Nanostructure Fabrication Using Laser Interference Lithography

Size: px
Start display at page:

Download "Nanostructure Fabrication Using Laser Interference Lithography"

Transcription

1 Nanostructure Fabrication Using Laser Interference Lithography ANTONIO JOU XIE, Class of 2012, Major: Electrical Engineering Mentor: SANG-WOO SEO, Professor, Electrical Engineering ABSTRACT: The constructive and deconstructive property of light is used in this experiment to create nano-grating patterns on Silicon Nitride samples coated with positive photoresist S1805. The set up for this experiment involves the use of Lloyd s Mirror Interferometer to achieve the interference patterns. Single and double exposure of samples led to uniform and continuous patterns that were 1-dimensional and 2-dimensional. These patterns were created successfully with grating periodicity ranging from 700nm to 300nm. This technique can be further applied to different types of photoresist to create such patterns. The value of these patterns lies in its uses and application in several nano-devices. KEYWORDS: photonic crystals, grating, nanostructures I. INTRODUCTION Over the past few decades, the field of nanotechnology has been an area of enormous interest for research. By fabricating structures in the nanoscale, 10 to 100 times the size of individual atoms, materials behave very differently from their corresponding bulk properties [1]. This ability gives way to new fields and allows exciting applications. Periodic nanostructures are a category of nanostructures that have a geometry in which the material properties repeat in space over a certain period. They have broad applications in photonic and electronic devices as well as in the field of biotechnology [1]. Artificial structuring of a material in a nanoscopic scale creates unique electrical and optical properties that can be strongly modified from its bulk properties. For example, photonic crystals are periodic nanostructures that are designed to control the motion of photons, similarly to the way that periodicity of a semiconductor crystal affects the motion of electrons. Periodic dielectric or metallic nanostructures affect the propagation of electromagnetic waves to form photonic bandgaps for which the propagation of electromagnetic waves is forbidden in all spatial directions. This unique optical phenomenon led to many fundamental discoveries and novel device applications. Some examples are inhibition of spontaneous emission [2], antireflection structures [3, 4], surface plasmonic resonance [5], and low-loss waveguiding structure [6]. The sustainable growth in this area is closely related to low cost, reliable fabrication of nanostructure in various sizes and dimensions. The main focus of this project is to develop nanoscale gratings that are the first step in the fabrication of such photonic crystals. II. EXPERIMENTAL METHODS The gratings are created by exposing positive photoresist, S1805, to ultraviolet light through an interferometer. This causes the portion of the photoresist that was exposed to light, to become soluble to the photoresist developer, MIF319. This effectively creates a grating pattern that consists of ridges and valleys formed by the S1805 material. A. Lloyd s Mirror Interferometer Lloyd s mirror interferometer configuration is used to create the gratings. The interferometer, shown in Figure 1, is composed of a mirror positioned perpendicular to a sample and a sample Figure 1. Lloyd s Mirror Interferometer holder. An expanded beam illuminates both the mirror and the sample. Part of the light is reflected on the mirror, creating a virtual light source that is effectively superimposed on the portion of the beam that is directly illuminating the sample. This superposition of the reflected and the expanded light wave on the sample creates a phase difference between the two waves. Waves that are in phase will exhibit constructive interference while those out of phase will undergo destructive interference and thus create a grating pattern on the sample. The periodicity of such interference is varied by changing the angle of exposure. This is accomplished by rotating the sample holder relative to the incident laser beam. VOLUME 5, AUGUST

2 STUDENT AUTHOR: ANTONIO JOU XIE Antonio Jou Xie is currently pursuing his undergraduate degree in Electrical Engineering with secondary fields of specialization in mathematics and physics at The City College of New York. Antonio has always had a fascination with the inner workings of the world - from what makes people tick to how every single thing works. Prior to enrollment at City College, he was part of a pilot engineering program in his high school that introduced students to engineering. This program included classes ranging from mechatronics to management and planning. During this time, Antonio participated in various robotic competitions, including the FIRST LEGO competitions. It was all of these activities, along with encouraging teachers and mentors, that propelled him to enter the world of Engineering. As an undergraduate student, he worked in the CUNYSAT-1 space program under the tutelage of Professor Charles Watkins. The program, which involved a collaborative effort from different CUNY campuses and Cornell University, was aimed at launching a picosatellite into low-earth-orbit to study ionospheric disturbances using GPS. He also worked in CITYSAT, a student-independent project that would fabricate custom-built picosatellites for various science missions. Antonio has participated in the Kaylie Prize for Entrepreneurship competition, in which he was part of a team aiming to build a natural alarm clock integrated into a lightweight-sleeping mask. Although this project did not attract much attention, his second project involving a portable non-invasive blood glucose meter made him and his colleagues finalists in the competition. For his capstone design project, Antonio was part of the Advanced Laser Fluorometry group and worked to detect chlorophyll concentrations in water based on the fluorescence of chlorophyll present in algae. This proved more efficient than direct chlorophyll measurements. Antonio has worked as a research assistant in the Nuclear Magnetic Resonance Laboratory, conducting simulations of electron spin interactions under the Physics Department. Now he is currently working as a research assistant under Professor Sang-Woo Seo, further developing the periodic nanostructure research project described in this paper. In addition, Antonio has been deeply involved in the CCNY community. He has served for Tau Beta Pi, the engineering honor society; as well as Eta Kappa Nu, the electrical engineering honor society. He is currently the president of The City College student branch of the Institute of Electrical and Electronics Engineers (IEEE) and has worked with the Career Center to bring industry recruiters on campus. He has also served as one of the prime organizers of annual events such as the Electrical Engineering Mixer. DR. SANG-WOO SEO received his B.S. degree in Electrical Engineering from Ajou University, Korea, an M.S. degree from Kwangju Institute of Science and Technology, Korea, and a Ph.D. degree in electrical engineering from the Georgia Institute of Technology, Atlanta, in 1997, 1999, and 2003, respectively. From 2003 to 2005, he worked as a research engineer at Georgia Institute of Technology and Duke University to develop thin film photonic devices and integration method for optical sensors and optical interconnections. In 2005, he worked as a research scientist at the University of California, Davis to develop InP based chip-scale optical code-division multiplex access and arbitrary waveform generator systems. Dr. Seo joined the Department of Electrical Engineering Professor Seo s Team (from left to right): Jing Xiao, Saad Memon, at The City College of New York in He has established Dr. Sang-Woo Seo, Antonio Jou, and Fuchuan Song. the Advanced Photonic Integrated System laboratory. The laboratory is a state-of-the-art photonic design, nano/micro fabrication, and measurement facility. Research in his lab covers broadly optical materials, devices, and system integrations. His current research focus is on the development of scalable heterogeneous integration method to combine optical active/passive devices with other technological functional systems (such as Silicon circuits, Radio-frequency (RF) systems, micromechanical systems, or microfluidic devices). To achieve this goal, his group is developing thin optical device structure and its scalable integration method. Active optical devices (such as lasers, photodetectors) are fabricated from their preferred substrate. Using a post-integration process, they are separated from their bulky substrate and selectively integrated on any host substrate. Based on this approach, his group is combining optical functional devices with other technological functional systems for various applications in optical sensors and communications. Some of his current research interests include three-dimensional optoelectronic device integration, integrated microfluidic/photonic sensors, Integrated THz systems, and optical micromechanical systems. 26 JOURNAL OF STUDENT RESEARCH

