bioinformatics: state of art tools for NGS immunogenetics

Size: px
Start display at page:

Download "bioinformatics: state of art tools for NGS immunogenetics"

Transcription

1 bioinformatics: state of art tools for NGS immunogenetics Nikos Darzentas, Ph.D. CEITEC MU, Brno, Czech Republic bat.infspire.org Ministry of Health of theczech Republic, grant# A CEITEC MU ESLHO::EuroClonality NGS MetaCentrum Virtual Organization ofcesnet

2 Nikos Darzentas Identifying Stereotyped Subsets in CLL Novel Computational Tools for Identifying Stereotyped Subsets in Chronic Lymphocytic Leukemia Nikos Darzentas Computational Genomics Unit (CGU) Centre for Research and Technology Hellas (CERTH) Greece Educational Workshop on Immunoglobulin Gene Analysis in Chronic Lymphocytic Leukemia June in Uppsala, Sweden

3

4 e.g. eventually link to ARResT/ AssignSubsets other related tools diverse datasets / projects literature

5 unique challenges of NGS immunogenetics enormous inherent complexity, huge diversity and temporal variation of immune responses highly non trivial annotation vs. multiple germline sequences (from IMGT!) and of the rearrangement junction wide variety of applications, many with their own needs: basic research, technology development e.g. primers and assays, diagnostic / clinical, MRD and clonality assessment and monitoring, repertoire studies errors and biases of protocols and humans, in data and results

6 generic and specific challenges for bioinformatics modularity and flexibility, to support the many applications multiplexing, i.e. many receptors and chains and junction classes (e.g. incomplete) interpretation clonotype definition, with implications for assessment of clonality thresholds and cut offs and normalisations, incl. what to consider for relative abundances visualisation and user interaction detailed logging and reporting, for development and troubleshooting, but also interpretation and record keeping efficiency, although this is not as big a challenge as with e.g. full genome NGS foolproofing, esp. challenging for very diverse applications, data, and users

7 junction classes normal IG VJ : Vh (Dh) Jh IG VJ : Vk Jk IG VJ : Vl Jl TR VJ : Va Ja TR VJ : Va Jd TR VJ : Vb (Db) Jb TR VJ : Vd (Dd) Ja TR VJ : Vd (Dd) Jd TR VJ : Vg Jg incomplete IG DJ : Dh Jh TR DD : Dd2 Dd3 TR DJ : Db Jb TR DJ : Dd2 Jd TR DJ : Dd Ja special IG INTRON KDE IG Vk KDE TR VD : Vd Dd3

8 bioinformaticplatform focused on low throughput sequences, and CLL, mainly with IgCLL ARResT, or Antigen Receptors Research Tool bat.infspire.org/arrest/ ARResT/Teiresias discovering new subsets of stereotyped sequences ARResT/SeqCure curating antigen receptor sequences ARResT/AssignSubsets assigning new members to existing subsets of stereotyped sequences specifically for NGS, and within ESLHO s EuroClonality NGSconsortium (coordinated by Ton) ARResT/Interrogate web accessible, interactive, and integrating a data producing pipeline and a results browser

9 user experience user interactivity, esp. when users and questions can be diverse, as is the case here

10 user experience

11 user experience

12 user experience user messaging system, which will react to user actions and share info, advice, notes, tips, warnings, and errors user modes, e.g. simple, advanced, don t even bother, diagnostics, etc. application specific modes, e.g. clonality and MRD

13 visualisations

14 a)heatmaps: sample dynamics diagnostic prior to SCT donor sample sample then you can directly mix and match sample feature after SCT b)line chart: MRD kinetics 1 after SCT single read / NGS depth Graft versus leukemia effects in T prolymphocytic leukemia: evidence from MRD kinetics and TCR repertoire analyses Sellner, Brüggemann, Schlitt, Knecht, Herrmann, Reigl, Krejci, Bystry, Darzentas et al. (submitted)

15 sequence forensics : sequence search + network of sequence differences or assessment, monitoring and quantification of rearrangements of interest sensitive (no heuristics), smart (rearrangement network aware distance calculation), NGS enabled (normalisation based on experimental setup, incl. MRD spike ins), adaptive (small/big, e.g. MRD/clonality, data), interactive (user control of final results) reads vs. distance to target

16 sequence forensics user control: change distance threshold, add more sequences to clone, get final %s

17 sequence forensics with network connected interactive multiple alignments and differences highlighted

18 sequence forensics and the ability to simplify the network and reduce the data to a manageable summary

19 primers specific functionality of the pipeline to: identify primers, also taking into account expected coordinates report their frequencies and characteristics, i.e. score and position statistics trim sequenced reads to before or after the primer, i.e. leaving on or removing primer leaving primer on, even if artificial, might help in identifying rearrangements then, primer development: IGHV1 IGHV2 IGHV3 IGHV4 experimental condition A1 experimental condition A2

