi-synthetic glycopeptide

Human pharmacokinetics and rationale for once-weekly dosing of dalbavancin, a semi-synthetic glycopeptide Journal of Antimicrobial Chemotherapy (2005) 55, Suppl. S2, ii25 ii30 doi:10.1093/jac/dki008 JAC Human pharmacokinetics and rationale for once-weekly dosing of dalbavancin, a semi-synthetic glycopeptide

More information

Lab Three :. Sensitivity test:

Lab Three :. Sensitivity test: Lab Three :. Sensitivity test: Or Diffusion Test: Antibiotic sensitivity test: is a laboratory method for determining the susceptibility of organisms to therapy with antibiotics, Antibiotic susceptibility

More information

Comparison of Three Different In Vitro Methods of Detecting Synergy: Time-Kill, Checkerboard, and E test

Comparison of Three Different In Vitro Methods of Detecting Synergy: Time-Kill, Checkerboard, and E test ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Aug. 1996, p. 1914 1918 Vol. 40, No. 8 0066-4804/96/$04.00 0 Copyright 1996, American Society for Microbiology Comparison of Three Different In Vitro Methods of Detecting

More information

Penicillin Pharmacodynamics in Four Experimental Pneumococcal Infection Models

Penicillin Pharmacodynamics in Four Experimental Pneumococcal Infection Models ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2001, p. 1078 1085 Vol. 45, No. 4 0066-4804/01/$04.00 0 DOI: 10.1128/AAC.45.4.1078 1085.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved.

More information

ONAMER M. PRESERVATIVE and ANTIMICROBIAL ONAMER

ONAMER M. PRESERVATIVE and ANTIMICROBIAL ONAMER ONAMER M PRESERVATIVE and ANTIMICROBIAL ONAMER M Stepan Lipid Nutrition is a division of Stepan Company which manufactures lipid and polymer based ingredients. HO OH SUMMARY Our quaternary ammonium polymer

More information

Setting Clinical Breakpoints/ECOFFS

Setting Clinical Breakpoints/ECOFFS 23 rd August 2016 Setting Clinical Breakpoints/ECOFFS Robin A Howe Antimicrobial use in Primary Care An E. coli is grown from blood cultures Cefuroxime MIC 2mg/L Zone around CXM 30ug disc 27mm Is it sensitive?

More information

Antifungal PK/PD Made Simple. David Andes, MD University of Wisconsin

Antifungal PK/PD Made Simple. David Andes, MD University of Wisconsin Antifungal PK/PD Made Simple David Andes, MD University of Wisconsin PK/PD Concept Serum Drug Concentration Peak:MIC AUC:MIC Ratio Time Above MIC MIC Time Hypothesis and Concept There is an optimal drug

More information

Johan W Mouton Canisius-Wilhelmina Hospital Nijmegen, The Netherlands

Johan W Mouton Canisius-Wilhelmina Hospital Nijmegen, The Netherlands Can pk/pd replace clinical trials? Johan W Mouton Canisius-Wilhelmina Hospital Nijmegen, The Netherlands The Traditional Approach Phase Participants Research questions Number Characteristics I 10-50 Usually

More information

Staphylococcus aureus

Staphylococcus aureus ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Nov. 1980, p. 784-788 0066-4804/80/11-0784/05$02.00/0 Vol. 18, No. 5 Effect of Storage and Changes in Bacterial Growth Phase and Antibiotic Concentrations on Antimicrobial

More information

Concentration Effect Relationship of Ceftazidime Explains Why The Static Effect In Vivo Is 40% ft>mic. ACCEPTED

Concentration Effect Relationship of Ceftazidime Explains Why The Static Effect In Vivo Is 40% ft>mic. ACCEPTED AAC Accepts, published online ahead of print on 18 June 2007 Antimicrob. Agents Chemother. doi:10.1128/aac.01586-06 Copyright 2007, American Society for Microbiology and/or the Listed Authors/Institutions.

More information

Antimicrobial Drugs. Antimicrobial Drugs. The dawn of antibiotics. Alexander Fleming. Chain and Florey. Antibiotics

Antimicrobial Drugs. Antimicrobial Drugs. The dawn of antibiotics. Alexander Fleming. Chain and Florey. Antibiotics Antimicrobial Drugs Antimicrobial Drugs Chemotherapy: The use of drugs to treat a disease Antimicrobial drugs: Interfere with the growth of microbes within a host Antibiotic: Substance produced by a microbe

More information

Daptomycin: a new-old antibiotic or how did pharmacodynamics bring back to life a disappointing drug?

