Introduction to Fluorescence Jablonski Diagram

Size: px
Start display at page:

Download "Introduction to Fluorescence Jablonski Diagram"

Transcription

1 ntroduction to Fluorescence Jablonski Diagram Excited Singlet Manifold S1 internal conversion S2 k -isc k isc Excited riplet Manifold 1 S0 k nr k k' f nr fluorescence k p phosphorescence Singlet round State ntersystem crossing a method for populating the triplet state nternal conversion Kasha rule riplet state phosphorescence; significantly longer lifetimes than fluorescence What is Fluorescence? defined as the decay from an excited singlet state of a fluorophore the result of bsorption(1) of a photon Jablonski Diagram leading to an excited singlet state, S 1 followed by a decay (2) from S 1 (timescale of nanoseconds; other processes can occur in this time) yielding emitted light of lower energy, i.e. redshifted (3) in wavelength (Stokes shift) the Stokes shift allows efficient discrimination of the excitation, making fluorescence a very sensitive technique lternative pathways for relaxation of excited molecule

2 Lifetimes of different processes

3 ritical Fluorescence Parameters bsorption spectroscopy o characterize the photoexcited emission from molecules in a system of unknown complexity, we should determine the spectral distribution, photon yield, lifetime of the excited state, and polarization of the fluorescence emission, as a function of the wavelength of emission. regorio Weber, Meth. Enzym. 278, p. 1 (1997) = 010 ε ( λ ) cl Spectral distribution Emission spectra: Fix the excitation wavelength and scan through emission wavlengths; usually independent of excitation wavelength Excitation spectra: Fix emission wavelength and scan through excitation spectra; usually same as absorption spectrum = 0 ransmittance pathlength l = log bsorbance Lambert-Beer = log 0 = log = ε ( λ )cl Spectral distribution Determination of spectral distribution Normalized Fluo. ntensity ryptophan EFP chromophore 500 nm det. 434 nm exc. Source Monochromator Sample Detector Spectrophotometer Fluorescence Excitation Fluorescence Emission Wavelength [nm] Wavelength, nm

4 Measuring Fluorescence Fluorescence Lifetime(s) Spectrofluorometer Source Monochromator Sample all competing processes affect the fluorescence lifetime Measured lifetime dn dt = N ( k f + k ic + k isc ) Fluorescence Excitation Fluorescence Emission Detector τ int N= Ne = 1 ( kf + kic+ kisc) t 0 k + k + k f ic isc Wavelength, nm Q = k f τ ritical Fluorescence Parameters Photon Yield/Quantum Efficiency a measure of the emission efficiency of the fluorophore Q = # of photons emitted # of photons absorbed Brightness Q = k proportional to ability to absorb light (extinction coefficient, ε) ND Quantum Yield, Q otal Fluorescence F = 0 ε[]lq c where 0 is incident light intensity, l is pathlength [c] is fluorophore concentration f k + k f ic + k isc Fluorescence Lifetime(s) Fluorescence lifetime (τ) is the characteristic time that the fluorophore spends in the excited state. τ = 1/( k + k + k During this time in the excited state, the fluorophore undergoes multiple interactions with the environment collisional quenching fluorescence energy transfer intersystem crossing rotational motion int f ic homogeneous system (fluorophore+uniform solvent) should, in principle, exhibit a single lifetime Heterogeneous systems (most real systems) such as cells typically show multiple lifetimes isc )

5 Fluorescence spectra of different amino acids fluorescence intensity (arb. unit) wavelength (nm) What is a fluorophore? Fluorophores any molecule that fluoresces is called a fluorophore typically polyaromatic hydrocarbons some amino-acids, in particular rp, yr and Phe Fluorophores ommon fluorophores exogenous fluorophores - dyes such as Fluorescein, Rhodamine, cridine Orange, Ethidium Bromide, y dyes endogenous fluorophores - NDH autofluorescence, e.g. FLUORESEN Molecular Formula: 20 H 12 O 5 Molecular Weight:

6 ommon Fluorophores Measuring Fluorescence Spectrofluorometer excitation and emission spectra usually based on diffraction gratings usually for bulk solutions (cuvette experiments) Fluorescence microscope spatially resolved fluorescence cellular samples, e.g. typically filter-based Some applications of fluorophores Measuring Fluorescence mmunofluorescence ion sensitive dyes -K +, Na +, a 2+ specific markers -ph indicators membrane potential increased intracellular fluorescence DN dyes determination of protein fluorescence

7 Measuring Fluorescence Filters emitted light Filters Selecting Filters Wild ype FP ypical Filter ube in a Microscope Fluorescence Excitation Fluorescence Emission Excitation light Wavelength, nm sample hroma echnology WFP Bandpass Filter Set

8 Light sources Fluorescence imaging Fluorescence in situ hibridization Denaturation hemically modified DNS-probes arget DNS chromosomes he sample is stained with F (fluorescein isothiocyanate) and Rhodamine-phalloidin to selectively highlight microtubules and actin filaments.

