Population Genetics (Learning Objectives)

Size: px
Start display at page:

Download "Population Genetics (Learning Objectives)"

Transcription

1 Population Genetics (Learning Objectives) Define the terms population, species, allelic and genotypic frequencies, gene pool, and fixed allele, genetic drift, bottle-neck effect, founder effect. Explain the difference between microevolution and macroevolution. Review how genotypic and allelic frequencies are calculated. Given the appropriate information about a population you should be able to calculate the genotypic and allelic frequencies of homozygous dominant, recessive, or heterozygous individuals (following the example discussed in class). Visit this website to learn the factors that lead to changes in genotypic and allelic frequencies between generations: OSU.swf What is the Hardy-Weinberg Equilibrium and what are its conditions. What are the factors that lead to microevolution? What is the source of new alleles within any population?

2 Definitions A population is a localized group of interbreeding individuals in a given geographic area A species is a group of populations who interbreed and produce fertile offspring

3 Definitions Gene pool = The collection of all alleles in the members of the population Population genetics = The study of the genetics of a population and how the alleles vary with time Gene Flow = Movement of alleles between populations when people migrate and mate

4 Changes allelic frequencies in populations

5 Populations not individuals are the units of evolution - If all members of a population are homozygous for the same allele, that allele is said to be fixed

6 Allele Frequencies Allele frequency = # of particular allele Total # of alleles in the population Count both chromosomes of each individual Allele frequencies affect the frequencies of the three genotypes

7 Phenotype Frequencies Frequency of a trait varies in different populations. Example: PKU an autosomal recessive trait Table 14.1

8 Evolution Microevolution small changes due to changing allelic frequencies within a population from generation to generation Macroevolution large changes in allelic frequencies over 100 s and 1000 s of generations leading to the formation of new species

9 Calculating the allelic frequencies from the genotypic frequencies What is the allelic frequency (of R and r) in this population?

10 Genotypic frequency RR= 320/500 = 0.64 Rr = 160/500= 0.32 rr = 20/500 = 0.04

11 What is the allelic frequency in a population of 500 flowers? How many total alleles are there? 500 X 2 = 1000 Frequency of R allele in population RR + Rr = 320 X = = /1000 = 0.8 =80% Frequency of r allele = = 0.2 =20% or rr +Rr = 20 X = /1000 = 0.2

12

13 - Meiosis and random fertilization do not change the allele and genotype frequencies between generations - The shuffling of alleles that accompanies sexual reproduction does not alter the genetic makeup of the population

14 The Hardy-Weinberg theorem describes the gene pool of a non-evolving population Hardy Weinberg animation utorials/flash/life4e_15-6-osu.swf practice questions

15 Hardy-Weinberg Equation p = allele frequency of one allele q = allele frequency of a second allele p + q = 1 p 2 + 2pq + q 2 = 1 All of the allele frequencies together equals 1 All of the genotype frequencies together equals 1 p 2 and q 2 2pq Frequencies for each homozygote Frequency for heterozygotes

16 Populations at Hardy-Weinberg equilibrium must satisfy five conditions. (1) Very large population size. In small populations, chance fluctuations in the gene pool, genetic drift, can cause genotype frequencies to change over time. (2) No migrations. Gene flow, the transfer of alleles due to the movement of individuals or gametes into or out of our target population can change the proportions of alleles. (3) No net mutations. If one allele can mutate into another, the gene pool will be altered.

17 (4) Random mating. If individuals pick mates with certain genotypes, then the mixing of gametes will not be random and the Hardy-Weinberg equilibrium does not occur. (5) No natural selection. If there is differential survival or mating success among genotypes, then the frequencies of alleles in the next variation will deviate from the frequencies predicted by the Hardy- Weinberg equation. Evolution results when any of these five conditions are not met - when a population experiences deviations from the stability predicted by the Hardy-Weinberg theory.