Daptomycin: a new-old antibiotic or how did pharmacodynamics bring back to life a disappointing drug? Daptomycin: a new-old antibiotic or how did pharmacodynamics bring back to life a disappointing drug? Unité de Pharmacologie cellulaire et moléculaire F. Van Bambeke Origin of daptomycin Daptomycin is

More information

Microbiology for Oral and Topical Products - The basics Scott Colbourne Business Manager NSW ALS Food & Pharmaceutical

Microbiology for Oral and Topical Products - The basics Scott Colbourne Business Manager NSW ALS Food & Pharmaceutical Microbiology for Oral and Topical Products - The basics Scott Colbourne Business Manager NSW ALS Food & Pharmaceutical RIGHT S O L U T I O N S RIGHT PARTNER Contents TGO 77 - Introduction Tests Performed

More information

Pharmacokinetic and Pharmacodynamic Evaluation of Rib-X P-873 versus Klebsiella pneumoniae in a Neutropenic Murine Thigh Infection Model

Pharmacokinetic and Pharmacodynamic Evaluation of Rib-X P-873 versus Klebsiella pneumoniae in a Neutropenic Murine Thigh Infection Model AAC Accepts, published online ahead of print on 28 January 2013 Antimicrob. Agents Chemother. doi:10.1128/aac.02170-12 Copyright 2013, American Society for Microbiology. All Rights Reserved. 1 2 3 4 5

More information

Polymicrobial Infection in Mice

Polymicrobial Infection in Mice ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, JUlY 1993, P. 1531-1535 0066-4804/93/071531-05$02.00/0 Copyright 1993, American Society for Microbiology Vol. 37, No. 7 Use of Cephalosporins for Prophylaxis and

More information

BSAC Susceptibility Testing Residential Workshop

BSAC Susceptibility Testing Residential Workshop BSAC Susceptibility Testing Residential Workshop Susceptibility Testing Methodology Insert name of presentation on Master Slide Mandy Wootton How to determine susceptibility/resistance Minimum Inhibitory

More information

Received 7 July 2005/Returned for modification 31 October 2005/Accepted 18 June 2006

Received 7 July 2005/Returned for modification 31 October 2005/Accepted 18 June 2006 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 2006, p. 2919 2925 Vol. 50, No. 9 0066-4804/06/$08.00 0 doi:10.1128/aac.00859-05 Copyright 2006, American Society for Microbiology. All Rights Reserved. Effect

More information

PHICO THERAPEUTICS. SASPject: First in a new class of novel biological antibacterials. Dr Adam Wilkinson R&D Manager

PHICO THERAPEUTICS. SASPject: First in a new class of novel biological antibacterials. Dr Adam Wilkinson R&D Manager PHICO THERAPEUTICS SASPject: First in a new class of novel biological antibacterials Dr Adam Wilkinson R&D Manager Phico Founded 2000 by CEO Dr Heather Fairhead 20 employees Raised 13 M from 140 shareholders

More information

Setting and Revising Antibacterial Susceptibility Breakpoints

Setting and Revising Antibacterial Susceptibility Breakpoints CLINICAL MICROBIOLOGY REVIEWS, July 2007, p. 391 408 Vol. 20, No. 3 0893-8512/07/$08.00 0 doi:10.1128/cmr.00047-06 Copyright 2007, American Society for Microbiology. All Rights Reserved. Setting and Revising

More information

3-lactamases. were commercial preparations. BRL 42715B (sodium salt) was prepared by SmithKline Beecham Pharmaceuticals,

3-lactamases. were commercial preparations. BRL 42715B (sodium salt) was prepared by SmithKline Beecham Pharmaceuticals, ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, JUlY 1992, p. 1427-1431 66-484/92/71427-5$2./ Copyright 1992, American Society for Microbiology Vol. 36, No. 7 Simulation of Human Serum Pharmacokinetics of Cefazolin,

More information

PK-PD TARGET SELECTION It s All About the Goal

PK-PD TARGET SELECTION It s All About the Goal PK-PD TARGET SELECTION It s All About the Goal Paul G. Ambrose, Pharm.D. Chair, USCAST Executive Committee President, Institute for Clinical Pharmacodynamics It s All About the Goal The choice of a rational

More information

Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update

Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update Journal of Antimicrobial Chemotherapy (2005) 55, 601 607 doi:10.1093/jac/dki079 Advance Access publication 16 March 2005 Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective

More information

Essential Science: The State of the Art of Pharmacokinetics and Pharmacodynamics for Antimicrobial Drug Development