9 Photophysical onsequences of FRE D* * FRE introduces an additional deactivation pathway for the excited donor molecule Upon energy transfer Donor excited state (D*) lifetime decreases Donor fluorescence intensity decreases Donor photobleaching rate decreases cceptor fluorescence intensity (if the acceptor is fluorescent) increases Fluorescence Resonance Energy ransfer (FRE) D* Donor and acceptor far apart - No FRE Donor and acceptor close together - FRE non-radiative (electromagnetic) transfer from excited chromophore (donor) to receptor molecule (acceptor) by dipole-dipole coupling dynamic Förster transfer process strongly distance dependent, rate constant 1/R 6 powerful method for looking at molecule association, protein-protein interactions, receptor-ligand interactions D* * EFP/EYFP Normalized Fluo. ntensity FRE Pairs (FP) EFP, ex EFP, em EYFP, ex. EYFP, em Wavelength, nm

10 Photoselection of fluorophores Detecting FRE Spectral increase of acceptor fluorescence decrease of donor fluorescence Lifetime decrease of donor fluorescence lifetime Donor Photobleaching decrease in donor photobleaching rate in the presence of acceptor (FRE) cceptor Photobleaching create an area free of acceptor by photobleaching increase in donor fluorescence vertically polarized light selected population Distance dependence of FRE efficiency values Sample energy transfer efficiency p = VV VV + VH VH Source Monochromator r = VV VV + 2 VH VH Polarizer E = 6 R0 R + R Detector = HV HH donor-acceptor distance (*R 0 )

11 fluorophore macromolecule motion of fluorophore group motion of a whole molecule 1 r 1 k = 1 + τ r0 Vη ime distribution of first photon upon excitation photon events from detector number of photons time

Concept review: Fluorescence

Concept review: Fluorescence 16 Concept review: Fluorescence Some definitions: Chromophore. The structural feature of a molecule responsible for the absorption of UV or visible light. Fluorophore. A chromophore that remits an absorbed

More information

Contact Details. Dr Alexander Galkin. Office: MBC Room 186. Tel: (028) Frequency and wavelength.

Contact Details. Dr Alexander Galkin. Office: MBC Room 186. Tel: (028) Frequency and wavelength. Contact Details The electromagnetic spectrum Biological Spectroscopy Dr Alexander Galkin Email: a.galkin@qub.ac.uk Dr Alexander Galkin MSc Biomolecular Function - BBC8045 Office: MBC Room 186 Tel: (028)

More information

Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET)

Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET) Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET) Timescale of fluorescence processes The excited electron decay possibilities k f k ph k q k t k ic Biophysics

More information

FRET and FRET based Microscopy Techniques

FRET and FRET based Microscopy Techniques Big Question: We can see rafts in Model Membranes (GUVs or Supported Lipid Bilayers, LM), but how to study in cells? Do rafts really exist in cells? Are they static large structures? Are they small transient

More information

Reminder: absorption. OD = A = - log (I / I 0 ) = ε (λ) c x. I = I ε(λ) c x. Definitions. Fluorescence quenching and FRET.

Reminder: absorption. OD = A = - log (I / I 0 ) = ε (λ) c x. I = I ε(λ) c x. Definitions. Fluorescence quenching and FRET. Reminder: absorption Special fluorescence applications I 0 I Fluorescence quenching and FRET Miklós Nyitrai; 24 th of Februry 2011. substance OD = A = - log (I / I 0 ) = ε (λ) c x optical density I = I

More information

Lab 1: Ensemble Fluorescence Basics

Lab 1: Ensemble Fluorescence Basics Lab 1: Ensemble Fluorescence Basics This laboratory module is divided into two sections. The first one is on organic fluorophores, and the second one is on ensemble measurement of FRET (Fluorescence Resonance

More information

ADVANCED PRACTICAL COURSE IN BIOPHYSICS: FRET

ADVANCED PRACTICAL COURSE IN BIOPHYSICS: FRET : FRET 1 INTRODUCTION Fluorescence spectroscopy and fluorescence microscopy are essential tools in biology. Biological molecules can be labeled with fluorescent molecules and thus, their localization and

More information

Fluorescence Spectroscopy. Student: Marin Cristina Antonia Coordinator:S.l. Preda Liliana

Fluorescence Spectroscopy. Student: Marin Cristina Antonia Coordinator:S.l. Preda Liliana Fluorescence Spectroscopy Student: Marin Cristina Antonia Coordinator:S.l. Preda Liliana Fluorescence Electron in the ground state is excited to a higher energy state After loss of some energy in vibrational

More information

F* techniques: FRAP, FLIP, FRET, FLIM,

F* techniques: FRAP, FLIP, FRET, FLIM, F* techniques: FRAP, FLIP, FRET, FLIM, FCS Antonia Göhler March 2015 Fluorescence explained in the Bohr model Absorption of light (blue) causes an electron to move to a higher energy orbit. After a particular

More information

Biochemistry. Biochemical Techniques. 18 Spectrofluorimetry

Biochemistry. Biochemical Techniques. 18 Spectrofluorimetry Description of Module Subject Name Paper Name 12 Module Name/Title 1. Objectives 1.1 To understand technique of Spectrofluorimetry. 1.2 To explain instrumentation design 1.3 What are applications of Spectrofluorimetry?

