Microbial Nutrition and Growth

Size: px
Start display at page:

Download "Microbial Nutrition and Growth"

Transcription

1 PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 6 Microbial Nutrition and Growth

2 CHNO

3 Growth Requirements Nutrients: Chemical and Energy Requirements Sources of carbon, energy, and electrons Two groups of organisms based on source of carbon Autotrophs Heterotrophs Two groups of organisms based on source of energy Chemotrophs Phototrophs Two groups of organisms based on source of electrons Organotrophs Lithotrophs

4 Figure 6.1 Four basic groups of organisms based on their carbon and energy sources. Quiz

5 Growth Requirements Nutrients: Chemical and Energy Requirements Oxygen requirements Oxygen is essential for obligate aerobes Oxygen is deadly for obligate anaerobes How can this be true? Toxic forms of oxygen are highly reactive and excellent oxidizing agents Resulting oxidation causes irreparable damage to cells

6 Growth Requirements Nutrients: Chemical and Energy Requirements Oxygen requirements Four toxic forms of oxygen Singlet oxygen Superoxide radicals (superoxide dismutase) Peroxide anion (catalase/hydrogen peroxide) Hydroxyl radical Anaerobes lack these enzymes

7 Figure 6.2 Catalase test. Catalase destroys hydrogen peroxide to generate?

8 Figure 6.3 Using a liquid thioglycollate growth medium to identify the oxygen requirements of organisms. Oxygen requirements Oxygen concentration High Loosefitting cap Low Obligate aerobes Obligate anaerobes Facultative anaerobes Aerotolerant anaerobes

9 Growth Requirements Nutrients: Chemical and Energy Requirements Nitrogen requirements All cells recycle nitrogen from amino acids and nucleotides Nitrogen fixation by certain bacteria is essential to life on Earth

10 Growth Requirements Nutrients: Chemical and Energy Requirements Other chemical requirements Phosphorus Sulfur Trace elements Only required in small amounts Growth factors (eg vitamins) Necessary organic chemicals that cannot be synthesized by certain organisms

11

12 Growth Requirements Physical Requirements Temperature Temperature affects three-dimensional structure of proteins Lipid-containing membranes of cells and organelles are temperature sensitive If too low, membranes become rigid and fragile If too high, membranes become too fluid

13 Figure 6.4 The effects of temperature on microbial growth. Minimum Maximum Optimum 22ºC 30ºC 37ºC

14 Figure 6.5 Four categories of microbes based on temperature ranges for growth.

15 Figure 6.6 An example of a psychrophile.

16 Growth Requirements Physical Requirements ph Organisms sensitive to changes in acidity H + and OH interfere with H bonding Neutrophiles grow best in a narrow range around neutral ph Acidophiles grow best in acidic habitats Alkalinophiles live in alkaline soils and water

17 Growth Requirements Physical Requirements Physical effects of water Microbes require water to dissolve enzymes and nutrients Water is important reactant in many metabolic reactions Most cells die in absence of water Two physical effects of water Osmotic pressure Hydrostatic pressure

18 Growth Requirements Physical Requirements Physical effects of water Osmotic pressure Pressure exerted on a semipermeable membrane by a solution containing solutes that cannot freely cross membrane Hypotonic solutions have lower solute concentrations Cell placed in hypotonic solution swells Hypertonic solutions have greater solute concentrations Cell placed in hypertonic solution shrivels Restricts organisms to certain environments Obligate and facultative halophiles pg 322

19 Growth Requirements Physical Requirements Physical effects of water Hydrostatic pressure Water exerts pressure in proportion to its depth Barophiles live under extreme pressure Their membranes and enzymes depend on pressure to maintain their three-dimensional, functional shape

20 Growth Requirements Associations and Biofilms Organisms live in association with different species Antagonistic relationships Synergistic relationships Symbiotic relationships

21 Growth Requirements Associations and Biofilms Biofilms Complex relationships among numerous microorganisms Form on surfaces, medical devices, mucous membranes of digestive system Form as a result of quorum sensing Many microorganisms more harmful as part of a biofilm Scientists seeking ways to prevent biofilm formation

22 Figure 6.7 Biofilm development. 1 Free-swimming microbes are vulnerable to environmental stresses. Chemical structure of one type of quorum- sensing molecule Water flow Water channel Bacteria Escaping microbes Matrix 2 Some microbes land on a surface, such as a tooth, and attach. 3 The cells begin producing an intracellular matrix and secrete quorum-sensing molecules. 4 Quorum sensing triggers cells to change their biochemistry and shape. 5 New cells arrive, possibly including new species, and water channels form in the biofilm. 6 Some microbes escape from the biofilm to resume a free-living existence and perhaps, form a new biofilm on another surface.

23 Culturing Microorganisms Inoculum introduced into medium Environmental specimens Clinical specimens Stored specimens Culture Act of cultivating microorganisms or the microorganisms that are cultivated

24 Nursing professionals

25 Growth Requirements Microbial growth Increase in a population of microbes Due to reproduction of individual microbes Result of microbial growth is discrete colony An aggregation of cells arising from single parent cell

26 Figure 1.16 Bacterial colonies on a solid surface (agar). Bacterium 5 Bacterium 6 Bacterium 7 Bacterium 8 Bacterium 4 Bacterium 3 Bacterium 2 Bacterium 1 Bacterium 9 Bacterium 10 Bacterium 11 Bacterium 12

27 Figure 6.8 Characteristics of bacterial colonies. Shape Circular Rhizoid Irregular Filamentous Spindle Margin Entire Undulate Lobate Curled Filiform Elevation Flat Raised Convex Pulvinate Umbonate Size Punctiform Small Moderate Large Colony Texture Smooth or rough Appearance Glistening (shiny) or dull Pigmentation Nonpigmented (e.g., cream, tan, white) Pigmented (e.g., purple, red, yellow) Optical property Opaque, translucent, transparent