20 primers also usable as controls for the health of an NGS run, compared to a golden standard dataset:

21 data quality our current strategy: keep as much as you can until the end e.g. paired end joining, sequence length, sequence quality PCR and NGS errors can hurt specific applications, e.g. SHM and evolution error correction is (arguably) a rather theoretical exercise unless helped by lab work (e.g. unique molecular identifiers / barcodes) contamination, wet but also digital usual demultiplexing does not handle noise well, leading to assignment of reads to no wrong samples => more statistics strength in numbers, and replicates, and experimental design in general normalize and/or filter on abundance with experimental information (spike in controls, number of cells, or amount of DNA)

22 EuroClonality NGS standardisation, and SOPs this can involve, for example: (standard operating procedures) predetermined computations with predetermined options i.e. locked scenarios and even sample sheets with complete control of complicated runs centrally available, curated sequences * primers, for development work, and batch quality control * spike ins + copy numbers, see MRD quantification

23 capture based enrichment and NGS conceptually elegant and practically useful that can create expert panels of genes if probes (or primers) for the IG locus are designed, IG rearrangements could be sequenced as well, incl. incomplete ones two main challenges (if applicable): with probe based capture, fragments and thus reads are not centered around the same area, and thus reconstruction of the rearrangements might be needed with paired end NGS, depending on read and fragment lengths, identifying a junction might be difficult e.g. non overlapping reads, but still reporting the rearrangement as a translocation event may be useful data seen so far show neither breadth nor depth of rearrangements, but major clones are usually found

24 access to ARResT/Interrogate manuscript for browser under revision, pipeline+browserto follow (he said) code on GitHub (not the whole platform yet, but soon) contact us bat.infspire.org eventually, also shared as a EuroClonality NGS validated and standardised platform for other ARResT tools, and an overview bat.infspire.org/arrest

25 acknowledging all people in my bioinformatics Team: VojtaBystry, TomasReigl, AdamKrejci, AndreaGrioni, and previously Baraand Martin and all our friends, collaborators and colleagues, including many you probably already know: Lesley, Anastasia, Andreas, Vassilis, Panagiotis, et al and across many networks: C. Belessi(Athens) F. Davi(Paris) P. Ghia(Milan) R. Rosenquist(Uppsala) K. Stamatopoulos (Thessaloniki) M P. Lefranc, V. Giudicelli (Montpellier) BIOMED II A. Langerak, J. van Dongen (Rotterdam+) M. Brüggemann, C. Pott(Kiel) G. Cazzaniga(Monza) F. Davi(Paris) D. Gonzalez(London) P. Groenen (Nijmegen) M P. Lefranc, V. Giudicelli(Montpellier) K. Stamatopoulos(Thessaloniki)

NGS immunogenetic analysis in vitro: clonality feasibility study

NGS immunogenetic analysis in vitro: clonality feasibility study NGS immunogenetic analysis in vitro: clonality feasibility study ERIC EuroClonality-NGS 1-day workshop Rotterdam, NL, November 24, 2017 Anton W. Langerak, Laboratory for Medical Immunology, Dept. Immunology

More information

These products are sold FOR RESEARCH USE ONLY; not for use in diagnostic procedures.

These products are sold FOR RESEARCH USE ONLY; not for use in diagnostic procedures. Minimal Residual Disease (MRD) testing by Next- Generation Sequencing (NGS) has become an important methodology demonstrating clear potential to optimize therapeutic management of lymphoproliferative diseases.

More information

From the patient to the sequence : Primers, PCR, Detection of clonality, Sequencing

From the patient to the sequence : Primers, PCR, Detection of clonality, Sequencing 6th ERIC Educational workshop on IG gene analysis in CLL, Uppsala, SE, Sept 23, 2016 From the patient to the sequence : Primers, PCR, Detection of clonality, Sequencing Anton W. Langerak Dept. of Immunology

More information

NGS-Based Clonality Testing Assessing Clonality Status, Somatic Hypermutation and Monitoring Minimum Residual Disease (MRD)

NGS-Based Clonality Testing Assessing Clonality Status, Somatic Hypermutation and Monitoring Minimum Residual Disease (MRD) NGS-Based Clonality Testing Assessing Clonality Status, Somatic Hypermutation and Monitoring Minimum Residual Disease (MRD) Maria Arcila, M.D. Memorial Sloan Kettering Cancer Center Educational Goals Review

More information

IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunoinformatics

IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunoinformatics IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunoinformatics Marie-Paule Lefranc Université Montpellier, CNRS First international Immunoinformatics Symposium Yokohama, Japan, 26-27 February