3 His laboratory is also used for various undergraduate/graduate student research and outreach programs. Throughout those activities, students can experience small-scale micro/nano device fabrications and create innovative materials and devices in his laboratory. Students at all levels from undergraduate to graduate are welcome to discuss their interests on nano/micro materials, devices, and system research. Figure 2. Experiment Setup. The formula for the desired grating period is given by Λ = λ/(2sinθ) where Λ is the desired grating period, λ is the wavelength of the laser, and θ is the angle of the incident light beam as seen in Figure 1. The experiment set up consists of the interferometer in conjunction with an ultraviolet 30mW 405nm laser, pinhole lens, objective lens, shutter, and convex lens. A diagram of the set up is shown in Figure 2. B. Sample Preparation Samples were prepared using Silicon nitride (Si3N4) coated Silicon wafers with a Miller index of <100>. Wafers were cleaved along their crystalline orientation into smaller square samples according to the dimensions of the sample holder and cleaned using a 3-step cleaning process with acetone, methanol, and isopropyl alcohol. The samples were dehydrated at 95 C for at least 60 seconds and allowed to cool to room temperature before spinning. A coat of bis(trimethylsilyl)amine (HMDS) was used to facilitate the adhesion of the photoresist. HMDS was added on top of the samples and was spread at 500 rpm for 15 seconds and spun at 2500 rpm for 30 seconds. S1805 was added subsequently on top of the HMDS coating, spread at 500 rpm for 15 seconds and spun at 5000 rpm for 30 seconds. This created a uniform layer of photoresist material with a thickness of about 6000 ångström. The samples were baked for 60 seconds at 95 C and were allowed to cool before exposure. C. Sample Exposure Due to the light-sensitive nature of the photoresist, necessary precautions were taken to prevent any damage to the samples by (1) ambient light. In addition, the ultraviolet laser used was powered on five minutes before the sample exposure to prevent any laser power fluctuations during exposure due to initial temperature changes. The samples were placed in the sample holder, as seen in Figure 1, perpendicular to the mirror and the angle was adjusted accordingly to yield the desired grating periodicity. In our laboratory setup, the angle indicator placed under the sample holder does not directly show the incident angle of the laser beam. However, this angle indicator can be used to calculate the incident angle of the beam and is given by the following formula: θ incident = θ indicator 45 The shutter was removed and the sample was exposed for a predetermined amount of time. Once the samples were exposed, the shutter was closed to prevent overexposure of the photoresist. Additionally, to produce two-dimensional patterns, samples underwent a double exposure procedure. These samples were exposed in one orientation for a predetermined amount of time, rotated 90 with the shutter on, and exposed in the new orientation for a predetermined amount of time. D. Sample Development The exposed samples were dipped in a solution of MIF319, a photoresist developer for S1805, for a set amount of time until the exposed samples were developed appropriately. This process involved developing the samples with diluted or undiluted developer, depending on the developing behavior of the exposed samples. The diluted solutions were diluted with deionized water with specific ratios of developer to water. E. Sample Observation Samples that were exposed and developed correctly diffracted ambient light, a phenomena visible to the naked eye. The developed samples were then examined under a highresolution microscope. Images of each sample and information such as the grating periodicity were collected as well. Other characteristics such as the uniformity of the photoresist and continuity of the interference patterns were also recorded. In addition, since the grating periodicities were in the nanoscale, a scanning electron microscope (SEM) had to be (2) VOLUME 5, AUGUST