18 Genetic Drift changes allelic frequencies in populations

19 The bottleneck effect The founder effect

20 Caused by four factors: 1. Non-Random mating Microevolution 2. Genetic drift due to sampling/ bottleneck & founder effects, geographic & cultural separation 3. Migration- of fertile individuals 4. Mutation- in germline cells transmitted in gamete 5. Natural selection- accumulates and maintains favorable genotypes in a population

21 Source of the Hardy-Weinberg Equation Figure 14.3 Figure 14.3

22 Figure 14.4 Solving a Problem

23 Figure 14.4 Solving a Problem

24 Calculating the Carrier Frequency of an Autosomal Recessive Figure 14.5 Figure 14.3

25 Calculating the Carrier Frequency of an Autosomal Recessive Table 14.3

26 Calculating the Carrier Frequency Figure 14.3 of an Autosomal Recessive What is the probability that two unrelated Caucasians will have an affected child? Probability that both are carriers = 1/23 x 1/23 = 1/529 Probability that their child has CF = 1/4 Therefore, probability = 1/529 x 1/4 = 1/2,116

27 Calculation of % PKU carriers from screening About 1 in 10,000 babies in US are born with PKU - The frequency of homozygous recessive individuals = q 2 = 1 in 10,000 or The frequency of the recessive allele (q) is the square root of = The frequency of the dominant allele (p) is p = 1 - q or = The frequency of carriers (heterozygous individuals) is 2pq = 2 x 0.99 x 0.01 = or about 2%. About 2% of the U.S. population carries the PKU allele.

28 Question What is the chance or probability that two unrelated white Caucasian US individuals will have an affected child?

29 Calculating the Risk with X-linked Traits For females, the standard Hardy-Weinberg equation applies p 2 + 2pq + q 2 = 1 However, in males the allele frequency is the phenotypic frequency p + q = 1

30 Calculating the Risk with Calculating the Risk with X-linked Traits X-linked Traits Figure

31 Hardy-Weinberg Equilibrium Rare for protein-encoding genes that affect the phenotype Applies to portions of the genome that do not affect phenotype Includes repeated DNA segments Not subject to natural selection 31

32 DNA Repeats Short repeated segments are distributed all over the genome Repeat numbers can be considered alleles and used to classify individuals Types Variable number of tandem repeats (VNTRs) Short tandem repeats (STRs) 32

33 DNA Repeats 33

34 DNA Profiling Developed in the 1980s by British geneticist Sir Alec Jeffreys Also called DNA fingerprinting Identifies individuals Used in forensics, agriculture, paternity testing, and historical investigations 5/126997/animation40.html

35 DNA Profiling Techniques RFLPs- Restriction Fragment length polymorphisms (limited utility) PCR- Amplification of select genomic regions spanning stretches of STRs

36 DNA Profiling Technique that detects differences in repeat copy number (current) Calculates the probability that certain combinations can occur in two sources of DNA by chance DNA evidence is more often valuable in excluding a suspect Should be considered along with other types of evidence 36

37 Comparing DNA Repeats Comparing DNA Repeats Figure

38 Practical Applications of DNA Fingerprinting Paternity and Maternity Personal Identification/ Criminal Identification and Forensics

39 Practical Applications of DNA Fingerprinting Forensic Biotechnology Whodunit? by Jenny Shaw, Vanessa Petty, Theresa Brown, and Sarah Mathiason

40 Practical Applications of DNA Fingerprinting

41 Jeffreys used his technique to demonstrate that Dolly was truly a clone of the 6- year old ewe that donated her nucleus Figure

42 Box Figure

43 DNA Profiling Technical Steps Blood sample is collected from suspect White blood cells release DNA Restriction enzymes cut DNA Electrophoresis aligns fragments by size Pattern of DNA fragments transferred to a nylon sheet 43

44 DNA Profiling Technical Steps Exposed to radioactive probes Probes bind to DNA Sheet placed against X ray film Pattern of bands constitutes DNA profile Identify individuals 44

45 DNA can be obtained from any cell with a nucleus STRs are used when DNA is scarce If DNA is extremely damaged, mitochondrial DNA (mtdna) is often used For forensics, the FBI developed the Combined DNA Index System (CODIS) Uses 13 STRs DNA Sources 45