More information

Basic principles of IG sequence analysis: Immunogenetic analysis: in vitro

Basic principles of IG sequence analysis: Immunogenetic analysis: in vitro IMMUNOGENETICS IN CLL IN THE NGS ERA Rotterdam, The Netherlands, November 24 th 2017 Basic principles of IG sequence analysis: Immunogenetic analysis: in vitro Lesley Ann Sutton Dept. of IGP, Uppsala University,

More information

IgH/TCR Clonality Status. Performance Monitoring Cover Sheet. Final IgH Clonality Result IGH 131. Uncontrolled Copy

IgH/TCR Clonality Status. Performance Monitoring Cover Sheet. Final IgH Clonality Result IGH 131. Uncontrolled Copy Performance Monitoring Cover Sheet Participant No: Trial No: IgH161703 Issue Date: 20 th December 2016 Performance Monitoring: Your Result N Consensus Clonality Result Final IgH Clonality Result IGH 131

More information

IMGT Databases and Tools for Immunoglobulin (IG) and T cell receptor (TR) analysis, and for Antibody humanization.

IMGT Databases and Tools for Immunoglobulin (IG) and T cell receptor (TR) analysis, and for Antibody humanization. IMGT Databases and Tools for Immunoglobulin (IG) and T cell receptor (TR) analysis, and for Antibody humanization Marie-Paule Lefranc IMGT Founder and Director Professor University Montpellier 2, CNRS,

More information

UNDERSTANDING THE CLONOSEQ ASSAY

UNDERSTANDING THE CLONOSEQ ASSAY FOR HEALTHCARE PROVIDERS UNDERSTANDING THE CLONOSEQ ASSAY Clonality (ID) and Tracking (MRD) Reports clonoseq is an FDA-cleared in vitro diagnostic (IVD) test service provided by Adaptive Biotechnologies

More information

Applications of AmpliSeq-based Ion Torrent TCRB Immune Repertoire Sequencing

Applications of AmpliSeq-based Ion Torrent TCRB Immune Repertoire Sequencing Applications of AmpliSeq-based Ion Torrent TCRB Immune Repertoire Sequencing Timothy Looney, PhD Staff Scientist, Clinical Next-Generation Sequencing Division Thermo Fisher Scientific The world leader

More information

IG Cer'fica'on. Andreas Agathangelidis Ins'tute of Applied Biosciences, CERTH ADFDHHHHHHHHHHHHHHHH

IG Cer'fica'on. Andreas Agathangelidis Ins'tute of Applied Biosciences, CERTH ADFDHHHHHHHHHHHHHHHH IG Cer'fica'on Andreas Agathangelidis Ins'tute of Applied Biosciences, CERTH ADFDHHHHHHHHHHHHHHHH Round 3 Project lead by: CERTH/INAB Deadline to apply: 15 September 2017 Sample shipment: 5 December 2017

More information

Next Generation Sequencing Activities

Next Generation Sequencing Activities Next Generation Sequencing Activities Department of Control and Computer Engineering Politecnico of Turin, Italy Meeting Politecnico of Turin-Ebri Fundation PACIELLO Giulia on Behalf of 2 July 2013 FICARRA

More information

an innovation in high throughput single cell profiling

an innovation in high throughput single cell profiling an innovation in high throughput single cell profiling www.dolomite-bio.com Why use high throughput single cell profiling? Techniques such as high throughput scrna-seq (single cell RNA sequencing) offer

More information

Applications of the Ion AmpliSeq Immune Repertoire Assay Plus TCRβ

Applications of the Ion AmpliSeq Immune Repertoire Assay Plus TCRβ Applications of the Ion AmpliSeq Immune Repertoire Assay Plus TCRβ Timothy Looney, PhD Staff Scientist, Clinical Next-Generation Sequencing Division Thermo Fisher Scientific The world leader in serving

More information

Introduction to RNA-Seq. David Wood Winter School in Mathematics and Computational Biology July 1, 2013

Introduction to RNA-Seq. David Wood Winter School in Mathematics and Computational Biology July 1, 2013 Introduction to RNA-Seq David Wood Winter School in Mathematics and Computational Biology July 1, 2013 Abundance RNA is... Diverse Dynamic Central DNA rrna Epigenetics trna RNA mrna Time Protein Abundance

More information

Genome Sequence Assembly

Genome Sequence Assembly Genome Sequence Assembly Learning Goals: Introduce the field of bioinformatics Familiarize the student with performing sequence alignments Understand the assembly process in genome sequencing Introduction:

More information

TCRG TCRA/D IGH IGK/L

TCRG TCRA/D IGH IGK/L Assays immunoseq Assay The inquiry to insight solution for profiling T- and B-cell s Immunosequencing solutions for multiple species and loci Illuminate the adaptive immune system with bias-controlled

More information

dbcamplicons pipeline Amplicons

dbcamplicons pipeline Amplicons dbcamplicons pipeline Amplicons Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu Microbial community analysis Goal:

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Data-processing pipeline.