28 Culturing Microorganisms Obtaining Pure Cultures Cultures composed of cells arising from a single progenitor Progenitor is termed a colony-forming unit (CFU) Aseptic technique prevents contamination of sterile substances or objects Two common isolation techniques Streak plates Pour plates

29 Figure 6.9 The streak-plate method of isolation. Can individually pick single cell of some large microorganisms and use to establish a culture

30 Streak plate method

31 Figure 6.10 The pour-plate method of isolation. Sequential inoculations 1.0 ml 1.0 ml 1.0 ml Initial sample 9 ml broth 9 ml broth 9 ml broth 1.0 ml to each Petri dish, add 9 ml warm agar, swirl gently to mix Colonies Fewer colonies

32 Culturing Microorganisms Culture Media Majority of prokaryotes have not been grown in culture medium Agar is a common addition to many media Six types of general culture media Defined media Complex media Selective media Differential media Anaerobic media Transport media

33 Figure 6.11 Slant tubes containing solid media. Slant Butt

34

35 Figure 6.12 An example of the use of a selective medium. Bacterial colonies selective medium Fungal colonies ph 7.3 ph 5.6

36 Figure 6.13 The use of blood agar as a differential medium. Beta-hemolysis Alpha-hemolysis differential medium No hemolysis (gamma-hemolysis)

37 Figure 6.14 The use of carbohydrate utilization tubes as differential media. differential medium Durham tube (inverted tube to trap gas) No fermentation Acid fermentation with gas

38 Figure 6.15 The use of MacConkey agar as a selective and differential medium. Selective & differential medium Escherichia coli Escherichia coli Escherichia coli Staphylococcus aureus Staphylococcus aureus (no growth) Salmonella enterica serotype Choleraesuis Nutrient agar MacConkey agar MacConkey agar

39 Figure 6.16 An anaerobic culture system. Clamp anaerobic medium Airtight lid Chamber Palladium pellets to catalyze reaction removing O 2 Envelope containing chemicals to release CO 2 and H 2 Petri plates Methylene blue (anaerobic indicator)

40 Culturing Microorganisms Special Culture Techniques Techniques developed for culturing microorganisms Animals, bird eggs and cell culture E.g. Rabbits syphilis bacteria T. pallidum Low-oxygen culture

41 Culturing Microorganisms Preserving Cultures Refrigeration Stores for short periods of time Deep-freezing Stores for years Lyophilization Stores for decades

42 Figure 6.17 Binary fission. 1 Cytoplasmic membrane Chromosome Cell wall 2 3 Replicated chromosome Septum 30 minutes 4 Completed septum 5 60 minutes Septum 90 minutes 120 minutes

43 Growth of Microbial Populations Generation Time Time required for a bacterial cell to grow and divide Dependent on chemical and physical conditions

44 Figure 6.18 A comparison of arithmetic and logarithmic growth.

45 Figure 6.20 A typical microbial growth curve.

46 Growth of Microbial Populations Continuous Culture in a Chemostat Chemostat used to maintain a microbial population in a particular phase of growth Open system Requires addition of fresh medium and removal of old medium Used in several industrial settings

47 Figure 6.21 Schematic of chemostat. Fresh medium with a limiting amount of a nutrient Flow-rate regulator Sterile air or other gas Log phase Limiting nutrient Culture vessel Culture Overflow tube

48 Growth of Microbial Populations Measuring Microbial Reproduction Direct or Indirect Requiring Incubation or Not Requiring Incubation Direct methods not requiring incubation Microscopic counts

49 Figure 6.22 The use of a cell counter for estimating microbial numbers. Cover slip Pipette Bacterial suspension Location of grid Overflow troughs Place under oil immersion Bacterial suspension

50 Growth of Microbial Populations Measuring Microbial Reproduction Direct methods not requiring incubation Electronic counters Coulter counters Flow cytometry

51 Growth of Microbial Populations Measuring Microbial Reproduction Direct methods requiring incubation Serial dilution and viable plate counts Membrane filtration Most probable number

52 Figure 6.23 A serial dilution and viable plate count for estimating microbial population size. 1 ml of original culture 1.0 ml 1.0 ml 1.0 ml 1.0 ml 9 ml of broth + 1 ml of original culture 1:10 dilution (10-1 ) 1:100 dilution (10-2 ) 1:1000 dilution (10-3 ) 1:10,000 dilution (10-4 ) 1:100,000 dilution (10-5 ) 0.1 ml of each transferred to a plate 0.1 ml 0.1 ml 0.1 ml 0.1 ml Incubation period Too numerous to count (TNTC) TNTC 65 colonies 6 colonies 0 colonies

53 Figure 6.24 The use of membrane filtration to estimate microbial population size. Sample to be filtered Membrane transferred to culture medium Membrane filter retains cells To vacuum Colonies Incubation

54 Figure 6.25 The most probable number (MPN) method for estimating microbial numbers. 1.0 ml 1.0 ml Undiluted 1:10 1:100 Inoculate 1.0 ml into each of 5 tubes Phenol red, ph color indicator, added Incubate Results 4 tubes positive 2 tubes positive 1 tube positive

55 Growth of Microbial Populations Measuring Microbial Growth Indirect methods Turbidity

56 Figure 6.26 Turbidity and the use of spectrophotometry in indirectly measuring population size. Direct light Light source Uninoculated tube Light-sensitive detector Light source Inoculated broth culture Scattered light that does not reach reflector

57 Growth of Microbial Populations Measuring Microbial Growth Indirect methods Metabolic activity Dry weight Genetic methods Isolate DNA sequences of unculturable prokaryotes

Microbial Nutrition and Growth

Microbial Nutrition and Growth PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 6 Microbial Nutrition and Growth CSLO 5. Give examples of the range of metabolic diversity

More information

2/25/2013. Psychrotrophs Grow between 0 C and C Cause food spoilage Food Preservation Temperatures

