The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1

Size: px
Start display at page:

Download "The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1"

Transcription

1 he Chapter Molecular 16: he Basis Molecular of Inheritance Basis of Inheritance Fig. 16-1

2 dditional Evidence hat DN Is the Genetic Material It was known that DN is a polymer of nucleotides, each consisting of a nitrogenous base, a sugar, and a phosphate group In 1950, Erwin Chargaff reported that DN composition varies from one species to the next his evidence of diversity made DN a more credible candidate for the genetic material nimation: DN and RN Structure Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

3 Chargaff s rule states that in any species there is an equal number of and bases, and an equal number of G and C bases Knowing what we already know about DN structure, why do you think that this rule would be valid? Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

4 Building a Structural Model of DN: Scientific Inquiry Maurice Wilkins and Rosalind Franklin were using a technique called X-ray crystallography to study molecular structure Franklin produced a picture of the DN molecule using this technique (a) Rosalind Franklin (b) Franklin s X-ray diffraction photograph of DN

5 Franklin s X-ray crystallographic images of DN enabled Watson to deduce that DN was helical he X-ray images also enabled Watson to deduce the width of the helix and the spacing of the nitrogenous bases he width suggested that the DN molecule was made up of two strands, forming a double helix nimation: DN Double Helix Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

6 Fig end Hydrogen bond end 1 nm 3.4 nm 0.34 nm end end (a) Key features of DN structure (b) Partial chemical structure (c) Space-filling model

7 Watson and Crick built models of a double helix to conform to the X-rays and chemistry of DN Franklin had concluded that there were two antiparallel sugar-phosphate backbones, with the nitrogenous bases paired in the molecule s interior - (this means two separate strands made up of, G, C and ). Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

8 t first, Watson and Crick thought the bases paired like with like ( with, and so on), but such pairings did not result in a uniform width Instead, pairing a purine with a pyrimidine resulted in a uniform width consistent with the X-ray Purine + purine: too wide Pyrimidine + pyrimidine: too narrow Purine + pyrimidine: width consistent with X-ray data

9 Watson and Crick reasoned that the pairing was more specific, dictated by the base structures hey determined that adenine () paired only with thymine (), and guanine (G) paired only with cytosine (C) he Watson-Crick model explains Chargaff s rules: in any organism the amount of =, and the amount of G = C Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

10 Fig denine () hymine () Guanine (G) Cytosine (C)

11 Fig G C G C (a) Parent molecule G C G C (c) Daughter DN molecules, each consisting of one parental strand and one new strand (b) Separation of strands G C G C G C G C

12 Getting Started Replication begins at special sites called origins of replication (meaning where replication starts), where the two DN strands are separated, opening up a replication bubble eukaryotic chromosome may have hundreds or even thousands of origins of replication Replication proceeds in both directions from each origin, until the entire molecule is copied nimation: Origins of Replication Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

13 Fig Origin of replication Parental (template) strand Daughter (new) strand Doublestranded DN molecule wo daughter DN molecules Replication bubble Replication fork 0.5 µm (a) Origins of replication in E. coli Origin of replication Double-stranded DN molecule Bubble Parental (template) strand Daughter (new) strand Replication fork 0.25 µm wo daughter DN molecules (b) Origins of replication in eukaryotes

14 Fig Single-strand binding proteins Primase opoisomerase RN primer Helicase

15 Synthesizing a New DN Strand Enzymes called DN polymerases catalyze the elongation of new DN at a replication fork Most DN polymerases require a primer and a DN template strand he rate of elongation is about 500 nucleotides per second in bacteria and 50 per second in human cells Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

16 ntiparallel Elongation he antiparallel structure of the double helix (two strands oriented in opposite directions) affects replication DN polymerases add nucleotides only to the free end of a growing strand long one template strand of DN, the DN polymerase synthesizes a leading strand continuously, moving toward the replication fork nimation: Leading Strand Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