46 CODIS Figure Probability that any two individuals have same thirteen markers is 1 in 250 trillion 46

47 Population Statistics Used to Interpret DNA Profiles Power of DNA profiling is greatly expanded by tracking repeats in different chromosomes Number of copies of a repeat are assigned probabilities based on their observed frequency in a population Product rule is then used to calculate probability of a certain repeat combination 47

48 To Solve A Crime Figure

49 Figure

50 Using DNA Profiling to Identify Victims Recent examples of large-scale disasters World Trade Center attack (2001) Indian Ocean Tsunami (2004) Hurricane Katrina (2005) 50

51 Challenges to DNA Profiling 51

52 Genetic Privacy Today s population genetics presents a powerful way to identify individuals Our genomes can vary in more ways than there are people in the world DNA profiling introduces privacy issues Example: DNA dragnets 52

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Define the terms population, species, allelic and genotypic frequencies, gene pool, and fixed allele, genetic drift, bottle-neck effect, founder effect. Explain

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Recognize the quantitative nature of the study of population genetics and its connection to the study of genetics and its applications. Define the terms population,

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Recognize the quantitative nature of the study of population genetics and its connection to the study of genetics and its applications. Define the terms population,

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations What you need to know How and reproduction each produce genetic. The conditions for equilibrium. How to use the Hardy-Weinberg equation to calculate allelic and to test whether

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem Population Genetics A Population is: a group of same species organisms living in an area An allele is: one of a number of alternative forms of the same gene that may occur at a given site on a chromosome.

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section A: Population Genetics

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section A: Population Genetics CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section A: Population Genetics 1. The modern evolutionary synthesis integrated Darwinian selection and Mendelian inheritance 2. A population s gene pool is defined

More information

Genetic Technologies

Genetic Technologies Genetic Technologies Distinguish the terms biotechnology, recombinant DNA technology, transgenic organisms, genetic engineering Understand the two basic techniques to obtain selective fragments of DNA

More information

CHAPTER 12 MECHANISMS OF EVOLUTION

CHAPTER 12 MECHANISMS OF EVOLUTION CHAPTER 12 MECHANISMS OF EVOLUTION 12.1 Genetic Variation DNA biological code for inheritable traits GENES units of DNA molecule in a chromosome LOCI location of specific gene on DNA molecules DIPLOID

More information

Evolution in a Genetic Context

Evolution in a Genetic Context Evolution in a Genetic Context What is evolution? Evolution is the process of change over time. In terms of genetics and evolution, our knowledge of DNA and phenotypic expression allow us to understand

More information

The Evolution of Populations

The Evolution of Populations Microevolution The Evolution of Populations C H A P T E R 2 3 Change in allele frequencies over generations Three mechanisms cause allele frequency change: Natural selection (leads to adaptation) Genetic

More information

Evolutionary Mechanisms

Evolutionary Mechanisms Evolutionary Mechanisms Tidbits One misconception is that organisms evolve, in the Darwinian sense, during their lifetimes Natural selection acts on individuals, but only populations evolve Genetic variations

More information

Population genetics. Population genetics provides a foundation for studying evolution How/Why?

Population genetics. Population genetics provides a foundation for studying evolution How/Why? Population genetics 1.Definition of microevolution 2.Conditions for Hardy-Weinberg equilibrium 3.Hardy-Weinberg equation where it comes from and what it means 4.The five conditions for equilibrium in more

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population Genetic variation in a population increases the chance that some individuals

More information

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools Chapter 23: The Evolution of Populations 1. Populations and Gene Pools 2. Hardy-Weinberg Equilibrium 3. A Closer Look at Natural Selection 1. Populations & Gene Pools Chapter Reading pp. 481-484, 488-491

More information

Section KEY CONCEPT A population shares a common gene pool.

Section KEY CONCEPT A population shares a common gene pool. Section 11.1 KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Why it s beneficial: Genetic variation leads

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

Zoology Evolution and Gene Frequencies

Zoology Evolution and Gene Frequencies Zoology Evolution and Gene Frequencies I. any change in the frequency of alleles (and resulting phenotypes) in a population. A. Individuals show genetic variation, but express the genes they have inherited.

More information

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h)

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) The Hardy-Weinberg Principle Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) Evolution of Populations Individuals do not evolve, but rather, populations evolve Scientists use mathematical models

More information

Average % If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers.