4 used to more precisely measure the grating periodicity and the photoresist thickness after exposure and development. III. RESULTS Figure 3 shows images of the patterns obtained using different incident angles during the sample exposure procedure. As predicted in Equation (1), the grating period decreased with an increase of the incident angle. The samples shown were exposed to incident angles of 18, 25, and 35 from top to bottom, respectively. Samples were developed at higher incident angles than those shown, up to 42, however, due to resolution limitations, the gratings in these samples could not be seen by the optical microscopes. Samples exhibited a minuscule amount of detail at best. Note that these images were taken with the same microscopic zoom. Thus, each grating image is to scale with the other and comparable. A. Sample Exposure and Development Times Samples exposed to incident angles of 18, 25, and 35 each had an exposure time of 60 seconds. The samples were developed using undiluted MIF319 developer for 15 seconds, 10 seconds, and 7 seconds, respectively. Samples that were exposed at 42 had an exposure time of 50 seconds and a short developing time of 3 to 5 seconds before pattern degradation. B. Sample Exposure Angle vs. Grating Period In Figure 4, the gratings were further analyzed under a SEM, providing much greater detail and information. The periodicities of the gratings were obtained. At an incident angle of 18, the grating period was about 700nm. The grating period decreased as predicted--an increase of the incident angle to 42 yielded a grating period of 310nm. In addition, Figure 4 shows that the photoresist layers are not fully dissolved for the lower two samples, i.e., the lower most regions do not reach the substrate. At 35, the S1805 is partially dissolved. At a higher angle of 42, only the peaks are prominent in the grating. Another detail shown in Figure 4 is that the pattern edges for the 25 and 35 incident angle cases are not smooth or straight as the edges seen in the first case. Figure 5 was obtained by plotting the experimental results from the grating period measurements done through the SEM against their respective incident angles. The data was plotted against the theoretical value given in Equation (1). As seen from the figure, there is a large deviation from the theoretical values at lower angles. At higher angles, the grating periods are closer to their theoretical values. Figure 5. Desired Grating Period versus Incident Angle. In Figure 6, the obtained results at different exposure angles are listed with their respective experimental and theoretical values. Angle Theoretical Grating Period Experimental Grating Period nm nm nm nm nm nm nm nm Figure 6. Tabulated results for the exposed angles. (Left) Figure 3. Developed grating with incident angle of 18, 25, 35 (from top to bottom). (Right) Figure 4. Developed grating with incident angle of 18, 25, 35, 42 (from top to bottom). C. Double Exposure Pattern The pattern shown in Figure 7 shows a double exposed sample obtained with an incident angle of 25. The pattern was exposed for 50 seconds during its first exposure and 60 seconds during its second exposure. Developing time was 10 seconds using an undiluted MIF319 developer. Unlike the one-dimensional 28 JOURNAL OF STUDENT RESEARCH

5 Figure 7. Double Exposure Pattern with incident angle of 25. patterns shown in Figure 3, the two-dimensional pattern consists of individual circles throughout the sample structure. IV. DISCUSSION/CONCLUSIONS The results show that the technique formulated above was successful at developing nanoscale interference patterns or gratings for the positive photoresist S1805. These results can lead to potential applications, such as the development and manufacturing of photonic crystals and other nanodevices. A. Grating Depth Nevertheless, there were some discrepancies in the results that required further investigation. At lower incident angles, the regions where the photoresist was exposed were completely dissolved and reached the substrate, whereas at higher incident angles, excess photoresist material was left in between the peaks. The periods of such gratings, however, were effectively reduced to smaller grating periods with higher incident angles. The presence of excess photoresist can be attributed to the fact that at such a small scale, the photoresist is very unstable during the development process. Developing the material for even a few more seconds could render the grating unusable since the grating structure could be damaged or the entire photoresist coating could be removed. Further experimentation should be done using a diluted developer to develop the pattern at a slower and more stable pace. B. Secondary Interference The grating edges in some cases did not show a smooth and straight edge but rather a jagged one. This is the result of a secondary interference pattern that undergoes inside the photoresist. The incident beam penetrates the photoresist and it is reflected back by the substrate, which results in the irregular edges seen in Figure 4 for the 25 and 35 incident beam cases. To resolve this issue, an anti-reflective material can be coated on the substrate prior to the addition of the HDMS and the photoresist to prevent the incident beam from reflecting by the substrate back into the photoresist. C. Double Exposure Pattern In the double exposed samples, exposing both orientations for the same amount of time led to patterns that were developed faster in one orientation than in the other. The results showed that the first exposure developed faster than the second exposure. Thus, exposure times were adjusted accordingly. The image shown in Figure 7 demonstrates the result of such adjustment in exposure time. Further experiment can be conducted to increase the exposure incident angle and thus decrease the twodimensional pattern periodicity. D. Experimental Deviations Figures 5 and 6 show that there was a deviation in our experiment from the theoretical values obtained using Equation (1). This was caused by the setup of our experiment. Note that in Figure 2 the laser beam goes through a convex lens before being exposed to the sample. The convex lens is used to focus the 25mm diameter laser beam into a 10mm diameter laser beam. This shortens the exposure time due to the higher power intensity that reaches the samples, but also causes the laser beam to hit the mirror and sample at a slightly different angle than it would if it were a parallel beam. The result is higher grating periods at the given angles, however, this deviation decreases as incident angles increase. E. Future Work Similar experiments will be repeated for the S1805 photoresist in order to find optimal parameters for higher incident angles for the one-dimensional and two-dimensional case. These experiments will include but not be limited to variation of the initial baking temperature, exposure time, and developing time. Further experimentation needs to be conducted using a diluted MIF319 developer at different concentrations as well. In addition, different types of photoresist can be employed using this technique, such as negative photoresist. This might contribute to the development of different periodic patterns. Ultimately, the findings from this experiment could contribute to the fabrication of various nanodevices that make use of these periodic nanostructures. REFERENCES [1] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second ed.: Princeton University Press, [2] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, vol. 58, pp , [3] Y. Zhao, J. Wang, and G. Mao, Colloidal subwavelength nanostructures for antireflection optical coatings, Opt. Lett., vol. 30, pp , [4] S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Anti-reflecting and photonic nanostructures, Materials Science and Engineering: R: Reports, vol. 69, pp [5] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, vol. 424, pp , [6] S. J. McNab, N. Moll, and Y. A. Vlasov, Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides, Opt. Express, vol. 11, pp , VOLUME 5, AUGUST