17 Fig a Overview Origin of replication Leading strand Lagging strand Primer Lagging strand Leading strand Overall directions of replication

18 Fig b Origin of replication Parental DN RN primer Sliding clamp DN pol III

19 o elongate the other new strand, called the lagging strand, DN polymerase must work in the direction away from the replication fork he lagging strand is synthesized as a series of segments called Okazaki fragments, which are joined together by DN ligase nimation: Lagging Strand Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

20 Fig Overview Origin of replication Leading strand Lagging strand Lagging strand 2 1 Overall directions of replication Leading strand emplate strand RN primer 1 Okazaki fragment Overall direction of replication

21 Proofreading and Repairing DN DN polymerases proofread newly made DN, replacing any incorrect nucleotides In mismatch repair of DN, repair enzymes correct errors in base pairing In nucleotide excision repair, a nuclease cuts out and replaces damaged stretches of DN DN polymerase DN ligase Nuclease

BIOLOGY 101. CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions

BIOLOGY 101. CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions BIOLOGY 101 CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions Life s Operating Instructions CONCEPTS: 16.1 DNA is the genetic material 16.2 Many proteins work together in DNA

More information

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE CHAPTER 16 MOLECULAR BASIS OF INHERITANCE DNA as genetic material? Deducted that DNA is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

MOLECULAR BASIS OF INHERITANCE

MOLECULAR BASIS OF INHERITANCE MOLECULAR BASIS OF INHERITANCE C H A P T E R 1 6 as genetic material? Deducted that is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

DNA Structure. DNA: The Genetic Material. Chapter 14

DNA Structure. DNA: The Genetic Material. Chapter 14 DNA: The Genetic Material Chapter 14 DNA Structure DNA is a nucleic acid. The building blocks of DNA are nucleotides, each composed of: a 5-carbon sugar called deoxyribose a phosphate group (PO 4 ) a nitrogenous

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The DNA Molecule: The Molecular Basis of Inheritance

The DNA Molecule: The Molecular Basis of Inheritance Slide hapter 6 he DN Molecule: he Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil ampbell and Jane Reece Lectures by hris Romero, updated by Erin Barley

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance The Molecular Basis of Inheritance Chapter 16 Objectives Describe the contributions of the following people: Griffith; Avery, McCary, and MacLeod; Hershey and Chase; Chargaff; Watson and Crick; Franklin;

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Life s Operating Instructions In 1953, James

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm Fig. 16-7a end Hydrogen bond end 1 nm 3.4 nm 0.34 nm (a) Key features of DNA structure end (b) Partial chemical structure end Fig. 16-8 Adenine (A) Thymine (T) Guanine (G) Cytosine (C) Concept 16.2: Many

More information

Chapter 16 The Molecular Basis of Inheritance

Chapter 16 The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Chromosomes and DNA Morgan s experiments with Drosophila were able to link hereditary factors to specific locations on chromosomes. The double-helical model

More information

BIOLOGY. Chapter 14 DNA Structure and Function

BIOLOGY. Chapter 14 DNA Structure and Function BIOLOY hapter 14 DN Structure and Function Figure 14.11 Figure 16.22a Figure 14.11 DN double helix (2 nm in diameter) Nucleosome (10 nm in diameter) DN, the double helix Histones Histones Histone tail

More information

Chromosomes. Nucleosome. Chromosome. DNA double helix. Coils. Supercoils. Histones

Chromosomes. Nucleosome. Chromosome. DNA double helix. Coils. Supercoils. Histones Chromosomes Chromosome Nucleosome DNA double helix Coils Supercoils Histones Evidence That DNA Can Transform Bacteria Frederick Griffith s experiment 1928 Griffith called the phenomenon transformation

More information

3.A.1 DNA and RNA: Structure and Replication

3.A.1 DNA and RNA: Structure and Replication 3.A.1 DNA and RNA: Structure and Replication Each DNA polymer is made of Nucleotides (monomer) which are made of: a) Phosphate group: Negatively charged and polar b) Sugar: deoxyribose- a 5 carbon sugar