Average % If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers. Average 50.83% If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers. Evolution AP BIO Pacing Evolution Today Mutations Gene

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 8: Origins of Genetic Variation Notes Meiosis is reduction division. The main role of meiosis is production of haploid gametes as cells produced by meiosis have half the

More information

Hardy-Weinberg problem set

Hardy-Weinberg problem set Hardy-Weinberg problem set Hardy-Weinberg Theorem states that if a population is NOT evolving then the frequencies of the alleles in the population will remain stable across generations - it is in equilibrium.

More information

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale Remember: -Evolution is a change in species over time -Heritable variations exist within a population -These variations can result in differential reproductive success -Over generations this can result

More information

Introduction Chapter 23 - EVOLUTION of

Introduction Chapter 23 - EVOLUTION of Introduction Chapter 23 - EVOLUTION of POPULATIONS The blue-footed booby has adaptations that make it suited to its environment. These include webbed feet, streamlined shape that minimizes friction when

More information

Population Genetics. Chapter 16

Population Genetics. Chapter 16 Population Genetics Chapter 16 Populations and Gene Pools Evolution is the change of genetic composition of populations over time. Microevolution is change within species which can occur over dozens of

More information

MECHANISMS FOR EVOLUTION CHAPTER 20

MECHANISMS FOR EVOLUTION CHAPTER 20 MECHANISMS FOR EVOLUTION CHAPTER 20 Objectives State the Hardy-Weinburg theorem Write the Hardy-Weinburg equation and be able to use it to calculate allele and genotype frequencies List the conditions

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population! Genetic variation in a population increases the chance that some individuals

More information

Part I: Predicting Genetic Outcomes

Part I: Predicting Genetic Outcomes Part I: Predicting Genetic Outcomes Deoxyribonucleic acid (DNA) is found in every cell of living organisms, and all of the cells in each organism contain the exact same copy of that organism s DNA. Because

More information

Virtual Lab 2 Hardy-Weinberg

Virtual Lab 2 Hardy-Weinberg Name Period Assignment # Virtual Lab 2 Hardy-Weinberg http://www.phschool.com/science/biology_place/labbench/lab8/intro.html Read the introduction Click Next 1) Define allele 2) Define Hardy-Weinberg equilibrium

More information

Evolution of Populations (Ch. 17)

Evolution of Populations (Ch. 17) Evolution of Populations (Ch. 17) Doonesbury - Sunday February 8, 2004 Beak depth of Beak depth Where does Variation come from? Mutation Wet year random changes to DNA errors in gamete production Dry year

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations Population genetics Population: a localized group of individuals belonging to the same species Species: a group of populations whose individuals have the potential to interbreed

More information

Population and Community Dynamics. The Hardy-Weinberg Principle

Population and Community Dynamics. The Hardy-Weinberg Principle Population and Community Dynamics The Hardy-Weinberg Principle Key Terms Population: same species, same place, same time Gene: unit of heredity. Controls the expression of a trait. Can be passed to offspring.

More information

CH. 22/23 WARM-UP. 1. List 5 different pieces of evidence for evolution.

CH. 22/23 WARM-UP. 1. List 5 different pieces of evidence for evolution. CH. 22/23 WARM-UP 1. List 5 different pieces of evidence for evolution. 2. (Review) What are the 3 ways that sexual reproduction produces genetic diversity? 3. What is 1 thing you are grateful for today?

More information

16.2 Evolution as Genetic Change

16.2 Evolution as Genetic Change 16.2 Evolution as Genetic Change 1 of 40 16-2 Evolution as Genetic Change 16-2 Evolution as Genetic Change If an individual dies without reproducing, it does not contribute to the gene pool. If an individual

More information

5/2/ Genes and Variation. How Common Is Genetic Variation? Variation and Gene Pools

5/2/ Genes and Variation. How Common Is Genetic Variation? Variation and Gene Pools 16-1 Genes 16-1 and Variation Genes and Variation 1 of 24 How Common Is Genetic Variation? How Common Is Genetic Variation? Many genes have at least two forms, or alleles. All organisms have genetic variation