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Introduction Xu Sun Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH),

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy Contract Number: AOARD-06-4074 Principal Investigator: Heh-Nan Lin Address: Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan

More information

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Auburn University *yzw0040@auburn.edu Abstract: A diffraction grating coupled

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array PIERS ONLINE, VOL. 4, NO. 7, 2008 746 High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array Bing-Hung Chen, Yih-Chau Wang, and Jia-Hung Lin Institute of Electronic Engineering,

More information

Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping

Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping Heerad Farkhoor, Adam Schwartzberg, Jeffrey Urban August 12, 2009 Abstract Obtaining structural information of nano-structured

More information

Electric Field Distribution of Nanohole Thin Gold Film for Plasmonic Biosensor: Finite Element Method

Electric Field Distribution of Nanohole Thin Gold Film for Plasmonic Biosensor: Finite Element Method Electric Field Distribution of Nanohole Thin Gold Film for Plasmonic Biosensor: Finite Element Method M. Khammar Center for Development of Advanced Technologies (CDTA), Research Unit in Optics and Photonics

More information

Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm

Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm Yanyan Zhang*, Changhe Zhou, Huayi Ru, Shunquan Wang Shanghai Institute of Optics and Fine Mechanics,

More information

Fabrication of photonic band-gap crystals

Fabrication of photonic band-gap crystals Fabrication of photonic band-gap crystals C. C. Cheng and A. Scherer California Institute of Technology, Pasadena, California 91125 Received 19 June 1995; accepted 9 August 1995 We describe the fabrication

More information

Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition

Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition J.S. King 1, C. W. Neff 1, W. Park 2, D. Morton 3, E. Forsythe 3, S. Blomquist 3, and C. J. Summers 1 (1) School of Materials

More information

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT)

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT) ECE280: Nano-Plasmonics and Its Applications Week5 Extraordinary Optical Transmission (EOT) Introduction Sub-wavelength apertures in metal films provide light confinement beyond the fundamental diffraction

More information

Vertical plasmonic nanowires for 3D nanoparticle trapping

Vertical plasmonic nanowires for 3D nanoparticle trapping Vertical plasmonic nanowires for 3D nanoparticle trapping Jingzhi Wu, Xiaosong Gan * Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, PO Box

More information

UV15: For Fabrication of Polymer Optical Waveguides

UV15: For Fabrication of Polymer Optical Waveguides CASE STUDY UV15: For Fabrication of Polymer Optical Waveguides Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA Phone +1.201.343.8983 Fax +1.201.343.2132 main@masterbond.com CASE STUDY UV15:

More information

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator Rosure B. Abdulrahman, Arif S. Alagoz, Tansel Karabacak Department of Applied Science, University of Arkansas at Little Rock,

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

Solar Cells and Photosensors.

Solar Cells and Photosensors. Designing Photonic Crystals in Strongly Absorbing Material for Applications in Solar Cells and Photosensors. Minda Wagenmaker 1, Ebuka S. Arinze 2, Botong Qiu 2, Susanna M. Thon 2 1 Mechanical Engineering

More information

Fundamentals of X-ray diffraction and scattering

Fundamentals of X-ray diffraction and scattering Fundamentals of X-ray diffraction and scattering Don Savage dsavage@wisc.edu 1231 Engineering Research Building (608) 263-0831 X-ray diffraction and X-ray scattering Involves the elastic scattering of

More information

Nanoscale Plasmonic Interferometers for Multi-Spectral, High-Throughput Biochemical Sensing

Nanoscale Plasmonic Interferometers for Multi-Spectral, High-Throughput Biochemical Sensing Supporting Online Information for Nanoscale Plasmonic Interferometers for Multi-Spectral, High-Throughput Biochemical Sensing Jing Feng (a), Vince S. Siu (a), Alec Roelke, Vihang Mehta, Steve Y. Rhieu,

More information

REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS

REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS Reagentless Grating Coupler Sensor Angle, θ, is related to the analyte refractive

More information

In-situ monitoring of optical near-field material processing by electron microscopes

In-situ monitoring of optical near-field material processing by electron microscopes Appl Phys A DOI 10.1007/s00339-011-6615-6 INVITED PAPER In-situ monitoring of optical near-field material processing by electron microscopes David J. Hwang Bin Xiang Sang-Gil Ryu Oscar Dubon Andrew M.