Nature Immunology: doi: /ni Supplementary Figure 1. Data-processing pipeline. Supplementary Figure 1 Data-processing pipeline. Steps for processing data from multiple sorted B cell populations derived from a single individual at a single time point are shown. Parameters used are

More information

Towards detection of minimal residual disease in multiple myeloma through circulating tumour DNA sequence analysis

Towards detection of minimal residual disease in multiple myeloma through circulating tumour DNA sequence analysis Towards detection of minimal residual disease in multiple myeloma through circulating tumour DNA sequence analysis Trevor Pugh, PhD, FACMG Princess Margaret Cancer Centre, University Health Network Dept.

More information

dbcamplicons pipeline Amplicons

dbcamplicons pipeline Amplicons dbcamplicons pipeline Amplicons Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu Microbial community analysis Goal:

More information

TECH NOTE SMARTer T-cell receptor profiling in single cells

TECH NOTE SMARTer T-cell receptor profiling in single cells TECH NOTE SMARTer T-cell receptor profiling in single cells Flexible workflow: Illumina-ready libraries from FACS or manually sorted single cells Ease of use: Optimized indexing allows for pooling 96 cells

More information

Introduction into single-cell RNA-seq. Kersti Jääger 19/02/2014

Introduction into single-cell RNA-seq. Kersti Jääger 19/02/2014 Introduction into single-cell RNA-seq Kersti Jääger 19/02/2014 Cell is the smallest functional unit of life Nucleus.ATGC.UACG. A Cell KLTSH. The complexity of biology How many cell types? How many cells?

More information

T and B cell gene rearrangement October 17, Ram Savan

T and B cell gene rearrangement October 17, Ram Savan T and B cell gene rearrangement October 17, 2016 Ram Savan savanram@uw.edu 441 Lecture #9 Slide 1 of 28 Three lectures on antigen receptors Part 1 (Last Friday): Structural features of the BCR and TCR

More information

IMGT Locus on Focus. ABC Fax Marie-Paule Lefranc

IMGT Locus on Focus. ABC Fax Marie-Paule Lefranc Exp Clin Immunogenet 1998;15:1 7 Received: January 7, 1998 Marie-Paule Lefranc Laboratoire d ImmunoGénétique Moléculaire, CNRS, Université Montpellier II, Montpellier, France IMGT Locus on Focus A New

More information

Antigen receptor (immunoglobulin and T-cell receptor) gene rearrangements: Utility in Routine Diagnostic Hematopathology

Antigen receptor (immunoglobulin and T-cell receptor) gene rearrangements: Utility in Routine Diagnostic Hematopathology Antigen receptor (immunoglobulin and T-cell receptor) gene rearrangements: Utility in Routine Diagnostic Hematopathology DIAGNÓSTICO PRÁTICO DOS LINFOMAS São Paulo, Brasil 02 DE SETEMBRO DE 2011 Adam Bagg

More information

Who pairs with whom? High-throughput sequencing of the human paired heavy and light chain repertoire

Who pairs with whom? High-throughput sequencing of the human paired heavy and light chain repertoire Who pairs with whom? High-throughput sequencing of the human paired heavy and light chain repertoire Technical Journal Club September 15 th Christina Müller Background - antibody repertoire is the sum

More information

IMGT, the international ImMunoGeneTics information system.

IMGT, the international ImMunoGeneTics information system. http://www.imgt.org IMGT, the international ImMunoGeneTics information system http://www.imgt.org Marie-Paule Lefranc IMGT Founder and Director, Professor UM2 and the IMGT team November 28, 2012 IMGT in

More information

Outline. Clonality Targets. Human IGH locus. Human IGK locus. Human TRB locus

Outline. Clonality Targets. Human IGH locus. Human IGK locus. Human TRB locus Complete Suite of NGS Clonality Assays with Bioinfmatics Identification and Tracking Patient Specific Clones Presha Shah, Ph.D. Development Scientist Outline Part I: LymphoTrack Products What are different

More information

DNBseq TM SERVICE OVERVIEW Plant and Animal Whole Genome Re-Sequencing

DNBseq TM SERVICE OVERVIEW Plant and Animal Whole Genome Re-Sequencing TM SERVICE OVERVIEW Plant and Animal Whole Genome Re-Sequencing Plant and animal whole genome re-sequencing (WGRS) involves sequencing the entire genome of a plant or animal and comparing the sequence

More information

Quality assurance in NGS (diagnostics)