More information

Essential Questions. DNA: The Genetic Material. Copyright McGraw-Hill Education

Essential Questions. DNA: The Genetic Material. Copyright McGraw-Hill Education Essential Questions Which experiments led to the discovery of DNA as the genetic material? What is the basic structure of DNA? What is the basic structure of eukaryotic chromosomes? Vocabulary Review nucleic

More information

DNA Replication. Packet #17 Chapter #16

DNA Replication. Packet #17 Chapter #16 DNA Replication Packet #17 Chapter #16 1 HISTORICAL FACTS ABOUT DNA 2 Historical DNA Discoveries 1928 Frederick Griffith finds a substance in heat-killed bacteria that transforms living bacteria 1944 Oswald

More information

copyright cmassengale 2

copyright cmassengale 2 1 copyright cmassengale 2 History of DNA Early scientists thought protein was the cell s hereditary material because it was more complex than DNA Proteins were composed of 20 different amino acids in long

More information

DNA and Replication 1

DNA and Replication 1 DNA and Replication 1 History of DNA 2 History of DNA Early scientists thought protein was the cell s hereditary material because it was more complex than DNA Proteins were composed of 20 different amino

More information

Chapter 9: DNA: The Molecule of Heredity

Chapter 9: DNA: The Molecule of Heredity Chapter 9: DNA: The Molecule of Heredity What is DNA? Answer: Molecule that carries the blueprint of life General Features: DNA is packages in chromosomes (DNA + Proteins) Gene = Functional segment of

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance LEURE PRESENIONS For MPBELL BIOLOY, NINH EDIION Jane B. Reece, Lisa. Urry, Michael L. ain, Steven. Wasserman, Peter V. Minorsky, Robert B. Jackson hapter 6 he Molecular Basis of Inheritance Lectures by

More information

DNA Replication and Repair

DNA Replication and Repair DN Replication and Repair http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/cendog.gif DN Replication genetic information is passed on to the next generation semi-conservative Parent molecule with

More information

DNA: The Primary Source of Heritable Information. Genetic information is transmitted from one generation to the next through DNA or RNA

DNA: The Primary Source of Heritable Information. Genetic information is transmitted from one generation to the next through DNA or RNA DNA and Replication DNA: The Primary Source of Heritable Information Genetic information is transmitted from one generation to the next through DNA or RNA Chromosomes Non-eukaryotic (bacteria) organisms

More information

The Genetic Material. The Genetic Material. The Genetic Material. DNA: The Genetic Material. Chapter 14

The Genetic Material. The Genetic Material. The Genetic Material. DNA: The Genetic Material. Chapter 14 DNA: Chapter 14 Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia there are 2 strains of Streptococcus: - S strain is virulent - R strain is nonvirulent

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

DNA: The Genetic Material. Chapter 14

DNA: The Genetic Material. Chapter 14 DNA: The Genetic Material Chapter 14 The Genetic Material Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia there are 2 strains of Streptococcus: - S strain

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 16 he Molecular Basis of Inheritance Dr. Wendy Sera Houston ommunity ollege Biology 1406 Key oncepts in hapter 16 1. DN is the genetic material 2. Many proteins work together in DN replication and

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 6 he Molecular Basis of Inheritance Dr. Wendy Sera Key oncepts in hapter 6. DN is the genetic material. Many proteins work together in DN replication and repair. 3. chromosome consists of a DN molecule

More information

Chapter 16. The Molecular Basis of Inheritance. Biology Kevin Dees

Chapter 16. The Molecular Basis of Inheritance. Biology Kevin Dees Chapter 16 The Molecular Basis of Inheritance DNA Life s instructions!!!! Deoxyribonucleic Acid Nucleic acid polymer from nucleotide monomers Unique in that it can: Self replicate Carry information History

More information

The Structure of DNA

The Structure of DNA The Structure of DNA Questions to Ponder 1) How is the genetic info copied? 2) How does DNA store the genetic information? 3) How is the genetic info passed from generation to generation? The Structure

More information

1. DNA Structure. Genetic Material: Protein or DNA? 10/28/2015. Chapter 16: DNA Structure & Replication. 1. DNA Structure. 2.