More information

1. INTRODUCTION 2. EXPERIMENTAL 3. REFERENCES

1. INTRODUCTION 2. EXPERIMENTAL 3. REFERENCES 1. INTRODUCTION 2. EXPERIMENTAL 3. REFERENCES 1 1. INTRODUCTION Fluorescence spectroscopy is one of the most widely used spectroscopic techniques in the fields of biochemistry and molecular biophysics

More information

More on fluorescence

More on fluorescence More on fluorescence Last class Fluorescence Absorption emission Jablonski diagrams This class More on fluorescence Common fluorophores Jablonski diagrams to spectra Properties of fluorophores Excitation

More information

Partha Roy

Partha Roy Fluorescence microscopy http://micro.magnet.fsu.edu/primer/index.html Partha Roy 1 Lecture Outline Definition of fluorescence Common fluorescent reagents Construction ti of a fluorescence microscope Optical

More information

Fluorescence spectroscopy

Fluorescence spectroscopy Fluorescence spectroscopy The light: electromagnetic wave Tamás Huber Biophysics seminar Dept. of Biophysics, University of Pécs 05-07. February 2013. Luminescence: light emission of an excited system.

More information

Fluorescence spectroscopy

Fluorescence spectroscopy Fluorescence spectroscopy The light: electromagnetic wave Zoltán Ujfalusi Biophysics seminar Dept. of Biophysics, University of Pécs 14-16 February 2011 Luminescence: light is not generated by high temperatures!!!

More information

Fluorescence spectroscopy

Fluorescence spectroscopy Fluorescence spectroscopy The light: electromagnetic wave Tamás Huber Biophysics seminar Dept. of Biophysics, University of Pécs 05-06. February 2014. 1 Luminescence: light emission of an excited system.

More information

Tris(2,2'-bipyridine)ruthenium(II) Dichloride Hexahydrate. [Ru(bpy) 3 ]Cl 2.6H 2 O

Tris(2,2'-bipyridine)ruthenium(II) Dichloride Hexahydrate. [Ru(bpy) 3 ]Cl 2.6H 2 O Tris(2,2'-bipyridine)ruthenium(II) Dichloride Hexahydrate [Ru(bpy) 3 ]Cl 2.6H 2 O 2,2'-Bipyridine 2,2'-bipyridine, commonly abbreviated as bpy, functions as a bidentate chelating ligand. The bpy in the

More information

The Green Fluorescent Protein. w.chem.uwec.edu/chem412_s99/ppt/green.ppt

The Green Fluorescent Protein. w.chem.uwec.edu/chem412_s99/ppt/green.ppt The Green Fluorescent Protein w.chem.uwec.edu/chem412_s99/ppt/green.ppt www.chem.uwec.edu/chem412_s99/ppt/green.ppt Protein (gene) is from a jellyfish: Aequorea victoria www.chem.uwec.edu/chem412_s99/ppt/green.ppt

More information

Fluorescense. Aromatic molecules often fluoresce (but DNA bases don't) Excitation ~ absorbance (Differences due to: ν h ' Fluorescence

Fluorescense. Aromatic molecules often fluoresce (but DNA bases don't) Excitation ~ absorbance (Differences due to: ν h ' Fluorescence Fluorescense Two types of spectra: Excitation: Detection λ fixed and scan excitation λ. Emission: Excitation λ fixed (usually at A max ) & scan detection λ. What goes up must come down Radiationless decay

More information

Time resolved fluorescence spectroscopy: An old technique to monitor protein higher order structure changes

Time resolved fluorescence spectroscopy: An old technique to monitor protein higher order structure changes Time resolved fluorescence spectroscopy: An old technique to monitor protein higher order structure changes Sergey Arzhantsev Division of Pharmaceutical Analysis, Office of Testing and Research Center

More information

Supplementary Figure 1. The normalized absorption and emission spectra of 605QD

Supplementary Figure 1. The normalized absorption and emission spectra of 605QD 1..8 65Q Absorbance 65Q Emission Cy5 Absorbance Cy5 Emission 1..8 Extiction Absorption Coefficient.6.4.2. 45 5 55 6 65 7 75 8 Wavelength (nm).6.4.2. Fluorescence Emission Intensity Supplementary Figure

More information

Fluorescence Microscopy

Fluorescence Microscopy Fluorescence Microscopy Dr. Arne Seitz Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Fluorescence Microscopy Why do we need fluorescence

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky FLUORESCENCE Matyas Molnar and Dirk Pacholsky 1 Information This lecture contains images and information from the following internet homepages http://micro.magnet.fsu.edu/primer/index.html http://www.microscopyu.com/

More information

Challenges to measuring intracellular Ca 2+ Calmodulin: nature s Ca 2+ sensor

Challenges to measuring intracellular Ca 2+ Calmodulin: nature s Ca 2+ sensor Calcium Signals in Biological Systems Lecture 3 (2/9/0) Measuring intracellular Ca 2+ signals II: Genetically encoded Ca 2+ sensors Henry M. Colecraft, Ph.D. Challenges to measuring intracellular Ca 2+

More information

Special Techniques 1. Mark Scott FILM Facility

Special Techniques 1. Mark Scott FILM Facility Special Techniques 1 Mark Scott FILM Facility SPECIAL TECHNIQUES Multi-photon microscopy Second Harmonic Generation FRAP FRET FLIM In-vivo imaging TWO-PHOTON MICROSCOPY Alternative to confocal and deconvolution