Essential Science: The State of the Art of Pharmacokinetics and Pharmacodynamics for Antimicrobial Drug Development Essential Science: The State of the Art of Pharmacokinetics and Pharmacodynamics for Antimicrobial Drug Development 7 September 2018 Nikolas J Onufrak, Pharm.D. Institute for Clinical Pharmacodynamics,

More information

Novel polymyxin derivatives are effective in treating experimental Escherichia coli peritoneal infection in mice

Novel polymyxin derivatives are effective in treating experimental Escherichia coli peritoneal infection in mice Journal of Antimicrobial Chemotherapy Advance Access published March 16, 2010 J Antimicrob Chemother doi:10.1093/jac/dkq072 Novel polymyxin derivatives are effective in treating experimental Escherichia

More information

Analysis of Daptomycin Efficacy and Breakpoint Standards in a Murine Model of Enterococcus faecalis and Enterococcus faecium Renal Infection

Analysis of Daptomycin Efficacy and Breakpoint Standards in a Murine Model of Enterococcus faecalis and Enterococcus faecium Renal Infection ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Nov. 2003, p. 3561 3566 Vol. 47, No. 11 0066-4804/03/$08.00 0 DOI: 10.1128/AAC.47.11.3561 3566.2003 Copyright 2003, American Society for Microbiology. All Rights

More information

Activity of meropenem and other antimicrobial agents against uncommon Gram-negative organisms

Activity of meropenem and other antimicrobial agents against uncommon Gram-negative organisms Journal of Antimicrobial Chemotherapy (993) 3, 33-37 Activity of and other antimicrobial agents against uncommon Gram-negative organisms Richard B. Clark and Suzanne E. Joyce Department of Pathology, Crozer-Chester

More information

Photodynamic inactivation of multidrug resistant pathogens in Hong Kong

Photodynamic inactivation of multidrug resistant pathogens in Hong Kong RESEARCH FUND FOR THE CONTROL OF INFECTIOUS DISEASES CMN Yow 邱李妙顏 K Fung 馮秀珍 KC Wong 黃建忠 Key Messages 1. Photodynamic therapy could be an alternative treatment for highly prevalent local antibiotic-resistant

More information

Alasdair P. MacGowan,* Karen E. Bowker, and Alan R. Noel

Alasdair P. MacGowan,* Karen E. Bowker, and Alan R. Noel ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2008, p. 1401 1406 Vol. 52, No. 4 0066-4804/08/$08.00 0 doi:10.1128/aac.01153-07 Copyright 2008, American Society for Microbiology. All Rights Reserved. Pharmacodynamics

More information

Ezy MIC Strip FEATURES AND ADVANTAGES

Ezy MIC Strip FEATURES AND ADVANTAGES Imipenem with & without EDTA Ezy MIC Strips (IPM+EDTA/IPM) (Imipenem + EDTA: 1-64 mcg/ml) (Imipenem : 4-256 mcg/ml) Antimicrobial Susceptibility Testing For In Vitro Diagnostic use EM078 Not for Medicinal

More information

Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It s Not Just for Mice Anymore

Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It s Not Just for Mice Anymore INVITED ARTICLE ANTIMICROBIAL RESISTANCE George M. Eliopoulos, Section Editor Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It s Not Just for Mice Anymore Paul G. Ambrose, 1 Sujata M. Bhavnani,

More information

Methodology for Recovery of Chemically Treated Staphylococcus aureus with Neutralizing Medium

Methodology for Recovery of Chemically Treated Staphylococcus aureus with Neutralizing Medium APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 1983, p. 33-37 99-22/83/533-5$2./ Copyright 1983, American Society for Microbiology Vol. 5, No. 5 Methodology for Recovery of Chemically Treated Staphylococcus

More information

Stability of Antibiotics and Chemotherapeutics in

Stability of Antibiotics and Chemotherapeutics in APPUED MICROBIOLOGY, Sept. 1970, p. 447-451 Copyright 1970 American Society for Microbiology Vol. 20, No. 3 Printed in U.S.A. Stability of Antibiotics and Chemotherapeutics in Agar Plates KENNETH J. RYAN,

More information

Effect of Diuresis on Staphylococcus aureus Kidney

Effect of Diuresis on Staphylococcus aureus Kidney INFECTION AND IMMUNITY, Dec. 1971, p. 74-746 Copyright 1971 American Society for Microbiology Vol. 4, No. 6 Printed in U.S.A. Effect of Diuresis on Staphylococcus aureus Kidney Infections in Mice DOLORES