1. DNA Structure. Genetic Material: Protein or DNA? 10/28/2015. Chapter 16: DNA Structure & Replication. 1. DNA Structure. 2. hapter 6: DN Structure & Replication. DN Structure 2. DN Replication. DN Structure hapter Reading pp. 33-38 enetic Material: Protein or DN? Until the early 950 s no one knew for sure, but it was generally

More information

of Inheritance BIOL 222

of Inheritance BIOL 222 h. 16 he Molecular Basis of Inheritance of Inheritance BIOL 222 Overview: Life s Opera:ng Instruc:ons James Watson and Francis rick 1953 produced double helical model for the structure of DN. H. Morgan

More information

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein Chapter 16 DNA: The Genetic Material The Nature of Genetic Material Chromosomes - DNA and protein Genes are subunits DNA = 4 similar nucleotides C(ytosine) A(denine) T(hymine) G(uanine) Proteins = 20 different

More information

DNA stands for deoxyribose nucleic acid.

DNA stands for deoxyribose nucleic acid. 1 DNA stands for deoxyribose nucleic acid. DNA controls the kind of cell which is formed (i.e. muscle, blood, nerve). DNA controls the type of organism which is produced (i.e. buttercup, giraffe, herring,

More information

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology Friday, April 17 th Crash Course: DNA, Transcription and Translation Today I will 1. Review the component parts of a DNA molecule. 2. Describe the process of transformation. 3. Explain what is meant by

More information

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry Overview: Life s Operating Instructions In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA, the substance of inheritance,

More information

Chapter 16 Molecular Basis of. Chapter 16. Inheritance (DNA structure and Replication) Helicase Enzyme

Chapter 16 Molecular Basis of. Chapter 16. Inheritance (DNA structure and Replication) Helicase Enzyme Chapter 16 Chapter 16 Molecular Basis of Inheritance (DNA structure and Replication) Helicase Enzyme The Amazing Race What is the genetic material? DNA or protein? 1928 Griffith transformation of pneumonia

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 16 he Molecular Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil ampbell and Jane Reece Lectures by hris Romero Scientific History he march to understanding that DN is

More information

Transformation: change in genotype & phenotype due to assimilation of external DNA by a cell.

Transformation: change in genotype & phenotype due to assimilation of external DNA by a cell. DNA Replication Chapter 16: DNA as Genetic Material Genes are on Chromosomes T.H. Morgan o Working with Drosophila (fruit flies) o Genes are on chromosomes o But is it the protein or the DNA of the chromosomes

More information

Hershey & Chase Avery, MacLeod, & McCarty DNA: The Genetic Material

Hershey & Chase Avery, MacLeod, & McCarty DNA: The Genetic Material DA: The Genetic Material Chapter 14 Griffith s experiment with Streptococcus pneumoniae Live S strain cells killed the mice Live R strain cells did not kill the mice eat-killed S strain cells did not kill

More information

DNA stands for deoxyribose nucleic acid

DNA stands for deoxyribose nucleic acid DNA DNA stands for deoxyribose nucleic acid This chemical substance is present in the nucleus of all cells in all living organisms DNA controls all the chemical changes which take place in cells DNA Structure

More information

CH 4 - DNA. DNA = deoxyribonucleic acid. DNA is the hereditary substance that is found in the nucleus of cells

CH 4 - DNA. DNA = deoxyribonucleic acid. DNA is the hereditary substance that is found in the nucleus of cells CH 4 - DNA DNA is the hereditary substance that is found in the nucleus of cells DNA = deoxyribonucleic acid» its structure was determined in the 1950 s (not too long ago).» scientists were already investigating