2/25/2013. Psychrotrophs Grow between 0 C and C Cause food spoilage Food Preservation Temperatures 3 4 5 6 7 8 9 0 Chapter 6 Microbial Growth Microbial Growth Increase in number of cells, not cell size Populations Colonies The Requirements for Growth Physical requirements Temperature ph Osmotic pressure

More information

MICROBIAL GROWTH. Dr. Hala Al-Daghistani

MICROBIAL GROWTH. Dr. Hala Al-Daghistani MICROBIAL GROWTH Dr. Hala Al-Daghistani Microbial Growth Microbial growth: Increase in cell number, not cell size! Physical Requirements for Growth: Temperature Minimum growth temperature Optimum growth

More information

Ch 6. Microbial Growth

Ch 6. Microbial Growth Ch 6 Microbial Growth Student Learning Outcomes: Classify microbes into five groups on the basis of preferred temperature range. Explain the importance of osmotic pressure to microbial growth. Provide

More information

M I C R O B I O L O G Y

M I C R O B I O L O G Y ninth edition TORTORA FUNKE CASE M I C R O B I O L O G Y a n i n t r o d u c t i o n 6 Microbial Growth PowerPoint Lecture Slide Presentation prepared by Christine L. Case Microbial Growth Microbial growth

More information

Chapter 6: Microbial Growth

Chapter 6: Microbial Growth Chapter 6: Microbial Growth 1. Requirements for Growth 2. Culturing Microorganisms 3. Patterns of Microbial Growth 1. Requirements for Growth Factors that affect Microbial Growth Microbial growth depends

More information

Microbial Growth. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Growth. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 6 Microbial Growth The Requirements for Growth Physical requirements Temperature ph Osmotic pressure

More information

Microbial Growth. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Growth. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 6 Microbial Growth Serratia marcescens on a cracker. The Requirements for Growth Physical requirements

More information

Requirements for Growth

Requirements for Growth Requirements for Growth Definition: Bacterial growth defined as an increase in the number of cells. Physical Requirements: temperature, ph, tonicity Temperature: On the basis of growth range of temperature

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 10 BACTERIAL GROWTH WHY IS THIS IMPORTANT? Increase in numbers is one of the requirements for infection This increase is dependent upon bacterial growth Understanding the requirements for growth

More information

Microbial Growth. Phases of Growth. Pariporina: Bakteerien kasvukäyrä kuvaajana - Piirrä bakteerien klassinen kasvukäyrä - Nimeä kasvun eri vaiheet

Microbial Growth. Phases of Growth. Pariporina: Bakteerien kasvukäyrä kuvaajana - Piirrä bakteerien klassinen kasvukäyrä - Nimeä kasvun eri vaiheet 1.11.2017 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 6 Microbial Growth Phases of Growth Pariporina: Bakteerien kasvukäyrä kuvaajana - Piirrä

More information

Bacterial Requirements. Growth and Nutrition

Bacterial Requirements. Growth and Nutrition Bacterial Requirements Growth and Nutrition Bacterial Reproduction Reproduction Binary Fission Budding Fragmenting Function Increase number of cells Genetic recombination possible End result : Growth Generation

More information

Instant download and all chapter of Test bank for Microbiology An Introduction 12th Edition by Tortora

Instant download and all chapter of Test bank for Microbiology An Introduction 12th Edition by Tortora Instant download and all chapter of Test bank for Microbiology An Introduction 12th Edition by Tortora Link download full: http://testbankair.com/download/test-bank-for-microbiology-anintroduction-12th-edition-by-tortora/

More information

Ch 6. Microbial Nutrition and Growth

Ch 6. Microbial Nutrition and Growth Ch 6 Microbial Nutrition and Growth SLOs Define five terms used to express a microbe s optimal growth temperature. Explain how microbes are classified on the basis of O 2 needs. Identify 2 ways in which

More information

Exercise 4 ASEPTIC TECHNIQUE & STREAK PLATE PREPARATION

Exercise 4 ASEPTIC TECHNIQUE & STREAK PLATE PREPARATION Introduction Exercise 4 ASEPTIC TECHNIQUE & STREAK PLATE PREPARATION In order to work with pure microbial cultures, microbiologists must start with sterile culture media and must be able to prevent contamination.

More information

Shehab. Yousef... Omar. Yousef Omar. Anas

Shehab. Yousef... Omar. Yousef Omar. Anas 3 Shehab Yousef Omar Yousef... Omar Anas Bacterial Growth and Survival After discussing the structure of a Bacteria, we must know how it survive and grow in a specific media. Firstly, the survival of any

More information

Culture Media. Provide certain environmental conditions, nutrients & energy in order to grow and produce bacteria

Culture Media. Provide certain environmental conditions, nutrients & energy in order to grow and produce bacteria Culture Media Culture Media Provide certain environmental conditions, nutrients & energy in order to grow and produce bacteria Different categories of media can be made according to the type and combination

More information

Importance. Prokaryotes vs. Eukaryotes. Viruses: a form of life or not?

Importance. Prokaryotes vs. Eukaryotes. Viruses: a form of life or not? 1 Importance Microorganisms (esp. bacteria) plays a key role in the decomposition and stabilization of organic matter Control of diseases caused by pathogenic organisms of human origin Prokaryotes vs.