More information

FLIM Fluorescence Lifetime IMaging

FLIM Fluorescence Lifetime IMaging FLIM Fluorescence Lifetime IMaging Fluorescence lifetime t I(t) = F0 exp( ) τ 1 τ = k f + k nr k nr = k IC + k ISC + k bl Batiaens et al, Trends in Cell Biology, 1999 τ τ = fluorescence lifetime (~ns to

More information

Linearly polarized light

Linearly polarized light Fluorescence Anisotrop, Fluorescence Resonance nerg Transfer and Luminescence Luminescence that is caused b the absorption of radiation at one wavelength followed b reradiation usuall at a different wavelength.

More information

Chapter 4. the biological community to assay for protein-protein interactions. FRET describes the

Chapter 4. the biological community to assay for protein-protein interactions. FRET describes the 31 Chapter 4 Determination of nachr stoichiometry using Normalized Försters Resonance Energy Transfer (NFRET) Försters resonance energy transfer (FRET) has become a technique widely used in the biological

More information

Welcome! openmicberkeley.wordpress.com. Open Berkeley

Welcome! openmicberkeley.wordpress.com. Open Berkeley Welcome! openmicberkeley.wordpress.com Agenda Jen Lee: Introduction to FRET Marla Feller: Using FRET sensors to look at time resolved measurements Becky Lamason: Using FRET to determine if a bacterial

More information

Fluorescence Microscopy

Fluorescence Microscopy Fluorescence Microscopy Dr. Arne Seitz Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Fluorescence Microscopy Why do we need fluorescence

More information

BINF 6010 ITSC 8010 Fall 2011 Genomic Biotechnology Lab Spectrophotometry and Electrophoresis.

BINF 6010 ITSC 8010 Fall 2011 Genomic Biotechnology Lab Spectrophotometry and Electrophoresis. BINF 6010 ITSC 8010 Fall 2011 Genomic Biotechnology Lab Spectrophotometry and Electrophoresis http://webpages.uncc.edu/~jweller2 Topics Spectrophotometry Electrophoresis Sample preparation is monitored

More information

Application of Quantum Mechanics to Biology

Application of Quantum Mechanics to Biology Application of Quantum Mechanics to Biology How can we apply quantum mechanics to biology? Polymers of nucleotides and amino acids - millions of atoms bounded into a large molecule Visual System Must turn

More information

FRET from Multiple Pathways in Fluorophore Labeled DNA

FRET from Multiple Pathways in Fluorophore Labeled DNA Supporting Information for FRET from Multiple Pathways in Fluorophore Labeled DNA Joseph S. Melinger 1,*, Ani Khachatrian 1, Mario G. Ancona 1, Susan Buckhout-White 3, Ellen R. Goldman 3, Christopher M.

More information

Experiment 3: Fluorescence Spectroscopy I (continued) All life appears to be nurtured by the excitation of electrons by light in photosynthesis.

Experiment 3: Fluorescence Spectroscopy I (continued) All life appears to be nurtured by the excitation of electrons by light in photosynthesis. Experiment 3: Fluorescence Spectroscopy I (continued) Last week: Part I.A: Introduction to steady state spectra Today: Part 1.B: Fluorescence Quenching and the Stern-Volmer Relation Prelab Lecture 9feb17

More information

Using Quantum Dots in Fluorescence Resonance Energy Transfer Studies

Using Quantum Dots in Fluorescence Resonance Energy Transfer Studies p.1/31 Using Quantum Dots in Fluorescence Resonance Energy Transfer Studies Rajarshi Guha Pennsylvania State University p.2/31 Introduction Using organic fluorophores as labels A brief overview of fluorescence

More information

Fluorescence Resonance Energy Transfer (FRET) Microscopy

Fluorescence Resonance Energy Transfer (FRET) Microscopy Applications in Confocal Microscopy Fluorescence Resonance Energy Transfer (FRET) Microscopy Product Info Brochures Confocal Theory Java Tutorials Glossary Applications Image Gallery Resource Links The

More information

Lab 1: Ensemble Fluorescence Basics

Lab 1: Ensemble Fluorescence Basics Lab 1: Ensemble Fluorescence Basics (Last Edit: Feb 18, 2016) This laboratory module is divided into two sections. The first one is on organic fluorophores, and the second one is on ensemble measurement

More information

Dino-Lite knowledge & education. Fluorescence Microscopes

Dino-Lite knowledge & education. Fluorescence Microscopes Dino-Lite knowledge & education Fluorescence Microscopes Dino-Lite Fluorescence models Smallest fluorescence microscope in the world Revolution to biomedical and educational applications Flexible Easy

More information

Spectra Chacracterizations of Optical Nanoparticles

Spectra Chacracterizations of Optical Nanoparticles THAI NGUYEN UNIVERSITY OF EDUCATION Spectra Chacracterizations of Optical Nanoparticles Chu Viet Ha Department of Physics 18/2018 1 THAI NGUYEN UNIVERSITY OF EDUCATION Address 20 Luong Ngoc Quyen Street,