More information

NNIN Nanotechnology Education

NNIN Nanotechnology Education NNIN Nanotechnology Education Teacher s Preparatory Guide Powers of Ten with the Morpho Butterfly Purpose: This activity is designed to help students understand the concept of scale and magnification when

More information

Optical parameter determination of ZrO 2 thin films prepared by sol gel dip coating

Optical parameter determination of ZrO 2 thin films prepared by sol gel dip coating International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-490 Vol.6, No.13, pp 534-5346, November 014 MESCon 014 [4th -5 th September 014] National Conference on Material for Energy Storage

More information

EUV Transmission Lens Design and Manufacturing Method

EUV Transmission Lens Design and Manufacturing Method 1 EUV Transmission Lens Design and Manufacturing Method Kenneth C. Johnson kjinnovation@earthlink.net 7/9/2018 Abstract This paper outlines a design for an EUV transmission lens comprising blazed, phase-

More information

Seminar: Structural characterization of photonic crystals based on synthetic and natural opals. Olga Kavtreva. July 19, 2005

Seminar: Structural characterization of photonic crystals based on synthetic and natural opals. Olga Kavtreva. July 19, 2005 Seminar: Structural characterization of photonic crystals based on synthetic and natural opals Olga Kavtreva July 19, 2005 Abstract Novel class of dielectric structures with a refractive index which exhibits

More information

Introduction to Lithography

Introduction to Lithography Introduction to Lithography G. D. Hutcheson, et al., Scientific American, 290, 76 (2004). Moore s Law Intel Co-Founder Gordon E. Moore Cramming More Components Onto Integrated Circuits Author: Gordon E.

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors Nanophotonics: principle and application Khai Q. Le Lecture 11 Optical biosensors Outline Biosensors: Introduction Optical Biosensors Label-Free Biosensor: Ringresonator Theory Measurements: Bulk sensing

More information

Subwavelength gratings fabricated on semiconductor substrates via E-beam lithography and lift-off method

Subwavelength gratings fabricated on semiconductor substrates via E-beam lithography and lift-off method Optical and Quantum Electronics (2005) 37:425 432 Ó Springer 2005 DOI 10.1007/s11082-005-2027-1 Subwavelength gratings fabricated on semiconductor substrates via E-beam lithography and lift-off method

More information

ECE 541/ME 541 Microelectronic Fabrication Techniques

ECE 541/ME 541 Microelectronic Fabrication Techniques ECE 541/ME 541 Microelectronic Fabrication Techniques MW 4:00-5:15 pm Metrology and Characterization Zheng Yang ERF 3017, email: yangzhen@uic.edu ECE541/ME541 Microelectronic Fabrication Techniques Page

More information

The object of this experiment is to test the de Broglie relationship for matter waves,

The object of this experiment is to test the de Broglie relationship for matter waves, Experiment #58 Electron Diffraction References Most first year texts discuss optical diffraction from gratings, Bragg s law for x-rays and electrons and the de Broglie relation. There are many appropriate

More information

ADOPT Winter School Merging silicon photonics and plasmonics

ADOPT Winter School Merging silicon photonics and plasmonics ADOPT Winter School 2014 Merging silicon photonics and plasmonics Prof. Min Qiu Optics and Photonics, Royal Institute of Technology, Sweden and Optical Engineering, Zhejiang University, China Contents

More information

Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller

Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller Webpage: http://www.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604

More information

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments * Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,

More information

Tunable Nanoscale Plasmon Antenna for Localization and Enhancement of Optical Energy. Douglas Howe

Tunable Nanoscale Plasmon Antenna for Localization and Enhancement of Optical Energy. Douglas Howe Tunable Nanoscale Plasmon Antenna for Localization and Enhancement of Optical Energy Douglas Howe Applied Optics Spring 2008 Table of Contents Abstract... 3 Introduction... 4 Surface Plasmons... 4 Nano

More information

Highly Sensitive Pressure Measurement based on Multimode Fiber Tip Fabry-Perot Cavity

Highly Sensitive Pressure Measurement based on Multimode Fiber Tip Fabry-Perot Cavity Highly Sensitive Pressure Measurement based on Multimode Fiber Tip Fabry-Perot Cavity Wei Ping Chen* and Dongning Wang College of Optical and Electronic Technology, China Jiliang University, Hangzhou,

More information

Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution

Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution M. V. Bashevoy, 1 F. Jonsson, 1 K. F. MacDonald, 1* Y. Chen, 2 and N. I. Zheludev 1 1 Optoelectronics Research Centre, University

More information

Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors

Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors Sensors 2013, 13, 3232-3241; doi:10.3390/s130303232 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal

More information

Single-digit-resolution nanopatterning with. extreme ultraviolet light for the 2.5 nm. technology node and beyond

Single-digit-resolution nanopatterning with. extreme ultraviolet light for the 2.5 nm. technology node and beyond Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 205 Supplementary Information for: Single-digit-resolution nanopatterning with extreme ultraviolet

More information

Plasmonic Nanostructures II

Plasmonic Nanostructures II Plasmonic Nanostructures II Dr. Krüger / Prof. M. Zacharias, IMTEK, Propagation of SPPs Propagation distance decreases with decreasing strip width! 2 Dr. Krüger / Prof. M. Zacharias, IMTEK, Bound and leaky

More information

Fabrication of micro/nano structures in glass by lasers

Fabrication of micro/nano structures in glass by lasers Lehigh University Lehigh Preserve International Workshop on Scientific Challenges for Glass Research Glass Conferences and Workshops Spring 4-1-2007 Fabrication of micro/nano structures in glass by lasers

More information

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Shunquan Wang, Changhe Zhou, Yanyan Zhang, and Huayi Ru We describe the design, fabrication,