More information

BASIC MICROBIOLOGY HANDOUT 2

BASIC MICROBIOLOGY HANDOUT 2 BASIC MICROBIOLOGY HANDOUT 2 NUTRITION AND GROWTH Every organism must find in its environment all of the substances required for energy generation These chemicals and elements of this environment that

More information

NUTRITION, ISOLATION, CULTIVATION AND COUNTING OF BACTERIA. Dr. Jigar Shah IPNU

NUTRITION, ISOLATION, CULTIVATION AND COUNTING OF BACTERIA. Dr. Jigar Shah IPNU NUTRITION, ISOLATION, CULTIVATION AND COUNTING OF BACTERIA Dr. Jigar Shah IPNU Chemical Requirements Carbon: One of the most important requirement for growth Half the dry weight of a typical bacteria cell

More information

ENVIRONMENTAL PARAMETERS OF GROWTH

ENVIRONMENTAL PARAMETERS OF GROWTH ENVIRONMENTAL PARAMETERS OF GROWTH The growth and survival of microorganisms are affected by the chemical and physical conditions of the external environment. Environmental factors which have significant

More information

ENVIRONMENTAL PARAMETERS OF GROWTH

ENVIRONMENTAL PARAMETERS OF GROWTH ENVIRONMENTAL PARAMETERS OF GROWTH The growth and survival of microorganisms are affected by the chemical and physical conditions of the external environment. Environmental factors which have significant

More information

COUNT METHOD 5.0 OBJECTIVES 5.1 INTRODUCTION 5.2 PRINCIPLE. Structure

COUNT METHOD 5.0 OBJECTIVES 5.1 INTRODUCTION 5.2 PRINCIPLE. Structure Food Microbiology EXPERIMENT 5 STANDARD PLATE COUNT METHOD Structure 5.0 Objectives 5.1 Introduction 5.2 Principle 5.3 Materials Required 5.4 Procedure 5.4.1 E-coli Culture 5.4.2 Food Samples 5.5 Observations

More information

Inoculate: Media. Physical State of Media: Liquid. The Five I s: Basic Techniques to Culture Microbes Tools of the Microbiology Laboratory

Inoculate: Media. Physical State of Media: Liquid. The Five I s: Basic Techniques to Culture Microbes Tools of the Microbiology Laboratory The Five I s: Basic Techniques to Culture Microbes Tools of the Microbiology Laboratory 1. Inoculate 2. Incubate 3. Isolate 4. Inspect 5. Identify The Five I s: Inoculate Inoculate: Media Classified according

More information

Cell Growth and DNA Extraction- Technion igem HS

Cell Growth and DNA Extraction- Technion igem HS Growing Cells and DNA Extraction Goals 1. Become familiar with the process of growing bacteria 2. Get to know the DNA extraction process 3. Perform miniprep in the lab Keywords 1. Growth stages 6. Techniques

More information

We can classify bacteria depending on their source of nutrition into:

We can classify bacteria depending on their source of nutrition into: -Growth requirements for bacteria: In relation to this topic we have mentioned before that bacteria, like human cells requires essential nutrition such as minerals in addition it also requires physical

More information

INTRODUCTION water-soluble Figure 1.

INTRODUCTION water-soluble Figure 1. INTRODUCTION Natural waters contain bacteria. The aerobic gram negative bacillus of the genera Psedomonas, Alcalignes, and Flavobacterium are common in natural waters. Many of these bacteria are able to

More information

Some Industrially Important Microbes and Their Products

Some Industrially Important Microbes and Their Products 2 Some Industrially Important Microbes and Their Products 2.1. ENZYME PRODUCING MICROBES Type of enzyme Substrate Microorganism Amylase Starch Saccharomyces diastaticus Protease Proteins Bacillus sp. Lipase

More information

SELECTED QUESTIONS F ROM OLD MICRO 102 QUIZZES PART I EXPERIMENTS 1 THROUGH 7

SELECTED QUESTIONS F ROM OLD MICRO 102 QUIZZES PART I EXPERIMENTS 1 THROUGH 7 SELECTED QUESTIONS F ROM OLD MICRO 102 QUIZZES PART I EXPERIMENTS 1 THROUGH 7 Question numbers refer to the applicable experiment. Questions with blanks are multiple true-false questions unless otherwise

More information

Growing, Growing, Gone Microbial Growth and Reproduction

Growing, Growing, Gone Microbial Growth and Reproduction Growing, Growing, Gone Microbial Growth and Reproduction Reproductive Strategies the reproductive strategies of eukaryotic microbes asexual and sexual, haploid or diploid Bacteria and Archaea haploid only,

More information

SCHEDULE. Friday: Pet Investigations: Plate counts - how to know how many clones of your pet you have (pg. 9-10)

SCHEDULE. Friday: Pet Investigations: Plate counts - how to know how many clones of your pet you have (pg. 9-10) SCHEDULE Wednesday: Pet Investigations: Phenol Red Broth with Durham tubes (pg. 3-4) Oxidation/Fermentation Agar (pg. 5-6) Anaerobic Growth (pg. 7) Growth in Liquid Culture (pg. 8-9) Friday: Pet Investigations:

More information

Microbiology sheet (6)

Microbiology sheet (6) Microbiology sheet (6) Made by marah marahleh corrected by : abd. Salman DATE :9/10/2016 Microbial growth / control of microbial growth 1 The method of counting bacteria is divided into: 1) direct 2) indirect

More information

Lab Exercise: Examining Water Quality: Most Probable Number & Colilert Test Kit Lab

Lab Exercise: Examining Water Quality: Most Probable Number & Colilert Test Kit Lab Lab Exercise: Examining Water Quality: Most Probable Number & Colilert Test Kit Lab OBJECTIVES 1. Understand the use of MPN to determine likely fecal water contamination. 2. Understand the use of MUG,

More information

GENERAL BACTERIOLOGY

GENERAL BACTERIOLOGY GENERAL BACTERIOLOGY Dr. Waleed Eldars Lecturer of Medical Microbiology and Immunology Faculty of Medicine Mansoura University Growth requirements of Bacteria A) Nutrition Basic elements: Carbon and Nitrogen

More information

Serial dilution and colony count (Viable count) Pour plate. Spread plate Membrane filtration. Turbidity. Microscopic cell count

Serial dilution and colony count (Viable count) Pour plate. Spread plate Membrane filtration. Turbidity. Microscopic cell count Aljawharah Alabbad 2016 Serial dilution and colony count (Viable count) Pour plate Spread plate Membrane filtration Turbidity Microscopic cell count Many studies require the quantitative determination

More information

Practice Test #2. True/False Indicate whether the statement is true or false.