More information

The Theory of Evolution

The Theory of Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

Study Guide A. Answer Key. The Evolution of Populations

Study Guide A. Answer Key. The Evolution of Populations The Evolution of Populations Answer Key SECTION 1. GENETIC VARIATION WITHIN POPULATIONS 1. b 2. d 3. gene pool 4. combinations of alleles 5. allele frequencies 6. ratio or percentage 7. mutation 8. recombination

More information

Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to:

Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to: Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to: explain how crime scene evidence is collected and processed to obtain DNA describe how radioactive probes are used in DNA fingerprinting

More information

Section A: Population Genetics

Section A: Population Genetics CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section A: Population Genetics 1. The modern evolutionary synthesis integrated Darwinian selection and Mendelian inheritance 2. A population s gene pool is defined

More information

5 FINGERS OF EVOLUTION

5 FINGERS OF EVOLUTION MICROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Microevolution refers to changes in allele frequencies in a population over time. NATURAL SELECTION

More information

LABORATORY 8. POPULATION GENETICS AND EVOLUTION

LABORATORY 8. POPULATION GENETICS AND EVOLUTION STUDENT GUIDE LABORATORY 8. POPULATION GENETICS AND EVOLUTION Objectives In this activity, you will learn about the Hardy-Weinberg law of genetic equilibrium study the relationship between evolution and

More information

a) In terms of the gene pool, evolution can be defined as a generation to generation change in the allele frequencies within a population.

a) In terms of the gene pool, evolution can be defined as a generation to generation change in the allele frequencies within a population. I. Population Genetics Figure 1: Gene Pool Gene Pool: a) In terms of the gene pool, evolution can be defined as a generation to generation change in the allele frequencies within a population. Figure 2:

More information

Measuring Evolution of Populations. SLIDE SHOW MODIFIED FROM KIM

Measuring Evolution of Populations. SLIDE SHOW MODIFIED FROM KIM Measuring Evolution of Populations SLIDE SHOW MODIFIED FROM KIM FOGLIA@explorebiology.com 5 Agents of evolutionary change Mutation Gene Flow Non-random mating Genetic Drift Selection Populations & gene

More information

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017 OVERVIEW In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution and changes in allele frequency by using your class to represent

More information

Measuring Evolution of Populations

Measuring Evolution of Populations Measuring Evolution of Populations 5 Agents of evolutionary change Mutation Gene Flow Non-random mating Genetic Drift Selection Populations & gene pools Concepts u a population is a localized group of

More information

How Populations Evolve. Chapter 15

How Populations Evolve. Chapter 15 How Populations Evolve Chapter 15 Populations Evolve Biological evolution does not change individuals It changes a population Traits in a population vary among individuals Evolution is change in frequency

More information

AP Biology Laboratory 8 Population Genetics Virtual Student Guide

AP Biology Laboratory 8 Population Genetics Virtual Student Guide AP Biology Laboratory 8 Population Genetics Virtual Student Guide http://www.phschool.com/science/biology_place/labbench/index.html Introduction The Hardy-Weinberg law of genetic equilibrium provides a

More information

GENETICS - CLUTCH CH.21 POPULATION GENETICS.

GENETICS - CLUTCH CH.21 POPULATION GENETICS. !! www.clutchprep.com CONCEPT: HARDY-WEINBERG Hardy-Weinberg is a formula used to measure the frequencies of and genotypes in a population Allelic frequencies are the frequency of alleles in a population

More information

B. Incorrect! 64% is all non-mm types, including both MN and NN. C. Incorrect! 84% is all non-nn types, including MN and MM types.

B. Incorrect! 64% is all non-mm types, including both MN and NN. C. Incorrect! 84% is all non-nn types, including MN and MM types. Genetics Problem Drill 23: Population Genetics No. 1 of 10 1. For Polynesians of Easter Island, the population has MN blood group; Type M and type N are homozygotes and type MN is the heterozygous allele.

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

The Evolution of Populations

The Evolution of Populations LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 23 The Evolution of Populations

More information

Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce

Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce Dr. Bertolotti Essential Question: Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce FERTILE offspring Allele-

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common?