Quality assurance in NGS (diagnostics) Quality assurance in NGS (diagnostics) Chris Mattocks National Genetics Reference Laboratory (Wessex) Research Diagnostics Quality assurance Any systematic process of checking to see whether a product

More information

European guidelines for the universal description of Ig / TCR clonality testing data

European guidelines for the universal description of Ig / TCR clonality testing data December 13, 2011 3rd Scientific Meeting MolecularDiagnostics.be t Elzenveld, Antwerp European guidelines for the universal description of Ig / TR clonality testing data Anton W. Langerak Dept. of Immunology

More information

Roche Molecular Biochemicals Technical Note No. LC 10/2000

Roche Molecular Biochemicals Technical Note No. LC 10/2000 Roche Molecular Biochemicals Technical Note No. LC 10/2000 LightCycler Overview of LightCycler Quantification Methods 1. General Introduction Introduction Content Definitions This Technical Note will introduce

More information

SO YOU WANT TO DO A: RNA-SEQ EXPERIMENT MATT SETTLES, PHD UNIVERSITY OF CALIFORNIA, DAVIS

SO YOU WANT TO DO A: RNA-SEQ EXPERIMENT MATT SETTLES, PHD UNIVERSITY OF CALIFORNIA, DAVIS SO YOU WANT TO DO A: RNA-SEQ EXPERIMENT MATT SETTLES, PHD UNIVERSITY OF CALIFORNIA, DAVIS SETTLES@UCDAVIS.EDU Bioinformatics Core Genome Center UC Davis BIOINFORMATICS.UCDAVIS.EDU DISCLAIMER This talk/workshop

More information

Introduction to RNA-Seq in GeneSpring NGS Software

Introduction to RNA-Seq in GeneSpring NGS Software Introduction to RNA-Seq in GeneSpring NGS Software Dipa Roy Choudhury, Ph.D. Strand Scientific Intelligence and Agilent Technologies Learn more at www.genespring.com Introduction to RNA-Seq In a few years,

More information

Atlas of Genetics and Cytogenetics in Oncology and Haematology. IMMUNOGLOBULIN GENES: CONCEPT OF DNA REARRANGEMENT * Introduction

Atlas of Genetics and Cytogenetics in Oncology and Haematology. IMMUNOGLOBULIN GENES: CONCEPT OF DNA REARRANGEMENT * Introduction Atlas of Genetics and Cytogenetics in Oncology and Haematology IMMUNOGLOBULIN GENES: CONCEPT OF DNA REARRANGEMENT * Introduction I Historical questions II Answers II.1 Light chains (kappa or lambda) II.1.1

More information

Summary of Proposed Revisions to the 2013 Standards November 2014

Summary of Proposed Revisions to the 2013 Standards November 2014 Summary of Proposed Revisions to the 2013 Standards November 2014 The following revisions are proposed to the 2013 ASHI Standards. These revisions went through multiple reviews by the ASHI Board of Directors

More information

Basics of RNA-Seq. (With a Focus on Application to Single Cell RNA-Seq) Michael Kelly, PhD Team Lead, NCI Single Cell Analysis Facility

Basics of RNA-Seq. (With a Focus on Application to Single Cell RNA-Seq) Michael Kelly, PhD Team Lead, NCI Single Cell Analysis Facility 2018 ABRF Meeting Satellite Workshop 4 Bridging the Gap: Isolation to Translation (Single Cell RNA-Seq) Sunday, April 22 Basics of RNA-Seq (With a Focus on Application to Single Cell RNA-Seq) Michael Kelly,

More information

Outline General NGS background and terms 11/14/2016 CONFLICT OF INTEREST. HLA region targeted enrichment. NGS library preparation methodologies

Outline General NGS background and terms 11/14/2016 CONFLICT OF INTEREST. HLA region targeted enrichment. NGS library preparation methodologies Eric T. Weimer, PhD, D(ABMLI) Assistant Professor, Pathology & Laboratory Medicine, UNC School of Medicine Director, Molecular Immunology Associate Director, Clinical Flow Cytometry, HLA, and Immunology

More information

Experimental Design. Dr. Matthew L. Settles. Genome Center University of California, Davis

Experimental Design. Dr. Matthew L. Settles. Genome Center University of California, Davis Experimental Design Dr. Matthew L. Settles Genome Center University of California, Davis settles@ucdavis.edu What is Differential Expression Differential expression analysis means taking normalized sequencing

More information

The HLA Community s Success in Combining Clinical & Genomic Data

The HLA Community s Success in Combining Clinical & Genomic Data The HLA Community s Success in Combining Clinical & Genomic Data Elizabeth Trachtenberg MS, PhD, DABHI Director, Center for Applied Genomics HLA/Immunogenetics Laboratory Children s Hospital & Research