Practice Test #2. True/False Indicate whether the statement is true or false. Practice Test #2 True/False Indicate whether the statement is true or false. 1. Colony size is dependent on many characterisitics. One of these is the type of organism. 2. Colony size is dependent on many

More information

Exercise 13 DETERMINATION OF MICROBIAL NUMBERS

Exercise 13 DETERMINATION OF MICROBIAL NUMBERS Exercise 13 DETERMINATION OF MICROBIAL NUMBERS Introduction When biologists discuss the growth of microorganisms (microbial growth), they are actually referring to population size rather than to the size

More information

Culture Media A substance used to provide nutrients for the growth and multiplication of microorganisms. Types of Culture Media A) Based on their

Culture Media A substance used to provide nutrients for the growth and multiplication of microorganisms. Types of Culture Media A) Based on their CULTURE MEDIA Dr. C.SWAMINATHAN Assistant Professor PG and Research Department of Microbiology St. Joseph s College of Arts and Science (Autonomous) Cuddalore 607 001 Tamil Nadu, India Culture Media A

More information

Introduction. Microbiology. Anas Abu-Humaidan M.D. Ph.D. Lecture 3

Introduction. Microbiology. Anas Abu-Humaidan M.D. Ph.D. Lecture 3 Introduction to Microbiology Anas Abu-Humaidan M.D. Ph.D. Lecture 3 Bacterial survival and growth Bacterial survival and growth depend on utilization of nutrients in its niche. Lab cultures provide optimum

More information

Bacterial Counts - Quantitative Analysis of Microbes

Bacterial Counts - Quantitative Analysis of Microbes Bacterial Counts - Quantitative Analysis of Microbes Introduction: It is often important to know not only what types of bacteria are in a sample but also how many of them are present. Food manufacturers

More information

CARBOHYDRATE FERMENTATION TEST

CARBOHYDRATE FERMENTATION TEST Microbiology Laboratory (BIOL 3702L) Page 1 of 6 Principle and Purpose CARBOHYDRATE FERMENTATION TEST Microorganisms need to generate energy in order to grow, divide, and survive. In any given environment,

More information

Bacteria and other microbes have particular requirements for growth When they reside in and on our bodies or in the environment, they harvest their

Bacteria and other microbes have particular requirements for growth When they reside in and on our bodies or in the environment, they harvest their Bacteria and other microbes have particular requirements for growth When they reside in and on our bodies or in the environment, they harvest their food from us or from the environment When we grow bacteria

More information

Microscopy, Staining, and Classification. ~10 um. Red Blood Cells = mm 1500 um. Width of penny

Microscopy, Staining, and Classification. ~10 um. Red Blood Cells = mm 1500 um. Width of penny PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 4 Microscopy, Staining, and Classification Figure 3.4 Approximate size of various types

More information

Chapter 9 Controlling Microbial Growth in the Environment. 10/1/ MDufilho

Chapter 9 Controlling Microbial Growth in the Environment. 10/1/ MDufilho Chapter 9 Controlling Microbial Growth in the Environment 10/1/2017 1 MDufilho Table 91 Terminology of Microbial Control 10/1/2017 MDufilho 2 Number of living microbes Figure 91 A plot of microbial death

More information

Physiology of Bacteria رنامشعل

Physiology of Bacteria رنامشعل Physiology of Bacteria م.م رنامشعل Bacterial chemical components Water: free water and bound water. Inorganic salt: phosphors, potassium,magnesium, calcium, sodium, etc. Protein: 50%-80% of dry weight

More information

PURE CULTURE TECHNIQUES

PURE CULTURE TECHNIQUES PURE CULTURE TECHNIQUES Most specimens (from animal tissue, plant tissue, or environmental samples) will be mixed, with a variety of bacteria (or other microorganisms). A single gram of feces, for example,

More information

Bacteria Introduction Bacteria are unicellular micro-organisms ranging in length from a few micrometers to half a millimeter. They come in a variety

Bacteria Introduction Bacteria are unicellular micro-organisms ranging in length from a few micrometers to half a millimeter. They come in a variety Kingdom Bacteria Bacteria Introduction Bacteria are unicellular micro-organisms ranging in length from a few micrometers to half a millimeter. They come in a variety of different shapes (cocci, bacilli

More information

LABORATORY #2 -- BIOL 111 BACTERIAL CULTIVATION & NORMAL FLORA

LABORATORY #2 -- BIOL 111 BACTERIAL CULTIVATION & NORMAL FLORA LABORATORY #2 -- BIOL 111 BACTERIAL CULTIVATION & NORMAL FLORA OBJECTIVES After completing this exercise you should be able to: 1. Identify various types of media 2. Isolate bacteria using aseptic technique.

More information

IN THIS SECTION MICROBIOLOGY TESTING EXPERT SOLUTIONS FOR PRODUCT DEVELOPMENT. Bacterial Endotoxin (LAL) Testing

IN THIS SECTION MICROBIOLOGY TESTING EXPERT SOLUTIONS FOR PRODUCT DEVELOPMENT. Bacterial Endotoxin (LAL) Testing EXPERT SOLUTIONS FOR PRODUCT DEVELOPMENT IN THIS SECTION MICROBIOLOGY TESTING Microbial assays involve a variety of tests, from the determination of the numbers and types of organisms naturally present

More information

BACTERIAL GENETICS: Labs I & II

BACTERIAL GENETICS: Labs I & II BACTERIAL GENETICS: Labs I & II The Bacterial Genetics Labs will extend over two laboratory periods. During the first lab, you will set up two different experiments using the bacterium Escherichia coli.

More information

Dr. Gary Mumaugh. Microbial Control and Growth

Dr. Gary Mumaugh. Microbial Control and Growth Dr. Gary Mumaugh Microbial Control and Growth Microbial Growth Microbial Control Sterilization Selective Removal Temperature Types of Heat Treatment Incineration Tyndallization Autoclaving Microbial Control

More information

1. ADHERE AND DEFEND: Our bacterium has entered the host. Now it needs to adhere and get past the normal microbiota.

1. ADHERE AND DEFEND: Our bacterium has entered the host. Now it needs to adhere and get past the normal microbiota. North Seattle College Stage 02 Colonization and Infection This explanatory model will tell the story of how one bacterium adheres to a host and, through binary fission, ends up making two daughter cells.