More information

DNA STRUCTURE & REPLICATION

DNA STRUCTURE & REPLICATION DNA STRUCTURE & REPLICATION A MODEL OF DNA In 1953, two scientists named Watson & Crick built a model of DNA that demonstrates its exact structure and function. They called this model a double helix, which

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 16 The Molecular Basis of Inheritance

More information

Lecture Series 8 DNA and Its Role in Heredity

Lecture Series 8 DNA and Its Role in Heredity Lecture Series 8 DNA and Its Role in Heredity DNA and Its Role in Heredity A. DNA: The Genetic Material B. The Structure of DNA C. DNA Replication D. The Mechanism of DNA Replication E. DNA Proofreading

More information

DNA and Its Role in Heredity. DNA and Its Role in Heredity. A. DNA: The Genetic Material. A. DNA: The Genetic Material.

DNA and Its Role in Heredity. DNA and Its Role in Heredity. A. DNA: The Genetic Material. A. DNA: The Genetic Material. DNA and Its Role in Heredity A. DNA: The Genetic Material Lecture Series 8 DNA and Its Role in Heredity B. The Structure of DNA C. DNA E. DNA Proofreading and Repair F. Practical Applications of DNA A.

More information

BIOLOGY DNA. DNA: The Molecular Basis of Inheritance. DNA s Discovery. Watson and Crick. Rosalind Franklin. The Players. Deoxyribonucleic acid DNA

BIOLOGY DNA. DNA: The Molecular Basis of Inheritance. DNA s Discovery. Watson and Crick. Rosalind Franklin. The Players. Deoxyribonucleic acid DNA 6 MPBELL BIOLOY ENH EDIION Reece Urry ain Wasserman Minorsky Jackson DN: he Molecular Basis of Inheritance DN Deoxyribonucleic acid DN he blueprint to making proteins!!! hromosomes located inside the nucleus

More information

Name: - Bio A.P. DNA Replication & Protein Synthesis

Name: - Bio A.P. DNA Replication & Protein Synthesis Name: - Bio A.P. DNA Replication & Protein Synthesis 1 ESSENTIAL KNOWLEDGE Big Idea 3: Living Systems store, retrieve, transmit and respond to information critical to living systems Enduring Understanding:

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 16 he Molecular Basis of Inheritance Edited by Shawn Lester PowerPoint Lectures for Biology, Seventh Edition Neil ampbell and Jane Reece Lectures by hris Romero verview: Life s perating Instructions

More information

Chapter 16 The Molecular Basis of Inheritance

Chapter 16 The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Question? Traits are inherited on chromosomes, but what in the chromosomes is the genetic material? Two possibilities: Protein DNA Qualifications Protein:

More information

Discovery of nucleic acid. What is the genetic material? DNA is made up of: Genetic material = DNA. Griffith s mice experiment.

Discovery of nucleic acid. What is the genetic material? DNA is made up of: Genetic material = DNA. Griffith s mice experiment. Chapter 9 DN: he Molecule of Heredity What is DN? nswer: Molecule that carries the blueprint of life General Features: DN is packages in chromosomes (DN + Proteins) Gene = Functional segment of DN located

More information

AP Biology Chapter 16 Notes:

AP Biology Chapter 16 Notes: AP Biology Chapter 16 Notes: I. Chapter 16: The Molecular Basis of Inheritance a. Overview: i. April 1953 James Watson and Francis Crick great the double helix model of DNA- deoxyribonucleic acid ii. DNA

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance 6 he Molecular Basis of Inheritance MPBELL BIOLOY ENH EDIION Reece Urry ain Wasserman Minorsky Jackson Life s Operating Instructions In 953, James Watson and Francis rick introduced an elegant double-helical

More information

All This For Four Letters!?! DNA and Its Role in Heredity

All This For Four Letters!?! DNA and Its Role in Heredity All This For Four Letters!?! DNA and Its Role in Heredity What Is the Evidence that the Gene Is DNA? By the 1920s, it was known that chromosomes consisted of DNA and proteins. A new dye stained DNA and