More information

RNA standards v May

RNA standards v May Standards, Guidelines and Best Practices for RNA-Seq: 2010/2011 I. Introduction: Sequence based assays of transcriptomes (RNA-seq) are in wide use because of their favorable properties for quantification,

More information

NGS in Pathology Webinar

NGS in Pathology Webinar NGS in Pathology Webinar NGS Data Analysis March 10 2016 1 Topics for today s presentation 2 Introduction Next Generation Sequencing (NGS) is becoming a common and versatile tool for biological and medical

More information

Primary diversity mechanisms of the antibody synthesis in humans, mice and chickens

Primary diversity mechanisms of the antibody synthesis in humans, mice and chickens Primary diversity mechanisms of the antibody synthesis in humans, mice and chickens Nikolai Hecker August 25, 2008 1 Contents 1 Introduction 5 2 Background 7 2.1 Antibody structure and development....................

More information

How to deal with your RNA-seq data?

How to deal with your RNA-seq data? How to deal with your RNA-seq data? Rachel Legendre, Thibault Dayris, Adrien Pain, Claire Toffano-Nioche, Hugo Varet École de bioinformatique AVIESAN-IFB 2017 1 Rachel Legendre Bioinformatics 27/11/2018

More information

Real-Time PCR Principles and Applications

Real-Time PCR Principles and Applications Real-Time PCR Principles and Applications Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department Objectives Real-Time PCR Principles and

More information

Chapter 5. Genetic Models. Organization and Expression of Immunoglobulin Genes 3. The two-gene model: Models to Explain Antibody Diversity

Chapter 5. Genetic Models. Organization and Expression of Immunoglobulin Genes 3. The two-gene model: Models to Explain Antibody Diversity Chapter 5 Organization and Expression of Immunoglobulin Genes 3 4 5 6 Genetic Models How to account for: ) Vast diversity of antibody specificities ) Presence of Variable regions at the amino end of Heavy

More information

ImmunoID NeXT. Precision Genomics for Immuno-Oncology. ImmunoID NeXT. The Universal Cancer Immunogenomics Platform

ImmunoID NeXT. Precision Genomics for Immuno-Oncology. ImmunoID NeXT. The Universal Cancer Immunogenomics Platform ImmunoID NeXT Precision Genomics for Immuno-Oncology ImmunoID NeXT The Universal Cancer Immunogenomics Platform Personalis, Inc. Advancing Modern Precision Oncology The Universal Cancer Immunogenomics

More information

TECH NOTE Pushing the Limit: A Complete Solution for Generating Stranded RNA Seq Libraries from Picogram Inputs of Total Mammalian RNA

TECH NOTE Pushing the Limit: A Complete Solution for Generating Stranded RNA Seq Libraries from Picogram Inputs of Total Mammalian RNA TECH NOTE Pushing the Limit: A Complete Solution for Generating Stranded RNA Seq Libraries from Picogram Inputs of Total Mammalian RNA Stranded, Illumina ready library construction in

More information

GENETIC BASIS OF ANTIBODY STRUCTURE AND DIVERSITY. Steven J. Norris, Ph.D

GENETIC BASIS OF ANTIBODY STRUCTURE AND DIVERSITY. Steven J. Norris, Ph.D GENETIC BASIS OF ANTIBODY STRUCTURE AND DIVERSITY Steven J. Norris, Ph.D Topics I. General principles II. The heavy chain Ig locus and VDJ rearrangement III. Light chain rearrangement. IV. Mechanisms of

More information

The pipeline repertoire of Ig-Seq analysis

The pipeline repertoire of Ig-Seq analysis The pipeline repertoire of Ig-Seq analysis Laura López-Santibáñez-Jácome, 1,2 Selma Eréndira Avendaño-Vázquez, 1 Carlos Fabián Flores- Jasso 1 * Affiliations 1 Consorcio de Metabolismo de RNA, Instituto

More information

INTELLIGENT ANTIBODY DISCOVERY FROM HUMANS AND OTHER ANIMALS. Guy Cavet

INTELLIGENT ANTIBODY DISCOVERY FROM HUMANS AND OTHER ANIMALS. Guy Cavet INTELLIGENT ANTIBODY DISCOVERY FROM HUMANS AND OTHER ANIMALS Guy Cavet g.cavet@atreca.com PRECISION THERAPIES FROM THE ACTIVE IMMUNE RESPONSE Patient/Animal with Immune Response Immune Repertoire Capture

More information

TISSUE MICROARRAY (TMA)

TISSUE MICROARRAY (TMA) TISSUE MICROARRAY (TMA) The fastest and most user friendly TMA solution on the market The tissue microarray (TMA) technique can be used as a valuable, high-throughput tool for diagnostic and research purposes.