More information

Fluorescence Quenching of Human Serum Albumin by Caffeine

Fluorescence Quenching of Human Serum Albumin by Caffeine CHEM 411L Instrumental Analysis Laboratory Revision 2.1 Fluorescence Quenching of Human Serum Albumin by Caffeine In this laboratory exercise we will examine the fluorescence of Human Serum Albumin (HSA)

More information

1. The fluorescence process.

1. The fluorescence process. 1. The fluorescence process. 1.1 introduction Fluorescence is the result of a three-stage process that occurs in certain molecules (generally polyaromatic hydrocarbons or heterocycles) called fluorophores

More information

Characterization of Antibody-Antigen Interactions by Fluorescence Spectroscopy

Characterization of Antibody-Antigen Interactions by Fluorescence Spectroscopy 25 Characterization of Antibody-Antigen Interactions by Fluorescence Spectroscopy Sotiris Missailidis and Kevin Brady 1. Introduction Fluorescence spectroscopy is a widely used technique for the characterization

More information

Imaging facilities at WUR

Imaging facilities at WUR Imaging facilities at WUR Advanced light microscopy facilities at Wageningen UR Programme Thursday 13 June 2013 Lunch meeting organized by Cat-Agro Food 12.00 Welcome and sandwich lunch 12.10 Introduction

More information

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy Fluorescence Microscopy Louisiana Tech University Ruston, Louisiana Microscopy Workshop Dr. Mark DeCoster Associate Professor Biomedical Engineering 1 Terms and concepts to know: Signal to Noise Excitation

More information

Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting

Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting Institute of Industrial Information Technology Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting Optical Characterization of Materials, March 19, 2015 Sebastian Bauer, M.Sc. (Head:

More information

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging Rice/TCU REU on Computational Neuroscience Fundamentals of Molecular Imaging June 2, 2009 Neal Waxham 713-500-5621 m.n.waxham@uth.tmc.edu Objectives Introduction to resolution in light microscopy Brief

More information

Visualizing Cells Molecular Biology of the Cell - Chapter 9

Visualizing Cells Molecular Biology of the Cell - Chapter 9 Visualizing Cells Molecular Biology of the Cell - Chapter 9 Resolution, Detection Magnification Interaction of Light with matter: Absorbtion, Refraction, Reflection, Fluorescence Light Microscopy Absorbtion

More information

Sample region with fluorescent labeled molecules

Sample region with fluorescent labeled molecules FLUORESCENCE IMAGING I. Fluorescence-imaging with diffraction limited spots The resolution in optical microscopy has been hampered by the smallest spot possible (~ λ/2) that can be achieved by conventional

More information

Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements

Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements Technical Overview Authors Dr. Fabian Zieschang, Katherine MacNamara,

More information

Fuel Fluorescence Logging using the Optical Image Profiler (OIP)

Fuel Fluorescence Logging using the Optical Image Profiler (OIP) Fuel Fluorescence Logging using the Optical Image Profiler (OIP) Note: A Patent is Pending for this System. Daniel Pipp Chemist, Geoprobe Systems Presented May 2017 at the Battelle Bioremediation Symposium

More information

2012 HORIBA, Ltd. All rights reserved HORIBA, Ltd. All rights reserved.

2012 HORIBA, Ltd. All rights reserved HORIBA, Ltd. All rights reserved. Fluorescence in Biomolecular Research HORIBA Jobin Yvon IBH Ltd A division of HORIBA Scientific Kulwinder Sagoo Product Specialist February 27, 2013 Outline History of IBH HORIBA Group What is Fluorescence?

More information

Topics in Fluorescence Spectroscopy. Volume 3 Biochemical Applications

Topics in Fluorescence Spectroscopy. Volume 3 Biochemical Applications Topics in Fluorescence Spectroscopy Volume 3 Biochemical Applications Topics in Fluorescence Spectroscopy Edited by JOSEPH R. LAKOWICZ Volume 1: Techniques Volume 2: Principles Volume 3: Biochemical Applications

More information

How to Build the World s Fastest Spectrofluorometer. MF 2 Multi-Frequency Fluorometer

How to Build the World s Fastest Spectrofluorometer. MF 2 Multi-Frequency Fluorometer How to Build the World s Fastest Spectrofluorometer MF 2 Multi-Frequency Fluorometer Time is always on your side with a HORIBA Jobin Yvon MF 2 (Multi-Frequency Fluorometer) lifetime spectrofluorometer.

More information

Compensation: Fundamental Principles

Compensation: Fundamental Principles Flow Cytometry Seminar Series 2017 : Fundamental Principles Spillover correction in multicolor flow cytometry 28.02.2017 http://www.cytometry.uzh.ch Contents Fluorescence and its detection Absorption and

More information

Con-focal and Multi-photon Microscope Experiment Fundamental. Qian Hu, Lab of Laser Scanning Confocal & Two-Photon Microscopy, ION, CAS

Con-focal and Multi-photon Microscope Experiment Fundamental. Qian Hu, Lab of Laser Scanning Confocal & Two-Photon Microscopy, ION, CAS Con-focal and Multi-photon Microscope Experiment Fundamental Qian Hu, Lab of Laser Scanning Confocal & Two-Photon Microscopy, ION, CAS 1. Light is Electromagnetic Wave ν = c / λ 2. Image of a Point Source