More information

Lab Exercise 13: Growth Curve

Lab Exercise 13: Growth Curve Lab Exercise 13: Growth Curve OBJECTIVES 1. Know the different phases of a standard growth curve. 2. Understand and perform direct measurement of bacterial growth through serial dilutions and standard

More information

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS Specific control measures can be used to kill or inhibit the growth of microorganisms. A procedure which leads to the death of cells is broadly

More information

Lab Date Experiment Reports, Midterms, Reminders

Lab Date Experiment Reports, Midterms, Reminders Lab Date Experiment Reports, Midterms, Reminders Lab 1 Lab 2 Jan 5-6 Jan 7-8 o Registration, introductory remarks, safety lecture, etc. Sterile technique. o Expt 1: Microbes in the environment o Expt 2:

More information

20 Bacteria (Monera)

20 Bacteria (Monera) 20 Bacteria (Monera) Mr. C Biology 1 Bacteria are very small. They are measured in µm (nanometres). There are 1000 nanometres in 1 mm. Bacteria can be 1µm in size. Bacteria have a cell wall that protects

More information

Isolation and Characterization of Two Antibiotic-Producing Bacteria

Isolation and Characterization of Two Antibiotic-Producing Bacteria Isolation and Characterization of Two Antibiotic-Producing Bacteria Madeline Gibson Abstract The discovery of antibiotics with novel mechanisms has plateaued in the last twenty years. As antibiotics are

More information

Lab Activity #14 - Bacteriological Examination Of Water and Milk (Adapted from Lab manual by Dr. Diehl)

Lab Activity #14 - Bacteriological Examination Of Water and Milk (Adapted from Lab manual by Dr. Diehl) Lab Activity #14 - Bacteriological Examination Of Water and Milk (Adapted from Lab manual by Dr. Diehl) Some of the diseases that humans can contract from drinking polluted water include typhoid, dysentery,

More information

Lab Exercise #4 Microbial Control Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic

Lab Exercise #4 Microbial Control Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic I. OBJECTIVES: Investigate the effectiveness various agents of control. Assess the effectiveness of heat in killing vegetative

More information

320 MBIO Microbial Diagnosis. Aljawharah F. Alabbad Noorah A. Alkubaisi 2017

320 MBIO Microbial Diagnosis. Aljawharah F. Alabbad Noorah A. Alkubaisi 2017 320 MBIO Microbial Diagnosis Aljawharah F. Alabbad Noorah A. Alkubaisi 2017 Primary Media for Isolation of Microorganisms As we know, many clinical specimens contain a mixed flora of microorganisms. Thus

More information

Take-Home Quiz II. Summer 2005 Semester

Take-Home Quiz II. Summer 2005 Semester General Instructions and Information: Obtain an answer sheet from the instructor and legibly write your name in the appropriate space. After placing your name, you must enter your Patron ID Number (NOT

More information

yeast cell virus fungal hypha (filament)

yeast cell virus fungal hypha (filament) Biology 1.3 AS 90927 Demonstrate understanding of biological ideas relating to micro-organisms Externally assessed 4 credits Copy correctly Up to 3% of a workbook Copying or scanning from ESA workbooks

More information

MICROBIOLOGICAL EXAMINATION OF NON-STERILE PRODUCTS: TEST FOR SPECIFIED MICRO-ORGANISMS Test for specified micro-organisms

MICROBIOLOGICAL EXAMINATION OF NON-STERILE PRODUCTS: TEST FOR SPECIFIED MICRO-ORGANISMS Test for specified micro-organisms 5-2-3. Most-probable-number method Prepare and dilute the sample using a method that has been shown to be suitable as described in section 4. Incubate all tubes at 30-35 C for 3-5 days. Subculture if necessary,

More information

LAB NOTES FOR EXAM 1 SECTION

LAB NOTES FOR EXAM 1 SECTION LAB NOTES FOR EXAM 1 SECTION EX. 2-1: DIVERSITY AND UBIQUITY OF MICROOGANISMS Purpose: Microorganisms are found everywhere in the environment around us. To demonstrate this and to get a taste of the different

More information

Bacterial Transformation: Unlocking the Mysteries of Genetic Material

Bacterial Transformation: Unlocking the Mysteries of Genetic Material PR009 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Bacterial Transformation: Unlocking the Mysteries of Genetic Material Teacher s Guidebook

More information

Microbiology Chapter 2 Laboratory Equipment and Procedures 2:1 The Light Microscope MICROSCOPE: any tool with a lens to magnify and observe tiny

Microbiology Chapter 2 Laboratory Equipment and Procedures 2:1 The Light Microscope MICROSCOPE: any tool with a lens to magnify and observe tiny Microbiology Chapter 2 Laboratory Equipment and Procedures 2:1 The Light Microscope MICROSCOPE: any tool with a lens to magnify and observe tiny details of specimens Micro tiny, small Scope to see SIMPLE

More information

TRYPTIC SOY AGAR (TSA) WITH LECITHIN AND TWEEN 80

TRYPTIC SOY AGAR (TSA) WITH LECITHIN AND TWEEN 80 TRYPTIC SOY AGAR (TSA) WITH LECITHIN AND TWEEN 80 Cat. no. P45 TSA with Lecithin and Tween 80, 15x60mm Contact Plate, 15ml Cat. no. Q13 TSA with Lecithin and Tween 80, 20x125mm Tube, 18ml Deep Cat. no.