More information

Lecture 15: 05/24/16. DNA: Molecular basis of Inheritance

Lecture 15: 05/24/16. DNA: Molecular basis of Inheritance Lecture 15: 05/24/16 DN: Molecular basis of Inheritance 1 DN Double Helix 2 3 DN: Molecular basis of Inheritance Historical Overview! First Isolation of DN DN as genetic material ransformation change in

More information

BIOLOGY. The Molecular Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. The Molecular Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 16 The Molecular Basis of Inheritance Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life s Operating Instructions

More information

THE STRUCTURE AND FUNCTION OF DNA

THE STRUCTURE AND FUNCTION OF DNA THE STRUCTURE AND FUNCTION OF DNA 1. DNA is our genetic code!!! It is passed from generation to generation. It carries information that controls the functions of our cells. DNA stands for deoxyribonucleic

More information

Chapter 16: The Molecular Basis of Inheritance

Chapter 16: The Molecular Basis of Inheritance AP Biology Reading Guide Name Chapter 16: The Molecular Basis of Inheritance Concept 16.1 DNA is the genetic material 1. What are the two chemical components of chromosomes? 2. The search for identifying

More information

Chapter 16: The Molecular Basis of Inheritance

Chapter 16: The Molecular Basis of Inheritance Name Period Chapter 16: The Molecular Basis of Inheritance Concept 16.1 DNA is the genetic material 1. What are the two chemical components of chromosomes? 2. Why did researchers originally think that

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance LEURE PRESENIONS For MPBELL BIOLOY, NINH EDIION Jane B. Reece, Lisa. Urry, Michael L. ain, Steven. Wasserman, Peter V. Minorsky, Robert B. Jackson hapter 16 he Molecular Basis of Inheritance Lectures by

More information

2. Why did researchers originally think that protein was the genetic material?

2. Why did researchers originally think that protein was the genetic material? AP Biology Chapter 13 Reading Guide The Molecular Basis of Inheritance Concept 13.1 DNA is the Genetic Material 1. What are the two chemical components of chromosomes? 2. Why did researchers originally

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance The Molecular Basis of Inheritance Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff

More information

DNA Model Building and Replica3on

DNA Model Building and Replica3on DNA Model Building and Replica3on DNA Replication S phase Origins of replication in E. coli and eukaryotes (a) Origin of replication in an E. coli cell Origin of replication Bacterial chromosome Doublestranded

More information

10/23/2011. Quiz Oct Overview: Life s Operating Instructions DNA

10/23/2011. Quiz Oct Overview: Life s Operating Instructions DNA hapter 6 DN: he Molecular Basis of Inheritance Quiz Oct 23 20. In the protein coupled receptor - IP3 pathway, the α subunit of the -protein activates what molecule? 2. In the protein coupled receptor -

More information

Brief History. Many people contributed to our understanding of DNA

Brief History. Many people contributed to our understanding of DNA DNA (Ch. 16) Brief History Many people contributed to our understanding of DNA T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff (1947) Hershey & Chase (1952)

More information

4) separates the DNA strands during replication a. A b. B c. C d. D e. E. 5) covalently connects segments of DNA a. A b. B c. C d. D e.

4) separates the DNA strands during replication a. A b. B c. C d. D e. E. 5) covalently connects segments of DNA a. A b. B c. C d. D e. 1) Chargaff's analysis of the relative base composition of DNA was significant because he was able to show that a. the relative proportion of each of the four bases differs from species to species. b.

More information

DNA: The Genetic Material. Chapter 14. Genetic Material

DNA: The Genetic Material. Chapter 14. Genetic Material DNA: The Genetic Material Chapter 14 Genetic Material Frederick Griffith, 1928 Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia 2 strains of Streptococcus: - S strain virulent - R strain

More information

Structure and Replication

Structure and Replication Structure and Replication 6.A: Students will identify components of DNA, and describe how information for specifying traits of an organism is carried in the DNA 6.B: Students will recognize that components

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.