More information

Antibiotic Susceptibility Testing and Data Interpretation

Antibiotic Susceptibility Testing and Data Interpretation Antibiotic Susceptibility Testing and Data Interpretation Dr Shabbir Simjee Microbiologist Co-Chair CLSI VAST Basingstoke England Bangkok, 7-8 October 2014 For clarity, these are solely my personal views/opinions

More information

Influence of therapy duration on suppression of emergence of resistance and influence of granulocytes on cell kill

Influence of therapy duration on suppression of emergence of resistance and influence of granulocytes on cell kill Influence of therapy duration on suppression of emergence of resistance and influence of granulocytes on cell kill G.L. Drusano, M.D. Co-Director Ordway Research Institute Short Course Therapy Short Course

More information

MICROORGANISM AND CHEMOTHERAPEIC MATERIALS

MICROORGANISM AND CHEMOTHERAPEIC MATERIALS MICROORGANISM AND CHEMOTHERAPEIC MATERIALS Chemotherapeutic substances are antimicrobials derived from chemical substances. Antibiotics are antimicrobials obtained from bacteria or fungi CHEMOTHERAPYTIC

More information

Ken Eguchi,* Katsunori Kanazawa, Yoshiro Eriguchi, and Yutaka Ueda. Dainippon Sumitomo Pharma Co., Ltd., Drug Research Division, Osaka, Japan

Ken Eguchi,* Katsunori Kanazawa, Yoshiro Eriguchi, and Yutaka Ueda. Dainippon Sumitomo Pharma Co., Ltd., Drug Research Division, Osaka, Japan ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Aug. 2009, p. 3391 3398 Vol. 53, No. 8 0066-4804/09/$08.00 0 doi:10.1128/aac.00972-08 Copyright 2009, American Society for Microbiology. All Rights Reserved. Pharmacodynamics

More information

Received 20 October 2004/Returned for modification 6 December 2004/Accepted 19 January 2005

Received 20 October 2004/Returned for modification 6 December 2004/Accepted 19 January 2005 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, May 2005, p. 1943 1948 Vol. 49, No. 5 0066-4804/05/$08.00 0 doi:10.1128/aac.49.5.1943 1948.2005 Copyright 2005, American Society for Microbiology. All Rights Reserved.

More information

3.0. Materials and methods

3.0. Materials and methods 63 3.0. Materials and methods 3.1. Plant materials and preparation of extracts Salacia oblonga plants were collected from Western Ghats, Karnataka, India. S. oblonga (RRCBI 7881) authentication was done

More information

PASSIVE PROTECTION BY HUMAN SERUM IN MICE INFECTED WITH ENCAPSULATED STAPHYLOCOCCUS A UREUS

PASSIVE PROTECTION BY HUMAN SERUM IN MICE INFECTED WITH ENCAPSULATED STAPHYLOCOCCUS A UREUS PASSIVE PROTECTION BY HUMAN SERUM IN MICE INFECTED WITH ENCAPSULATED STAPHYLOCOCCUS A UREUS K. YOSHIDA, Y. ICHIMAN, S. NARIKAWA, M. TAKAHASHI, E. KONO* AND C. L. SAN CLEMENTE? Department of Microbiology

More information

Disk Diffusion Method for Susceptibility Testing of

Disk Diffusion Method for Susceptibility Testing of JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 1991, p. 1604-1609 0095-1137/91/081604-06$02.00/0 Copyright 1991, American Society for Microbiology Vol. 29, No. 8 Disk Diffusion Method for Susceptibility Testing

More information

LORNA E. T. STEARNE,* CLARISSA KOOI, WIL H. F. GOESSENS, IRMA A. J. M. BAKKER-WOUDENBERG, AND INGE C. GYSSENS

LORNA E. T. STEARNE,* CLARISSA KOOI, WIL H. F. GOESSENS, IRMA A. J. M. BAKKER-WOUDENBERG, AND INGE C. GYSSENS ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Jan. 2001, p. 243 251 Vol. 45, No. 1 0066-4804/01/$04.00 0 DOI: 10.1128/AAC.45.1.243 251.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved.

More information

Antibiotic Susceptibility Testing. Part I

Antibiotic Susceptibility Testing. Part I CE Update Microbiology I Antibiotic Susceptibility Testing. Part I Patrick R. Murray, PhD W ith the introduction of antimicrobial c h e m o t h e r a p y in t h e 1940s, the hope of eliminating infectious

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis J. Choi 1, H. Y. Jeong 2,3, G. Y. Lee 2,4, S. Han 1, S.

More information