More information

NUT-TTC/EMB Code 5541

NUT-TTC/EMB Code 5541 NUT-TTC/EMB Code 5541 Nutrient-TTC Agar (NUT-TTC) Eosin Methylene Blue Agar (EMB) USE: Isolation and differentiation of Gram (-) enteric bacilli. Coliform Testing / Recovery of Stressed Coliforms Side

More information

Aseptic Techniques. A. Objectives. B. Before coming to lab

Aseptic Techniques. A. Objectives. B. Before coming to lab Aseptic Techniques A. Objectives Become familiar with 1. The ubiquity of microorganisms (see Note 1) 2. Aseptic techniques (see Note 2) 3. Standard methods for growing/observing microorganisms (see Note

More information

Chapter 03 - Tools of the Laboratory: Methods for the Culturing of Microscopic Analysis of microorganisms

Chapter 03 - Tools of the Laboratory: Methods for the Culturing of Microscopic Analysis of microorganisms Microbiology: A Systems Approach 4th Edition Cowan Test Bank Completed download: https://testbankreal.com/download/microbiology-systems-approach-4thedition-test-bank-cowan/ (Downloadable package TEST BANK

More information

METABOLISM & GROWTH 1/7/2016 REQUIREMENTS PROPERTIES OF ENZYMES UNIT 3 PROPERTIES OF ENZYMES: ENZYME-SUBSTRATE COMPLEX

METABOLISM & GROWTH 1/7/2016 REQUIREMENTS PROPERTIES OF ENZYMES UNIT 3 PROPERTIES OF ENZYMES: ENZYME-SUBSTRATE COMPLEX METABOLISM METABOLISM & GROWTH REQUIREMENTS UNIT 3 Metabolism: Catabolism/Catabolic Anabolism/Anabolic PROPERTIES OF ENZYMES: CONTROL PATHWAYS METABOLIC PROPERTIES OF ENZYMES: ENZYME-SUBSTRATE COMPLEX

More information

METABOLISM & GROWTH REQUIREMENTS

METABOLISM & GROWTH REQUIREMENTS Metabolism Metabolism: Catabolism/Catabolic UNIT 3 METABOLISM & GROWTH REQUIREMENTS Anabolism/Anabolic Properties of enzymes: Control Pathways Metabolic Enzymes (type of protein) Act as catalysts (they

More information

METABOLISM & GROWTH REQUIREMENTS

METABOLISM & GROWTH REQUIREMENTS Metabolism Metabolism: Catabolism/Catabolic UNIT 3 CH.5 (pgs. 113-32) & 6 METABOLISM & GROWTH REQUIREMENTS Anabolism/Anabolic Properties of enzymes: Control Metabolic Pathways Enzymes (type of protein)

More information

Heat Shock Proteins in Yeast (2012)

Heat Shock Proteins in Yeast (2012) MASSACHUSETTS INSTITUTE OF Technology Department of Biology Heat Shock Proteins in Yeast (2012) Summary Lydia Breen (Stoneham High School) Mary Brunson (Brookline High School) Yeast is a single-celled

More information

Bacterial Transformation and Protein Purification

Bacterial Transformation and Protein Purification Bacterial Transformation and Protein Purification Group 4 Natalie Beale Gregory A. Pate Justin Rousseau Dohee Won Introduction The purpose of this experiment is to perform a genetic transformation and

More information

3 8 COLIFORM BACTERIA AS INDICATOR ORGANISMS Laboratory tests for disease-producing bacteria, viruses, and protozoa are difficult to perform

3 8 COLIFORM BACTERIA AS INDICATOR ORGANISMS Laboratory tests for disease-producing bacteria, viruses, and protozoa are difficult to perform 3 8 COLIFORM BACTERIA AS INDICATOR ORGANISMS Laboratory tests for disease-producing bacteria, viruses, and protozoa are difficult to perform Most utilities have neither qualified personnel nor laboratories

More information

EXPERIMENT. Environmental Influences on Microbial Growth Salt Tolerance Testing

EXPERIMENT. Environmental Influences on Microbial Growth Salt Tolerance Testing EXPERIMENT Environmental Influences on Microbial Growth Salt Tolerance Testing Hands-On Labs, Inc. Version 42-0307-00-01 Review the safety materials and wear goggles when working with chemicals. Read the

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 3 Tools of the Laboratory: The Methods for Studying Microorganisms Copyright The McGraw-Hill Companies, Inc. Permission

More information

ENVE 424 Anaerobic Treatment. Review Lecture Fall Assist. Prof. A. Evren Tugtas

ENVE 424 Anaerobic Treatment. Review Lecture Fall Assist. Prof. A. Evren Tugtas ENVE 424 Anaerobic Treatment Review Lecture 2012-2013 Fall Assist. Prof. A. Evren Tugtas Basics of Microbiology Principles of microbiology is applied to the solution of environmental problems Treatment

More information

Microbial Growth and The Control of Microbial Growth (Chapter 6 & 7)

Microbial Growth and The Control of Microbial Growth (Chapter 6 & 7) Microbial Growth and The Control of Microbial Growth (Chapter 6 & 7) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content:

More information

EXPERIMENT. Biochemical Testing for Microbial Identification Methyl Red, Voges- Proskauer, and Catalase Testing

EXPERIMENT. Biochemical Testing for Microbial Identification Methyl Red, Voges- Proskauer, and Catalase Testing EXPERIMENT Biochemical Testing for Microbial Identification Methyl Red, Voges- Proskauer, and Catalase Testing Hands-On Labs, Inc. Version 42-0246-00-02 Review the safety materials and wear goggles when

More information

<51> Uji Batas Mikroba Farmakope Indonesia ed.4 (<61>Microbial Limit Test) and Identification method. Marlia Singgih Wibowo School of Pharmacy ITB

<51> Uji Batas Mikroba Farmakope Indonesia ed.4 (<61>Microbial Limit Test) and Identification method. Marlia Singgih Wibowo School of Pharmacy ITB Uji Batas Mikroba Farmakope Indonesia ed.4 (Microbial Limit Test) and Identification method Marlia Singgih Wibowo School of Pharmacy ITB Why we need Microbial Limit Test? To predict number of