More information

DNA Structure and Replica2on

DNA Structure and Replica2on DNA Structure and Replica2on Structure of DNA James Watson and Francis Crick (with Maurice Wilkins) awarded the Nobel Prize in 1962 for the construc2on of the double helix model of DNA Rosalind Franklin

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Watson and Crick 1953 article in Nature Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible

More information

Purines vs. Pyrimidines

Purines vs. Pyrimidines Introduction to Genetics/DNA Replication The DNA molecule is found in the nucleus and is composed of nucleotides The DNA Molecule Composed of 2 polymers of nucleotides Polymers are oriented in antiparallel

More information

Name period date AP BIO- 2 nd QTR 6 Week Test Review

Name period date AP BIO- 2 nd QTR 6 Week Test Review Name period date AP BIO- 2 nd QTR 6 Week Test Review Cellular Respiration 1. In the following reaction, C6H12O6 + 6 O2 6 CO2 + 6 H2O + Energy, identify which is reduced and which is oxidized: a. Glucose

More information

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16 Wednesday, April 9 th DNA The Genetic Material Replication Chapter 16 Modified from Kim Foglia Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick

More information

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information DNA: CH 13 How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information Discovering DNA s Function 1928: Frederick Griffith studied

More information

Double helix structure of DNA

Double helix structure of DNA Replication Double helix structure of It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material. Watson & Crick

More information

Nucleic acids and protein synthesis

Nucleic acids and protein synthesis THE FUNCTIONS OF DNA Nucleic acids and protein synthesis The full name of DNA is deoxyribonucleic acid. Every nucleotide has the same sugar molecule and phosphate group, but each nucleotide contains one

More information

Biology 30 DNA Review: Importance of Meiosis nucleus chromosomes Genes DNA

Biology 30 DNA Review: Importance of Meiosis nucleus chromosomes Genes DNA Biology 30 DNA Review: Importance of Meiosis Every cell has a nucleus and every nucleus has chromosomes. The number of chromosomes depends on the species. o Examples: Chicken 78 Chimpanzee 48 Potato 48

More information

DNA replication. DNA replication. replication model. replication fork. chapter 6

DNA replication. DNA replication. replication model. replication fork. chapter 6 DN chapter 6 DN two complementary s bases joined by hydrogen bonds separation of s each - template determines order of nucleotides in duplicate parent DN s separate two identical daughter s model dispersive

More information

DNA: Structure and Replication - 1

DNA: Structure and Replication - 1 DNA: Structure and Replication - 1 We have briefly discussed that DNA is the genetic molecule of life. In eukaryotic organisms DNA (along with its histone proteins) is found in chromosomes. All cell activities

More information

Unit 3 Part II: Modern Genetics p

Unit 3 Part II: Modern Genetics p Unit 3.notebook June 03, 2014 Unit 3 Part II: Modern Genetics p.568 569 This part of the unit will focus on DNA how it s structure was determined how it replicates and how it codes for proteins. Mar 21

More information

DNA The Genetic Material

DNA The Genetic Material DNA The Genetic Material 2006-2007 Chromosomes related to phenotype T.H. Morgan working with Drosophila fruit flies associated phenotype with specific chromosome white-eyed male had specific X chromosome

More information

The Molecular Basis of Inheritance (Ch. 13)

The Molecular Basis of Inheritance (Ch. 13) The Molecular Basis of Inheritance (Ch. 13) Many people contributed to our understanding of DNA T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff (1947) Hershey

More information

AP Biology Day 27. Wednesday, October 26, 2016

AP Biology Day 27. Wednesday, October 26, 2016 AP Biology Day 27 Wednesday, October 26, 2016 Do-Now 1. Double check Is your unit log complete? Is your lab notebook up to date with scores? Did you write your Unit 4 log standards? Did you begin filling