More information

ATOMIC LAYER DEPOSITION FOR PHOTONIC CRYSTAL DEVICES

ATOMIC LAYER DEPOSITION FOR PHOTONIC CRYSTAL DEVICES ATOMIC LAYER DEPOSITION FOR PHOTONIC CRYSTAL DEVICES E. Graugnard, J. S. King, D. Heineman, and C. J. Summers School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA,

More information

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Denise M. Krol University of California, Davis IMI Glass Workshop Washington DC April 15-17, 2007 Femtosecond laser modification

More information

micromachines ISSN X

micromachines ISSN X Micromachines 2012, 3, 55-61; doi:10.3390/mi3010055 Article OPEN ACCESS micromachines ISSN 2072-666X www.mdpi.com/journal/micromachines Surface Plasmon Excitation and Localization by Metal-Coated Axicon

More information

Surface Plasmon Effects in Nano-Optics. Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227

Surface Plasmon Effects in Nano-Optics. Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227 Surface Plasmon Effects in Nano-Optics Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227 Shanghai, Jan 2007 Summary Introduction: What is a surface plasmon?

More information

PLASMONIC STRUCTURES IN PMMA RESIST

PLASMONIC STRUCTURES IN PMMA RESIST PLASMONIC STRUCTURES IN PMMA RESIST Michal URBÁNEK a, Stanislav KRÁTKÝ a, MARCEL ŠIMÍK b, Vladimír KOLAŘÍK a, Miroslav HORÁČEK a, Milan MATĚJKA a a Institute of Scientific Instruments of the ASCR, v.v.i.,

More information

Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing. Fil Bartoli Lehigh University 4/9/2014

Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing. Fil Bartoli Lehigh University 4/9/2014 Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing Fil Bartoli Lehigh University 4/9/2014 P.C. Rossin College of Engineering and Applied Science Department of Electrical

More information

7-2E. Photonic crystals

7-2E. Photonic crystals 7-2E. Photonic crystals Purdue Univ, Prof. Shalaev, http://cobweb.ecn.purdue.edu/~shalaev/ Univ Central Florida, CREOL, Prof Kik, http://sharepoint.optics.ucf.edu/kik/ose6938i/handouts/forms/allitems.aspx

More information

Surface plasmon dielectric waveguides

Surface plasmon dielectric waveguides Surface plasmon dielectric waveguides Igor I. Smolyaninov, Yu-Ju Hung, and Christopher C. Davis Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 Phone:

More information

1. Introduction. What is implantation? Advantages

1. Introduction. What is implantation? Advantages Ion implantation Contents 1. Introduction 2. Ion range 3. implantation profiles 4. ion channeling 5. ion implantation-induced damage 6. annealing behavior of the damage 7. process consideration 8. comparison

More information

THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY. Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA

THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY. Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA Ústav přístrojové techniky AV ČR, v. v. i., Královopolská 147,

More information

Self Organized Silver Nanoparticles for Three Dimensional Plasmonic Crystals

Self Organized Silver Nanoparticles for Three Dimensional Plasmonic Crystals Self Organized Silver Nanoparticles for Three Dimensional Plasmonic Crystals Methods Nanocrystal Synthesis: Octahedra shaped nanocrystals were prepared using a polyol reduction of silver ions. Silver nitrate

More information

Active delivery of single DNA molecules into a plasmonic nanopore for. label-free optical sensing

Active delivery of single DNA molecules into a plasmonic nanopore for. label-free optical sensing Supporting Information: Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing Xin Shi 1,2, Daniel V Verschueren 1, and Cees Dekker 1* 1. Department of Bionanoscience,

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

ELECTRONIC SUPPLEMENTARY INFORMATION. On-Skin Liquid Metal Inertial Sensor

ELECTRONIC SUPPLEMENTARY INFORMATION. On-Skin Liquid Metal Inertial Sensor Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2017 ELECTRONIC SUPPLEMENTARY INFORMATION On-Skin Liquid Metal Inertial Sensor Matija Varga, a,b

More information

Superstructure Fiber Bragg Grating based Sensors

Superstructure Fiber Bragg Grating based Sensors ABHIYANTRIKI based Sensors An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 5 (May, 2016) http://www.aijet.in/ eissn: 2394-627X Ashima Sindhu Mohanty*

More information

National Center for Nanoscience and Technology, China

National Center for Nanoscience and Technology, China National Center for Nanoscience and Technology, China National Center for Nanoscience and Technology, China (NCNST) is co-founded by the Chinese Academy of Sciences and Ministry of Education, on December

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

GROWTH AND CHARACTERIZATION OF NANOSTRUCTURED CdS THIN FILMS BY CHEMICAL BATH DEPOSITION TECHNIQUE

GROWTH AND CHARACTERIZATION OF NANOSTRUCTURED CdS THIN FILMS BY CHEMICAL BATH DEPOSITION TECHNIQUE Chalcogenide Letters Vol. 6, No. 8, September 29, p. 415 419 GROWTH AND CHARACTERIZATION OF NANOSTRUCTURED CdS THIN FILMS BY CHEMICAL BATH DEPOSITION TECHNIQUE V. B. SANAP *, B. H. PAWAR, * MSS s College

More information

Influence of In/Sn ratio on nanocrystalline indium tin oxide thin films by spray pyrolysis method

Influence of In/Sn ratio on nanocrystalline indium tin oxide thin films by spray pyrolysis method Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Physics Research, 2011, 2 (1): 19-25 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-0970 CODEN (USA):

More information

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in Chapter 5 PROCESSING OF DEVICES A discussion of crystal growth, lithography, etching, doping, and device structures is presented in the following overview gures. SEMICONDUCTOR DEVICE PROCESSING: AN OVERVIEW

More information

Chapter 7 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER

Chapter 7 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER Chapter 7 66 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER 7.1 Introduction In recent years, polymer dye lasers have attracted much attention due to their low-cost processing, wide choice

More information

Fabrication Technologies and Instruments. The available fabrication technologies and instruments for fabricating the sub-wavelength

Fabrication Technologies and Instruments. The available fabrication technologies and instruments for fabricating the sub-wavelength Chapter 3 Fabrication Technologies and Instruments 3.1 Introduction The available fabrication technologies and instruments for fabricating the sub-wavelength grating will be described in this chapter.