More information

á62ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: TESTS FOR SPECIFIED MICROORGANISMS

á62ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: TESTS FOR SPECIFIED MICROORGANISMS USP 40 Microbiological Tests / á62ñ Microbiological Examination 1 á62ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: TESTS FOR SPECIFIED MICROORGANISMS INTRODUCTION The tests described hereafter

More information

Most Probable Number (MPN) & Biological Oxygen Demand (BOD)

Most Probable Number (MPN) & Biological Oxygen Demand (BOD) Most Probable Number (MPN) & Biological Oxygen Demand (BOD) Part : Presumptive Coliform Test (MPN) Introduction This lab exercise will employ a commonly used multi-tube fermentation technique. The results

More information

Lecture 7 Water Quality Monitoring: Estimation of fecal indicator bacteria

Lecture 7 Water Quality Monitoring: Estimation of fecal indicator bacteria Lecture 7 Water Quality Monitoring: Estimation of fecal indicator bacteria FECAL INDICATOR BACTERIA Fecal indicator bacteria, which are directly associated with fecal contamination, are used to detect

More information

They provide the continuation of their strain through reproduction. Reproduction = Increase in cell count

They provide the continuation of their strain through reproduction. Reproduction = Increase in cell count synthesize the necessary constituents by using environmental conditions and maintain their lives by performing their chemical and physical processes under the influence of extracellular chemical and physical

More information

The Control of Microbial Growth

The Control of Microbial Growth 11/10/2016 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 7 The Control of Microbial Growth The Terminology of Microbial Control Sepsis refers to

More information

Prokaryotic Structure o All prokaryotes are unicellular, lack a nucleus and membranebound

Prokaryotic Structure o All prokaryotes are unicellular, lack a nucleus and membranebound Microbiology is a subdivision of cellular biology that focuses on microorganisms and their effect on other living things. Some microbes are pathogenic, but most are harmless. Microorganisms occur in a

More information

GENUS STAPHYLOCOCCUS: Isolation and Identification

GENUS STAPHYLOCOCCUS: Isolation and Identification GENUS STAPHYLOCOCCUS: Isolation and Identification Staphylococcus is a genus of Gram +, nonspore-forming cocci belonging to the family Micrococcaceae that are often found as normal human microbiota of

More information

á61ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: MICROBIAL ENUMERATION TESTS

á61ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: MICROBIAL ENUMERATION TESTS USP 40 Microbiological Tests / á61ñ Microbiological Examination 1 á61ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: MICROBIAL ENUMERATION TESTS INTRODUCTION The tests described hereafter will allow

More information

Isolation & Characterization of Bacteria

Isolation & Characterization of Bacteria PR025 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Isolation & Characterization of Bacteria Teacher s Handbook (Cat. # BE 204) think proteins!

More information

Pathogenic Bacteria. culture media. Components of the Typical Culture Medium: Culture Media Importance:

Pathogenic Bacteria. culture media. Components of the Typical Culture Medium: Culture Media Importance: Level4 Lab2: Pathogenic Bacteria culture media Microorganisms, like all other living organisms, require basic nutrients for sustaining their life. All microorganisms have the same basic requirements but

More information

Heterotrophic Bacteria

Heterotrophic Bacteria , m-hpc, 8242 DOC316.53.01225 Pour Plate Method Method 8242 m-hpc Scope and Application: For water and wastewater. Test preparation Introduction Before starting the test: The Pour Plate Method, also known

More information

DAIRY WATERS. (Coliform Group and Escherichia coli) [E. coli verification required only on source water] IMS #24

DAIRY WATERS. (Coliform Group and Escherichia coli) [E. coli verification required only on source water] IMS #24 DAIRY WATERS (Coliform Group and Escherichia coli) [E. coli verification required only on source water] IMS #24 [Unless otherwise stated all tolerances are ±5%] 1. Laboratory Requirements a. Cultural Procedures

More information

number Done by Corrected by Doctor

number Done by Corrected by Doctor L number Lab 2 Done by حسام أبو عوض Corrected by Mahdi sharawi Doctor In many cases we need to identify the type of bacteria causing an infection in order to be able to choose the right medication (antibiotic).

More information

4/7/2007. Key Concepts: Viruses, Bacteria and Diseases: Are We Ahead of Them? Objectives:

4/7/2007. Key Concepts: Viruses, Bacteria and Diseases: Are We Ahead of Them? Objectives: Viruses, Bacteria and Diseases: Are We Ahead of Them? Objectives: 1. To learn the basic structures of viruses. 2. To understand the life cycles of viruses. 3. To learn the differences between various species

More information

Growth & Binary fission in Bacteria Dr. Baha, H. AL-Amiedi Ph.D.Microbiology Lecture 2

Growth & Binary fission in Bacteria Dr. Baha, H. AL-Amiedi Ph.D.Microbiology Lecture 2 Growth & Binary fission in Bacteria Dr. Baha, H. AL-Amiedi Ph.D.Microbiology Lecture 2 Binary fission The growth & division is synthesis &increased in quantity of all cellular constituents from extra

More information

Diagnostic Microbiology

Diagnostic Microbiology Diagnostic Microbiology Identification of Microbes Lecture: 2 Phenotypic characteristics: A- Morphology Macroscopic (Cultural Characteristics) Culture Media: Providing Nutrients requirements to microbes

More information

LAB NOTES FOR EXAM 1 SECTION

LAB NOTES FOR EXAM 1 SECTION LAB NOTES FOR EXAM 1 SECTION EX. 2-1: DIVERSITY AND UBIQUITY OF MICROOGANISMS Purpose: Microorganisms are found everywhere in the environment around us. To demonstrate this and to get a taste of the different

More information

Microbiological Methods

Microbiological Methods Microbiological Methods Making Media Pouring Culture Plates Sterile Technique Inoculating Plates and Culture Tubes Use of a Plate Counter to Estimate Microbial Population Densities Sterile Technique Sterile

More information