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common? Evolutionary Processes I. Introduction - The modern synthesis Reading: Chap. 25 II. No evolution: Hardy-Weinberg equilibrium A. Population genetics B. Assumptions of H-W III. Causes of microevolution (forces

More information

BIOLOGY 3201 UNIT 4 EVOLUTION CH MECHANISMS OF EVOLUTION

BIOLOGY 3201 UNIT 4 EVOLUTION CH MECHANISMS OF EVOLUTION BIOLOGY 3201 UNIT 4 EVOLUTION CH. 20 - MECHANISMS OF EVOLUTION POPULATION GENETICS AND HARDY WEINBERG PRINCIPLE Population genetics: this is a study of the genes in a population and how they may or may

More information

PopGen1: Introduction to population genetics

PopGen1: Introduction to population genetics PopGen1: Introduction to population genetics Introduction MICROEVOLUTION is the term used to describe the dynamics of evolutionary change in populations and species over time. The discipline devoted to

More information

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a

More information

UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations

UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

This is a classic data set on wing coloration in the scarlet tiger moth (Panaxia dominula). Data for 1612 individuals are given below:

This is a classic data set on wing coloration in the scarlet tiger moth (Panaxia dominula). Data for 1612 individuals are given below: Bellringer This is a classic data set on wing coloration in the scarlet tiger moth (Panaxia dominula). Data for 1612 individuals are given below: White-spotted (AA) =1469 Intermediate (Aa) = 138 Little

More information

Algorithms for Genetics: Introduction, and sources of variation

Algorithms for Genetics: Introduction, and sources of variation Algorithms for Genetics: Introduction, and sources of variation Scribe: David Dean Instructor: Vineet Bafna 1 Terms Genotype: the genetic makeup of an individual. For example, we may refer to an individual

More information

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds:

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: 1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: natural selection 21 1) the component of phenotypic variance not explained by

More information

Chapter 23: The Evolution of Populations

Chapter 23: The Evolution of Populations AP Biology Reading Guide Name Chapter 23: The Evolution of Populations This chapter begins with the idea that we focused on as we closed the last chapter: Individuals do not evolve! Populations evolve.

More information

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below.

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below. SECTION 11.1 GENETIC VARIATION WITHIN POPULATIONS Study Guide KEY CONCEPT A population shares a common gene pool. VOCABULARY gene pool allele frequency MAIN IDEA: Genetic variation in a population increases

More information

Introduction. Let s try this again. Do you change during your lifetime? Do you evolve??

Introduction. Let s try this again. Do you change during your lifetime? Do you evolve?? Introduction Let s try this again Do you change during your lifetime? Do you evolve?? What questions couldn t Darwin answer? What if he could have called Mendel as a lifeline? Population genetics was born

More information

Population Genetics. If we closely examine the individuals of a population, there is almost always PHENOTYPIC

Population Genetics. If we closely examine the individuals of a population, there is almost always PHENOTYPIC 1 Population Genetics How Much Genetic Variation exists in Natural Populations? Phenotypic Variation If we closely examine the individuals of a population, there is almost always PHENOTYPIC VARIATION -

More information

Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes

Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes Reference; page 230 in textbook 13 Genotype; The genetic constitution governing a heritable trait of an organism Phenotype:

More information

Application of Biotechnology in DNA Fingerprinting and Forensic Analysis. Copyright 2009 Pearson Education, Inc.

Application of Biotechnology in DNA Fingerprinting and Forensic Analysis. Copyright 2009 Pearson Education, Inc. Application of Biotechnology in DNA Fingerprinting and Forensic Analysis Introduction to DNA Fingerprinting and Forensics Forensic science intersection of law and science Historic examples Early 1900s

More information

Introduction. Let s try this again. Do you change during your lifetime? Do you evolve??