More information

Detection of T-cell clonality in patients with B-cell chronic lymphocytic leukemia

Detection of T-cell clonality in patients with B-cell chronic lymphocytic leukemia Detection of T-cell clonality in patients with B-cell chronic lymphocytic leukemia Dijana Djureinovic Degree project in biology, Master of science (1 year), 2008 Examensarbete i biologi 30 hp till magisterexamen,

More information

Sample to Insight. Dr. Bhagyashree S. Birla NGS Field Application Scientist

Sample to Insight. Dr. Bhagyashree S. Birla NGS Field Application Scientist Dr. Bhagyashree S. Birla NGS Field Application Scientist bhagyashree.birla@qiagen.com NGS spans a broad range of applications DNA Applications Human ID Liquid biopsy Biomarker discovery Inherited and somatic

More information

Plateforme IMGT Bases de données anticorps.

Plateforme IMGT Bases de données anticorps. Plateforme IMGT Bases de données anticorps Marie-Paule Lefranc IMGT Founder and Director Professor, Montpellier 2 University, CNRS, Montpellier, France Module Anticorps monoclonaux Parcours Immunotechnologies

More information

working with scientists to advance single cell research

working with scientists to advance single cell research working with scientists to advance single cell research 4 introduction Why choose Nadia? 6 nadia instrument Nadia Instrument features Why use high throughput single cell profiling? Working with scrna-seq

More information

SuperTCRExpress TM Human TCR Vβ Repertoire CDR3 Diversity Determination (Spectratyping) and Quantitative Analysis Kit

SuperTCRExpress TM Human TCR Vβ Repertoire CDR3 Diversity Determination (Spectratyping) and Quantitative Analysis Kit SuperTCRExpress TM Human TCR Vβ Repertoire CDR3 Diversity Determination (Spectratyping) and Quantitative Analysis Kit Cat. No. H0521 Size: 2 sets (22 Vβ families/each, with enzymes) H0522 Size: 4 sets

More information

Targeted Sequencing in the NBS Laboratory

Targeted Sequencing in the NBS Laboratory Targeted Sequencing in the NBS Laboratory Christopher Greene, PhD Newborn Screening and Molecular Biology Branch Division of Laboratory Sciences Gene Sequencing in Public Health Newborn Screening February

More information

ChIP-seq and RNA-seq. Farhat Habib

ChIP-seq and RNA-seq. Farhat Habib ChIP-seq and RNA-seq Farhat Habib fhabib@iiserpune.ac.in Biological Goals Learn how genomes encode the diverse patterns of gene expression that define each cell type and state. Protein-DNA interactions

More information

ChIP-seq and RNA-seq

ChIP-seq and RNA-seq ChIP-seq and RNA-seq Biological Goals Learn how genomes encode the diverse patterns of gene expression that define each cell type and state. Protein-DNA interactions (ChIPchromatin immunoprecipitation)

More information

irweb: Data Analysis Guide

irweb: Data Analysis Guide We Find Health in Your Diversity. irepertoire Inc. irweb: Data Analysis Guide Immune Repertoire NGS Data Analysis for irepertoire Reagent Systems For Research Use Only. Not To Used For Clinical Diagnostics.

More information

MicroRNA profiling directly from low amounts of plasma or serum using the Multiplex Circulating mirna Assay with Firefly particle technology

MicroRNA profiling directly from low amounts of plasma or serum using the Multiplex Circulating mirna Assay with Firefly particle technology Technical note MicroRNA profiling directly from low amounts of plasma or serum using the Multiplex Circulating mirna Assay with Firefly particle technology Abstract We introduce a new assay that enables

More information

Whole Transcriptome Analysis of Illumina RNA- Seq Data. Ryan Peters Field Application Specialist

Whole Transcriptome Analysis of Illumina RNA- Seq Data. Ryan Peters Field Application Specialist Whole Transcriptome Analysis of Illumina RNA- Seq Data Ryan Peters Field Application Specialist Partek GS in your NGS Pipeline Your Start-to-Finish Solution for Analysis of Next Generation Sequencing Data

More information

Immunoglobulins. Generation of Diversity

Immunoglobulins. Generation of Diversity Immunoglobulins Generation of Diversity Unfortunately, for this theory to be true the number of antibody genes would need to be 100-1000-fold greater than the entire human genome Introduction Immunologist

More information

Antibody humanization and engineering: what do we learn from IMGT standardization.