More information

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase DNA and Replication TEKS (6) Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: (A)

More information

Chapter 10 - Molecular Biology of the Gene

Chapter 10 - Molecular Biology of the Gene Bio 100 - Molecular Genetics 1 A. Bacterial Transformation Chapter 10 - Molecular Biology of the Gene Researchers found that they could transfer an inherited characteristic (e.g. the ability to cause pneumonia),

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Watson and Crick 1953 1953 article in Nature Directionality of DNA You need to number the carbons! u it matters! u 3 refers to the 3 carbon on the sugar u 5 refers to the 5 carbon

More information

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Chapter 9 Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination 1 Genetics Genome Chromosome Gene Protein Genotype Phenotype 2 Terms and concepts gene Fundamental unit of heredity

More information

DNA Structure and Replication

DNA Structure and Replication DA Structure and Replication WHAT IS DA We know: DA is the hereditary material DA has a double helix structure Made of four bases; A,T,C,G Sugar-Phosphate backbone DA replication is semi-conservative Timeline

More information

DNA: The Molecule of Heredity How did scientists discover that genes are made of DNA?

DNA: The Molecule of Heredity How did scientists discover that genes are made of DNA? DNA: The Molecule of Heredity How did scientists discover that genes are made of DNA? By the late 1800s, scientists knew that genetic information existed as distinct units called genes. hapter 11 By the

More information

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA DNA Replication DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA molecule can assume different structures

More information

Worksheet Structure of DNA and Replication

Worksheet Structure of DNA and Replication Eastern Intermediate High School Honors Biology Name: Period: Date: Worksheet Structure of DN and Replication Directions: Label the diagram below with the following choices: Nucleotide Deoxyribose Phosphate

More information

DNA STRUCTURE AND REPLICATION

DNA STRUCTURE AND REPLICATION AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 2 Chapter 16 Activity #2 BUILDING BLOCKS OF DNA: Nucleotides: NAME DATE PERIOD DNA STRUCTURE AND REPLICATION 1. 5 carbon sugar (deoxyribose) 2. Nitrogenous

More information

Molecular Genetics I DNA

Molecular Genetics I DNA Molecular Genetics I DNA Deoxyribonucleic acid is the molecule that encodes the characteristics of living things. It is the molecule that is passed from a mother cell to daughter cells, and the molecule

More information

From Gene to Protein

From Gene to Protein 8.2 Structure of DNA From Gene to Protein deoxyribonucleic acid - (DNA) - the ultimate source of all information in a cell This information is used by the cell to produce the protein molecules which are

More information

I. DNA as Genetic Material Figure 1: Griffith s Experiment. Frederick Griffith:

I. DNA as Genetic Material Figure 1: Griffith s Experiment. Frederick Griffith: I. DNA as Genetic Material Figure 1: Griffith s Experiment Frederick Griffith: a) Frederick Griffith suspected that some component of the S strain was being passed along to the R strain, causing it to

More information

Quiz 1. Bloe8 Chapter question online student quizzes

Quiz 1. Bloe8 Chapter question online student quizzes Bloe8 Chapter 9 2 15-question online student quizzes Questions are organized by section number and have an (F), (C), or (A) at the beginning to designate the modified Bloom categories used in the test

More information

Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery.

Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery. Hershey-Chase Bacteriophage Experiment - 1953 Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery. Bacteriophages are composed

More information

The flow of Genetic information

The flow of Genetic information The flow of Genetic information http://highered.mcgrawhill.com/sites/0072507470/student_view0/chapter3/animation dna_replication quiz_1_.html 1 DNA Replication DNA is a double-helical molecule Watson and

More information

DNA replication. DNA replication. replication model. replication fork. chapter 6

DNA replication. DNA replication. replication model. replication fork. chapter 6 DN chapter 6 DN two complementary s bases joined by hydrogen bonds separation of s each - template determines order of nucleotides in duplicate parent DN s separate two identical daughter s model dispersive

More information