Introduction. Let s try this again. Do you change during your lifetime? Do you evolve?? Introduction Let s try this again Do you change during your lifetime? Do you evolve?? What questions couldn t Darwin answer? What if he could have called Mendel as a lifeline? Population genetics was born

More information

Chapter 16: How Populations Evolve

Chapter 16: How Populations Evolve Chapter 16: How Populations Evolve AP Curriculum Alignment Evolution is a change in the genetic makeup of a population over time, with natural selection its major driving mechanism. This is a major component

More information

Hardy Weinberg Equilibrium

Hardy Weinberg Equilibrium Gregor Mendel Hardy Weinberg Equilibrium Lectures 4-11: Mechanisms of Evolution (Microevolution) Hardy Weinberg Principle (Mendelian Inheritance) Genetic Drift Mutation Sex: Recombination and Random Mating

More information

EVOLUTION OF POPULATIONS Genes and Variation

EVOLUTION OF POPULATIONS Genes and Variation Section Outline Section 16-1 EVOLUTION OF POPULATIONS Genes and Variation When Darwin developed his theory of evolution, he didn t know how HEREDITY worked. http://www.answers.com/topic/gregor-mendel Mendel

More information

Quiz will begin at 10:00 am. Please Sign In

Quiz will begin at 10:00 am. Please Sign In Quiz will begin at 10:00 am Please Sign In You have 15 minutes to complete the quiz Put all your belongings away, including phones Put your name and date on the top of the page Circle your answer clearly

More information

17.1 What Is It That Evolves? Microevolution. Microevolution. Ch. 17 Microevolution. Genes. Population

17.1 What Is It That Evolves? Microevolution. Microevolution. Ch. 17 Microevolution. Genes. Population Ch. 17 Microevolution 17.1 What Is It That Evolves? Microevolution Population Defined as all the members of a single species living in a defined geographical area at a given time A sexually reproducing

More information

AP BIOLOGY Population Genetics and Evolution Lab

AP BIOLOGY Population Genetics and Evolution Lab AP BIOLOGY Population Genetics and Evolution Lab In 1908 G.H. Hardy and W. Weinberg independently suggested a scheme whereby evolution could be viewed as changes in the frequency of alleles in a population

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans POPULATION GENETICS, SELECTION, AND EVOLUTION INTRODUCTION A common misconception is that individuals evolve. While individuals may have favorable and heritable traits that are advantageous for survival

More information

Biology 40S(H) Final Exam Review KEY January 2019

Biology 40S(H) Final Exam Review KEY January 2019 Biology 40S(H) Final Exam Review KEY January 2019 Mrs. Nilmalgoda Name: Exam Date: Review Credit: Mrs. C. Dunford and Mrs. J. Keith Part 1: Genetics Unit 1: Understanding Biological Inheritance Fill-In-The

More information

Lesson: Measuring Microevolution

Lesson: Measuring Microevolution Lesson: Measuring Microevolution Recall that a GENE is a unit of inheritance. Different forms of the same gene are called LLELES (uh-leelz ) lleles arise from an original gene via the process of MUTTION.

More information

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations.

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations. POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations. DARWINIAN EVOLUTION BY NATURAL SELECTION Many more individuals are born

More information

LABORATORY 8: POPULATION GENETICS AND EVOLUTION

LABORATORY 8: POPULATION GENETICS AND EVOLUTION LABORATORY 8: POPULATION GENETICS AND EVOLUTION OVERVIEW In this activity you will learn about the Hardy-Weinberg law of genetic equilibrium and study the relationship between evolution and changes in

More information

*No in-class activities can be made up for unexcused absences. See syllabus.

*No in-class activities can be made up for unexcused absences. See syllabus. ICA 13 Key *No in-class activities can be made up for unexcused absences. See syllabus. Bluegill Q1. A large population of bluegill (a freshwater fish) was observed over ten consecutive summers. When traits

More information

Evolution. Population Genetics. Targets: Alleles and Genes 3/30/2014

Evolution. Population Genetics. Targets: Alleles and Genes 3/30/2014 Targets: Alleles and Genes Evolution Population Genetics 1. I can explain how genetic variation in a species increases chances for survival 2. I can write an example of how lethal alleles are stored in

More information

POPULATION GENETICS. Evolution Lectures 1

POPULATION GENETICS. Evolution Lectures 1 POPULATION GENETICS Evolution Lectures 1 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies.

EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies. Biology 152/153 Hardy-Weinberg Mating Game EXERCISE 1 Testing Hardy-Weinberg Equilibrium Hypothesis: The Hardy-Weinberg Theorem says that allele frequencies will not change over generations under the following

More information

Bio 6 Natural Selection Lab

Bio 6 Natural Selection Lab Bio 6 Natural Selection Lab Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you will observe

More information

Genetic Identity. Steve Harris SPASH - Biotechnology

Genetic Identity. Steve Harris SPASH - Biotechnology Genetic Identity Steve Harris SPASH - Biotechnology Comparison of Organisms ORGANISM GENES BASE PAIRS Lambda Phage 40 50,000 E.coli 400 5,000,000 Yeast 13,000 15,000,000 Human 20,000 3,000,000,000 (3 billion)

More information

V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW

V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW The most fundamental idea in a population genetics was proposed by English-man G.H. Hardy and German W. Weinberg simultaneously in the year 1908. At that time it

More information

BIOLOGY. The Evolution of Populations CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. The Evolution of Populations CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 23 The Evolution of Populations Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Smallest Unit of Evolution

More information

POPULATION GENETICS. Evolution Lectures 4

POPULATION GENETICS. Evolution Lectures 4 POPULATION GENETICS Evolution Lectures 4 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

All the, including all the different alleles, that are present in a

All the, including all the different alleles, that are present in a Evolution as Genetic Change: chapter 16 Date name A group of individuals of the same species that interbreed. All the, including all the different alleles, that are present in a Relative Allele frequency

More information

Module 20: Population Genetics, Student Learning Guide

Module 20: Population Genetics, Student Learning Guide Name: Period: Date: Module 20: Population Genetics, Student Learning Guide Instructions: 1. Work in pairs (share a computer). 2. Make sure that you log in for the first quiz so that you get credit. 3.

More information

Southern hybridization technique

Southern hybridization technique Southern hybridization technique DNA fingerprint analysis is based on the "Southern" hybridization technique. In this method: DNA fingerprinting, also termed DNA profile analysis is based on the use of

More information

thebiotutor.com A2 Biology Unit 5 Genetics

thebiotutor.com A2 Biology Unit 5 Genetics thebiotutor.com A2 Biology Unit 5 Genetics 1 Some important terms Using the example of tall (T) and short (t) pea plants, explain the meaning of the following terms: Gene Allele Phenotype Genotype Homozygous

More information

LAB 12 Natural Selection INTRODUCTION

LAB 12 Natural Selection INTRODUCTION LAB 12 Natural Selection Objectives 1. Model evolution by natural selection. 2. Determine allele frequencies within a population. 3. Use the Hardy-Weinberg equation to calculate probability of each genotype

More information

MICROEVOLUTION. On the Origin of Species WHAT IS A SPECIES? WHAT IS A POPULATION? Genetic variation: how do new forms arise?

MICROEVOLUTION. On the Origin of Species WHAT IS A SPECIES? WHAT IS A POPULATION? Genetic variation: how do new forms arise? MICROEVOLUTION On the Origin of Species WHAT IS A SPECIES? Individuals in one or more populations Potential to interbreed Produce fertile offspring WHAT IS A POPULATION? Group of interacting individuals

More information

Genetic Variation. Genetic Variation within Populations. Population Genetics. Darwin s Observations

Genetic Variation. Genetic Variation within Populations. Population Genetics. Darwin s Observations Genetic Variation within Populations Population Genetics Darwin s Observations Genetic Variation Underlying phenotypic variation is genetic variation. The potential for genetic variation in individuals

More information

Lecture 3A. Population Genetics

Lecture 3A. Population Genetics Lecture 3A Population Genetics 1 Key issues More than 2 alleles exist in a population for most genes and these have derived from mutations. Each individual has only two alleles for autosomal genes. 2 Key

More information

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 5: EVOLUTION UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. Darwin s Principle of Natural Selection a. Variation individuals within a population possess

More information

p and q can be thought of as probabilities of selecting the given alleles by

p and q can be thought of as probabilities of selecting the given alleles by 1 7.03 Fall 2006 Lecture 26 Population Genetics Until now, we have been carrying out genetic analysis of individuals, for the next three lectures we will consider genetics from the point of view of groups

More information