More information

FLUORESCENT PEPTIDES. Outstanding Performance and Wide Application Range

FLUORESCENT PEPTIDES. Outstanding Performance and Wide Application Range FLUORESCENT PEPTIDES Peptides and amino acids labeled with and Tide Quencher TM We offer peptides and amino acids tagged with fluorescent dyes. They meet highest demands in fluorescence intensity and photo-stability,

More information

Chapter 1 Nanophotonics and Single Molecules

Chapter 1 Nanophotonics and Single Molecules Chapter 1 Nanophotonics and Single Molecules W.E. Moerner(*ü ), P. James Schuck, David P. Fromm, Anika Kinkhabwala, Samuel J. Lord, Stefanie Y. Nishimura, Katherine A. Willets, Arvind Sundaramurthy, Gordon

More information

Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell

Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell Philippe I. H. Bastiaens and Anthony Squire Fluorescence lifetime imaging microscopy (FLIM) is a technique

More information

Supporting Information for. Electrical control of Förster energy transfer.

Supporting Information for. Electrical control of Förster energy transfer. 1 Supporting Information for Electrical control of Förster energy transfer. Klaus Becker 1, John M. Lupton 1*, Josef Müller 1, Andrey. L. Rogach 1, Dmitri V. Talapin, Horst Weller & Jochen Feldmann 1 1

More information

The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems. Emmelyn M.

The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems. Emmelyn M. The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems Emmelyn M. Graham Degree of Doctor of Philosophy The University of Edinburgh

More information

Development of molecular cassettes for the excitation energy transfer in the red region of the spectrum

Development of molecular cassettes for the excitation energy transfer in the red region of the spectrum Development of molecular cassettes for the excitation energy transfer Josué Jiménez, a Alejandro Villacampa, a Antonia R. Agarrabeitia, a Florencio Moreno, a Beatriz L. Maroto, a Jorge Bañuelos, b Íñigo

More information

Workshop advanced light microscopy

Workshop advanced light microscopy Workshop advanced light microscopy Multi-mode confocal laser scanning microscope Jan Willem Borst Laboratory of Biochemistry Biomolecular Networks www.bic.wur.nl MicroSpectroscopy Centre Wageningen Microspectroscopy

More information

Supporting Information

Supporting Information upporting Information Impact of ubstituents on Excited tate and Photosensitizing Properties in Cationic Iridium(III) Complexes with Ligands of Coumarin 6 hin-ya Takizawa,*, aoya Ikuta, Fanyang Zeng, hohei

More information

Design for Manufacturability (DFM) in the Life Sciences

Design for Manufacturability (DFM) in the Life Sciences T E C H N I C A L N O T E Design for Manufacturability (DFM) in the Life Sciences Fluorescence Spectroscopy Product Platform Realized with TracePro TM Suite of Opto-Mechanical Design Software Tools Authors:

More information

Monitoring and Optimizing the Lipopolysaccharides-plasmid DNA interaction by FLIM-FRET

Monitoring and Optimizing the Lipopolysaccharides-plasmid DNA interaction by FLIM-FRET Transactions on Science and Technology Vol. 4, No. 3-3, 342-347, 2017 Monitoring and Optimizing the Lipopolysaccharides-plasmid DNA interaction by FLIM-FRET Nur Syahadatain Abdul Razak 1#, Clarence M.

More information

Multispectral Fluorescence Imaging. Laboratory exercise. Multi-spectral imaging

Multispectral Fluorescence Imaging. Laboratory exercise. Multi-spectral imaging Multispectral Fluorescence Imaging Laboratory exercise Multi-spectral imaging Lab supervisors: Arefeh Mousavi (arefeh.mousavi@fysik.lth.se) Yu-Chen Cheng (yu-chen.cheng@fysik.lth.se) Laboratory room: A306

More information

Fluorescence Resonance Energy Transfer (FRET) Based Sensors for Bioanalysis

Fluorescence Resonance Energy Transfer (FRET) Based Sensors for Bioanalysis University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-8-2004 Fluorescence Resonance Energy Transfer (FRET) Based Sensors for Bioanalysis

More information

Quantification of fluid temperature field using fluorescent anisotropy

Quantification of fluid temperature field using fluorescent anisotropy Quantification of fluid temperature field using fluorescent anisotropy Yuta Shugyo 1, Takuya Aida 1, Masahiro Motosuke 1,2,* 1: Dept. of Mechanical Engineering, Tokyo University of Science, Japan 2: Research

More information

Journal of Photochemistry and Photobiology A: Chemistry

Journal of Photochemistry and Photobiology A: Chemistry Journal of Photochemistry and Photobiology A: Chemistry 199 (2008) 236 241 Contents lists available at ScienceDirect Journal of Photochemistry and Photobiology A: Chemistry journal homepage: www.elsevier.com/locate/jphotochem

More information

Absorption of an electromagnetic wave

Absorption of an electromagnetic wave In vivo optical imaging?? Absorption of an electromagnetic wave Tissue absorption spectrum Extinction = Absorption + Scattering Absorption of an electromagnetic wave Scattering of an electromagnetic wave