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

A High Speed Surface Illuminated Si Photodiode. Using Microstructured Holes for Absorption. Enhancements at nm wavelength

A High Speed Surface Illuminated Si Photodiode. Using Microstructured Holes for Absorption. Enhancements at nm wavelength A High Speed Surface Illuminated Si Photodiode Using Microstructured Holes for Absorption Enhancements at 900 1000 nm wavelength Supporting Information Yang Gao, Hilal Cansizoglu, Soroush Ghandiparsi,

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Directional Surface Plasmon Coupled Emission

Directional Surface Plasmon Coupled Emission Journal of Fluorescence, Vol. 14, No. 1, January 2004 ( 2004) Fluorescence News Directional Surface Plasmon Coupled Emission KEY WORDS: Surface plasmon coupled emission; high sensitivity detection; reduced

More information

ADVANCED NANOSCALE SCIENCE & ENGINEERING NANOPHYSICS SEMESTER MONTH CONTENT LAB THEMES SKILLS ASSESSMENTS. Cutting it Down to Nano Lab

ADVANCED NANOSCALE SCIENCE & ENGINEERING NANOPHYSICS SEMESTER MONTH CONTENT LAB THEMES SKILLS ASSESSMENTS. Cutting it Down to Nano Lab September Nano-Intro (Same topics for nanophysics and nanochem) Topic I: GOT NANO? Unit 1 Nano -Calculations Metric Review 2 Dimensional Analysis 3 Dimensional Analysis Sci. Not. & Sig. Figs. NanoDefinitions

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Measuring subwavelength spatial coherence with plasmonic interferometry Drew Morrill, Dongfang Li, and Domenico Pacifici School of Engineering, Brown University, Providence, RI 02912, United States List

More information

Nano-Scale Manufacturing:

Nano-Scale Manufacturing: The Second U.S.-Korea Forum on Nanotechnology: Nanomanufacturing Research and Education Nano-Scale Manufacturing: Top-down, Bottom-up and System Engineering Cheng Sun, Xiang Zhang Center of Scalable and

More information

Photolithography I ( Part 2 )

Photolithography I ( Part 2 ) 1 Photolithography I ( Part 2 ) Chapter 13 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Bjørn-Ove Fimland, Department of Electronics and Telecommunication, Norwegian University of Science

More information

Micron-Resolution Photocurrent of CdTe Solar Cells Using Multiple Wavelengths

Micron-Resolution Photocurrent of CdTe Solar Cells Using Multiple Wavelengths Mat. Res. Soc. Symp. Proc. Vol. 668 2001 Materials Research Society Micron-Resolution Photocurrent of CdTe Solar Cells Using Multiple Wavelengths Jason F. Hiltner 1 and James R. Sites Department of Physics,

More information

2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics

2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (OPT MEMS 2009) Clearwater, Florida, USA 17 20 August 2009 IEEE Catalog Number: ISBN: CFP09MOE-PRT 978-1-4244-2381-1 Table of Contents

More information

EUV Transmission Lens Design and Manufacturing Method

EUV Transmission Lens Design and Manufacturing Method 1 EUV Transmission Lens Design and Manufacturing Method Kenneth C. Johnson kjinnovation@earthlink.net 7/16/2018 http://vixra.org/abs/1807.0188 Abstract This paper outlines a design for an EUV transmission

More information

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine Nanoimprinting in Polymers and Applications in Cell Studies Albert F. YEE Chemical Engineering & Materials Science UC Irvine Presentation outline Motivation Reversal imprinting Soft inkpad imprinting on

More information

Nano-imprinting Lithography Technology І

Nano-imprinting Lithography Technology І Nano-imprinting Lithography Technology І Agenda Limitation of photolithograph - Remind of photolithography technology - What is diffraction - Diffraction limit Concept of nano-imprinting lithography Basic

More information

Introduction to Nanoscience and Nanotechnology

Introduction to Nanoscience and Nanotechnology Introduction to Nanoscience and Nanotechnology ENS 463 2. Principles of Nano-Lithography by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Lithographic patterning

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high and own the gap of 10 μm. Supplementary Figure 2 Strictly

More information

X-rays were discovered by the German physicist

X-rays were discovered by the German physicist Calculating Crystal Structure and Lattice Parameters Using X-ray Diffraction Robert Welch Abstract Certain materials, such as Molybdenum and NaCl, have repeating crystal structures with lattice parameters

More information

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers Subhasis Chaudhuri *1 1, 2, 3, John V. Badding 1 Department of Chemistry, Pennsylvania State University, University Park, PA

More information

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng Scientific Reports Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng 1 Supplementary figures and notes Supplementary Figure S1 Volumetric

More information

Fabrication of 3D Microstructures with Single uv Lithography Step

Fabrication of 3D Microstructures with Single uv Lithography Step 268 Fabrication of 3D Microstructures with Single uv Lithography Step Man Hee Han, Woon Seob Lee, Sung-Keun Lee, and Seung S. Lee Abstract This paper presents a novel microfabrication technology of 3D