More information

Crystal Growth, Optical and Thermal Studies of 4-Nitroaniline 4- Aminobenzoic Acid: A Fluorescent Material

Crystal Growth, Optical and Thermal Studies of 4-Nitroaniline 4- Aminobenzoic Acid: A Fluorescent Material Research Article Crystal Growth, Optical and Thermal Studies of 4-Nitroaniline 4- Aminobenzoic Acid: A Fluorescent Material A. Silambarasan, P. Rajesh * and P. Ramasamy Centre for Crystal Growth, SSN College

More information

single-molecule fluorescence spectroscopy

single-molecule fluorescence spectroscopy single-molecule fluorescence spectroscopy 5 dynamics of a single molecule by FRET michael börsch 18/07/2003 topics theory of fluorescence resonance energy transfer solvent effects and fluorescence quenching

More information

Chapter 4 Fluorescence Resonance Energy Transfer (FRET) by Minor Groove-Associated Cyanine-Polyamide Conjugates

Chapter 4 Fluorescence Resonance Energy Transfer (FRET) by Minor Groove-Associated Cyanine-Polyamide Conjugates Chapter 4 Fluorescence Resonance Energy Transfer (FRET) by Minor Groove-Associated Cyanine-Polyamide Conjugates The work described in this chapter was accomplished in collaboration with V. Rucker (Dervan

More information

Widefield Microscopy Bleed-Through

Widefield Microscopy Bleed-Through In widefield microscopy the excitation wavelengths which illuminate the sample, and the emission wavelengths which reach the CCD camera are selected throughout a filter cube. A filter cube consists of

More information

Editorial Metal-Enhanced Fluorescence

Editorial Metal-Enhanced Fluorescence Journal of Fluorescence, Vol. 12, No. 2, June 2002 ( 2002) Editorial Metal-Enhanced Fluorescence Chris D. Geddes 1,2 and Joseph R. Lakowicz 1 Received April 22, 2002; accepted April 25, 2002 KEY WORDS:

More information

The Phasor approach: Application to FRET analysis and Tissue autofluorescence

The Phasor approach: Application to FRET analysis and Tissue autofluorescence The Phasor approach: Application to FRET analysis and Tissue autofluorescence Laboratory for Fluorescence Dynamics University of California at Irvine lfd lfd Outline Background: Lifetime Intro to Fluorescence

More information

The analysis of fluorescence microscopy images for FRET detection

The analysis of fluorescence microscopy images for FRET detection The analysis of fluorescence microscopy images for FRET detection Ela Claridge, Dale J. Powner and Michael J.O. Wakelam School of Computer Science, The University of Birmingham B5 2TT Institute for Cancer

More information

INVESTIGATION OF THE INTERACTION BETWEEN NAPROXEN AND HUMAN SERUM ALBUMIN

INVESTIGATION OF THE INTERACTION BETWEEN NAPROXEN AND HUMAN SERUM ALBUMIN INVESTIGATION OF THE INTERACTION BETWEEN NAPROXEN AND HUMAN SERUM ALBUMIN A. PÎRNĂU, M. BOGDAN National R&D Institute for Isotopic and Molecular Technologies, 71 103 Donath str., 400293Cluj-Napoca, Romania

More information

and electron tunneling through proteins. Small-scale motions such as side-chain protein can take microseconds to seconds, depending on the protein.

and electron tunneling through proteins. Small-scale motions such as side-chain protein can take microseconds to seconds, depending on the protein. 1 Chapter 1 1.1 Our Approach We are interested in dynamic processes in proteins that occur over a broad range of timescales: protein folding, intrachain diffusion in unfolded proteins, and electron tunneling

More information

Fluorescence Imaging with Medical Applications

Fluorescence Imaging with Medical Applications Fluorescence Imaging with Medical Applications LABORATORY EXERCISE MULTI-SPECTRAL IMAGING Lab supervisors: Anne Harth (anne.harth@fysik.lth.se) Haichun Liu (haichun.liu@fysik.lth.se) Laboratory room: A207

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Doctoral thesis] DEVELOPMENT OF A REFERENCE METHOD FOR THE ABSOLUTE MEASURING OF FLUORESCENCE IN BIOLOGICAL ANALYSIS Original Citation: Intermite G.

More information

Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis

Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis Bilge Karaçalı, PhD Department of Electrical and Electronics Engineering Izmir Institute of Technology Outline Experimental design

More information

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1 Biophotonics Light Matter Interactions & Lasers NPTEL Biophotonics 1 Overview In this lecture you will learn, Light matter interactions: absorption, emission, stimulated emission Lasers and some laser

More information

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng Scientific Reports Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng 1 Supplementary figures and notes Supplementary Figure S1 Volumetric

More information

Real-Time PCR Principles and Applications

Real-Time PCR Principles and Applications Real-Time PCR Principles and Applications Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department Objectives Real-Time PCR Principles and

More information

AnaTag HiLyte Fluor 750 Microscale Protein Labeling Kit

AnaTag HiLyte Fluor 750 Microscale Protein Labeling Kit AnaTag HiLyte Fluor 750 Microscale Protein Labeling Kit Catalog # 72044 Kit Size 3 Conjugation Reactions This kit is optimized to conjugate HiLyte Fluor 750 SE to proteins (e.g., IgG). It provides ample