More information

Nanorice Chain Waveguides Based on Low and High Order Mode Coupling

Nanorice Chain Waveguides Based on Low and High Order Mode Coupling Nanorice Chain Waveguides Based on Low and High Order Mode Coupling Xudong Cui, and Daniel Erni General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg- Essen,

More information

Humidity Sensor Based on a Photonic Crystal Fiber Interferometer

Humidity Sensor Based on a Photonic Crystal Fiber Interferometer Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2010-01-01 Humidity Sensor Based on a Photonic Crystal Fiber Interferometer Jinesh Mathew Dublin Institute

More information

Fabrication of sub-100nm thick Nanoporous silica thin films

Fabrication of sub-100nm thick Nanoporous silica thin films Fabrication of sub-100nm thick Nanoporous silica thin films Abstract M. Ojha, W. Cho, J. L. Plawsky, W. N. Gill Department of chemical and biological engineering, Rensselaer Polytechnic Institute Low refractive

More information

Microfluidic Channels for Silicon Photonic Chemical- and Bio-Sensors. Michael D Agati Mentor: Dr. Swapnajit Chakravarty PI: Professor Ray T.

Microfluidic Channels for Silicon Photonic Chemical- and Bio-Sensors. Michael D Agati Mentor: Dr. Swapnajit Chakravarty PI: Professor Ray T. Microfluidic Channels for Silicon Photonic Chemical- and Bio-Sensors Michael D Agati Mentor: Dr. Swapnajit Chakravarty PI: Professor Ray T. Chen 1 Background Optical Biosensors Figure 1: Overview of optical

More information

Supplementary Information

Supplementary Information Supplementary Information Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array Yuchao Li, Hongbao Xin, Xiaoshuai Liu, Yao Zhang, Hongxiang Lei*, and Baojun Li* State

More information

RIE lag in diffractive optical element etching

RIE lag in diffractive optical element etching Microelectronic Engineering 54 (2000) 315 322 www.elsevier.nl/ locate/ mee RIE lag in diffractive optical element etching Jyh-Hua Ting *, Jung-Chieh Su, Shyang Su a, b a,c a National Nano Device Laboratories,

More information

Holographix LLC Overview. High quality custom replicated optics and surface relief patterns in production volumes

Holographix LLC Overview. High quality custom replicated optics and surface relief patterns in production volumes Holographix LLC Overview 2018 High quality custom replicated optics and surface relief patterns in production volumes One location in Marlborough, MA. 15,000 sq. ft. facility with additional space available

More information

FABRICATION PROCESSES FOR MAGNETIC MICROACTUATORS WITH POLYSILICON FLEXURES. Jack W. Judy and Richard S. Muller

FABRICATION PROCESSES FOR MAGNETIC MICROACTUATORS WITH POLYSILICON FLEXURES. Jack W. Judy and Richard S. Muller FABRICATION PROCESSES FOR MAGNETIC MICROACTUATORS WITH POLYSILICON FLEXURES Jack W. Judy and Richard S. Muller Berkeley Sensor & Actuator Center (BSAC) Department of EECS, University of California, Berkeley,

More information

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials Introduction to Micro/Nano Fabrication Techniques Date: 2015/05/22 Dr. Yi-Chung Tung Fabrication of Nanomaterials Top-Down Approach Begin with bulk materials that are reduced into nanoscale materials Ex:

More information

Delamination of Thin Films Using Laser Induced Stress Waves

Delamination of Thin Films Using Laser Induced Stress Waves Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems Delamination of Thin Films Using Laser Induced Stress Waves Undergraduate Researcher Angelica Anne Vargas, Research Experience

More information

Trapped Rainbow Techniques for Spectroscopy on a Chip and. Fluorescence Enhancement

Trapped Rainbow Techniques for Spectroscopy on a Chip and. Fluorescence Enhancement Trapped Rainbow Techniques for Spectroscopy on a Chip and Fluorescence Enhancement Vera N. Smolyaninova 1), Igor I. Smolyaninov 2), Alexander V. Kildishev 3) and Vladimir M. Shalaev 3) 1) Department of

More information

Photonic Crystal Microarray Nanoplatform for High-Throughput Detection of Biomolecules

Photonic Crystal Microarray Nanoplatform for High-Throughput Detection of Biomolecules Photonic Crystal Microarray Nanoplatform for High-Throughput Detection of Biomolecules Swapnajit Chakravarty 1, Wei-Cheng Lai 2, Kathryn Moncivais 3, Xiaolong (Alan) Wang 1, Che-Yun Lin 2, Zhiwen J. Zhang

More information

Three-Dimensional Laser Writing on the Nanometer Scale

Three-Dimensional Laser Writing on the Nanometer Scale Three-Dimensional Laser Writing on the Nanometer Scale Piezo Drives are Driving Technology Forward Page 1 of 5 The best possible positioning accuracy is now mandatory in many fields of application. The

More information

Simultaneous Reflection and Transmission Measurements of Scandium Oxide Thin Films in the Extreme Ultraviolet

Simultaneous Reflection and Transmission Measurements of Scandium Oxide Thin Films in the Extreme Ultraviolet Simultaneous Reflection and Transmission Measurements of Scandium Oxide Thin Films in the Extreme Ultraviolet Introduction Guillermo Acosta, Dr. David Allred, Dr, Steven Turley Brigham Young University

More information