More information

Analysis of Luminescence Properties of Phosphorescent Polyimides under Low Temperature and Vacuum Conditions

Analysis of Luminescence Properties of Phosphorescent Polyimides under Low Temperature and Vacuum Conditions SCIENTIFIC INSTRUMENT NEWS 2017 Vol. M A R C H 8 Technical magazine of Electron Microscope and Analytical Instruments. Article Analysis of Luminescence Properties of Phosphorescent Polyimides under Low

More information

FRET measurement between YFP and CFP

FRET measurement between YFP and CFP FRET measurement between YFP and CFP EYFP and ECFP function as a donor-acceptor pair for fluorescence resonance energy transfer (FRET), in which excitation of the donor (cyan) molecule leads to emission

More information

Presented at the 51st Annual ASMS Conference on Mass Spectrometry and Allied Topics Montreal, 2003

Presented at the 51st Annual ASMS Conference on Mass Spectrometry and Allied Topics Montreal, 2003 FRET Measurements of Trapped Oligonucleotide Anions Allison S. Danell and Joel H. Parks ROWLAND INSTITUTE AT HARVARD, 100 EDWIN LAND BLVD., CAMBRIDGE, MA 02142 Presented at the 51st Annual ASMS Conference

More information

Prototype Microfluidic System for Fluorescence-Based Chemical Sensing

Prototype Microfluidic System for Fluorescence-Based Chemical Sensing Doi: 10.12982/cmujns.2014.0064 625 Prototype Microfluidic System for Fluorescence-Based Chemical Sensing Pattareeya Kittidachachan 1, Suparat Rujihan 1 and Badin Damrongsak 2* 1 Department of Physics,

More information

The Phasor approach: Application to FRET analysis and Tissue autofluorescence

The Phasor approach: Application to FRET analysis and Tissue autofluorescence The Phasor approach: Application to FRET analysis and Tissue autofluorescence Enrico Gratton University of California at Irvine lfd lfd Outline Background: Lifetime Intro to Fluorescence Lifetime Imaging

More information

Theremino DNA Meter. Fluorometer for DNA Measurements. Ana Rodriguez (MUSE) - Lodovico Lappetito (Theremino)

Theremino DNA Meter. Fluorometer for DNA Measurements. Ana Rodriguez (MUSE) - Lodovico Lappetito (Theremino) Theremino DNA Meter Fluorometer for DNA Measurements Ana Rodriguez (MUSE) - Lodovico Lappetito (Theremino) Theremino_DNAMeter_Hardware_ENG - 11/01/2016 Pag. 1 Table of Contents Principle of Operation...

More information

Fluorescence Quenching Studies on Some Substituted Amines by Phenolphthalein

Fluorescence Quenching Studies on Some Substituted Amines by Phenolphthalein IOSR Journal of Business and Management (IOSR-JBM) e-issn: 2278-487X, p-issn: 2319-7668. Volume 20, Issue 8. Ver. V (August. 2018), PP 79-84 www.iosrjournals.org Fluorescence Quenching Studies on Some

More information

ANAT 3231 Cell Biology Lab12 Stem Cell Analysis

ANAT 3231 Cell Biology Lab12 Stem Cell Analysis ANAT 3231 Cell Biology Lab12 Stem Cell Analysis 2 June 2010 Dr Antonio Lee Neuromuscular & Regenera9ve Medicine Unit School of Medical Sciences, UNSW Introduction to Flow Cytometry Contributed by Vittoria

More information

New developments in STED Microscopy

New developments in STED Microscopy New developments in STED Microscopy Arnold Giske*, Jochen Sieber, Hilmar Gugel, Marcus Dyba, Volker Seyfried, Dietmar Gnass Leica Microsystems CMS, Am Friedensplatz 3, 68126 Mannheim, Germany ABSTRACT

More information

Fluorescence Measurements of Denatured Proteins within Electrospray Droplets

Fluorescence Measurements of Denatured Proteins within Electrospray Droplets Fluorescence Measurements of Denatured Proteins within Droplets Joel H. Parks, Sandra E. Rodriguez-Cruz and Joseph T. Khoury The Rowland Institute for Science, Cambridge, MA 02142 www.rowland.org OVERVIEW

More information

Confocal Microscopy Analyzes Cells

Confocal Microscopy Analyzes Cells Choosing Filters for Fluorescence A Laurin Publication Photonic Solutions for Biotechnology and Medicine November 2002 Confocal Microscopy Analyzes Cells Reprinted from the November 2002 issue of Biophotonics

More information

Supporting Information for. Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor Acceptor

Supporting Information for. Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor Acceptor Supporting Information for Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor Acceptor Arrays in Nanofibers and Acquired Air Stability Pengfei Duan,

More information

Chapter 4. Fluorescence Studies of Hydroxy Indole Derivatives

Chapter 4. Fluorescence Studies of Hydroxy Indole Derivatives Chapter 4 Fluorescence Studies of Hydroxy Indole Derivatives Chapter 4 Fluorescence Studies of Hydroxy Indole Derivatives 81 4.1 Introduction Multiphoton excitation is particularly used to stimulate the

More information