Antibody humanization and engineering: what do we learn from IMGT standardization. Antibody humanization and engineering: what do we learn from IMGT standardization Marie-Paule Lefranc IMGT Founder and Director Professor University Montpellier 2, CNRS, Montpellier, France 5th Annual

More information

APPLICATION NOTE. Abstract. Introduction

APPLICATION NOTE. Abstract. Introduction From minuscule amounts to magnificent results: reliable ChIP-seq data from 1, cells with the True MicroChIP and the MicroPlex Library Preparation kits Abstract Diagenode has developed groundbreaking solutions

More information

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie Sander van Boheemen Medical Microbiology Next-generation sequencing Next-generation sequencing (NGS), also known as

More information

Measuring and Understanding Gene Expression

Measuring and Understanding Gene Expression Measuring and Understanding Gene Expression Dr. Lars Eijssen Dept. Of Bioinformatics BiGCaT Sciences programme 2014 Why are genes interesting? TRANSCRIPTION Genome Genomics Transcriptome Transcriptomics

More information

Introducing QIAseq. Accelerate your NGS performance through Sample to Insight solutions. Sample to Insight

Introducing QIAseq. Accelerate your NGS performance through Sample to Insight solutions. Sample to Insight Introducing QIAseq Accelerate your NGS performance through Sample to Insight solutions Sample to Insight From Sample to Insight let QIAGEN enhance your NGS-based research High-throughput next-generation

More information

Next Generation Sequencing of HLA: Challenges and Opportunities in the era of Precision Medicine. Dr. Paul Keown, 2016

Next Generation Sequencing of HLA: Challenges and Opportunities in the era of Precision Medicine. Dr. Paul Keown, 2016 Next Generation Sequencing of HLA: Challenges and Opportunities in the era of Precision Medicine Dr. Paul Keown, 2016 Statement of Conflict & Collaboration Therapeutics collaborations Novartis, Roche,

More information

Applications of short-read

Applications of short-read Applications of short-read sequencing: RNA-Seq and ChIP-Seq BaRC Hot Topics March 2013 George Bell, Ph.D. http://jura.wi.mit.edu/bio/education/hot_topics/ Sequencing applications RNA-Seq includes experiments

More information

Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering

Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering Cartagenia Bench Lab Case Study Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering At a Glance In this case study, you will learn: How Uppsala

More information

Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering

Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering Cartagenia Bench Lab CASE STUDY Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering Authors: Berivan Baskin 1, PhD, FACMG, FCCMG; Tina Smets

More information

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits Incorporating Molecular ID Technology Accel-NGS 2S MID Indexing Kits Molecular Identifiers (MIDs) MIDs are indices used to label unique library molecules MIDs can assess duplicate molecules in sequencing

More information

Supplementary Information Supplementary Figures

Supplementary Information Supplementary Figures Supplementary Information Supplementary Figures Figure S. The number of reads mapped to the and models for 76 human plasmablasts (AW-AW dataset) using bowtie reconstructed from (A) (B) (C) IMGT_mapped

More information

Analysis of NGS data. resources. Grid computing workshop 2015 Jan Oppelt, NCBR & CEITEC MU 1 st December, 2015

Analysis of NGS data. resources. Grid computing workshop 2015 Jan Oppelt, NCBR & CEITEC MU 1 st December, 2015 Analysis of NGS data using MetaCentrum VO resources Grid computing workshop 2015 Jan Oppelt, NCBR & CEITEC MU 1 st December, 2015 Basic introduction 12/1/2015 Jan Oppelt, NCBR & CEITEC MU 2 Introduction

More information

Interpretation of karyotyping using mitogens vs FISH vs SNP-based array in CLL. Arnon Kater Dept of Hematology AMC Amsterdam

Interpretation of karyotyping using mitogens vs FISH vs SNP-based array in CLL. Arnon Kater Dept of Hematology AMC Amsterdam Interpretation of karyotyping using mitogens vs FISH vs SNP-based array in CLL Arnon Kater Dept of Hematology AMC Amsterdam 1 Introduction Accepted diagnostic workup CLL prior to treatment FISH 13q, tris

More information

CAPTURE-BASED APPROACH FOR COMPREHENSIVE DETECTION OF IMPORTANT ALTERATIONS

CAPTURE-BASED APPROACH FOR COMPREHENSIVE DETECTION OF IMPORTANT ALTERATIONS CAPTURE-BASE APPROACH FOR COMPREHENSIVE ETECTION OF IMPORTANT ALTERATIONS SEQUENCE MUTATIONS MICROSATELLITE INSTABILITY AMPLIFICATIONS GENOMIC REARRANGEMENTS For Research Use Only. Not for iagnostic Purposes.

More information

Technical Information. Intended Use. Contraindications. Special Conditions for Use. Summary and Explanation

Technical Information. Intended Use. Contraindications. Special Conditions for Use. Summary and Explanation Adaptive Biotechnologies Corporation 1551 Eastlake Ave E, Suite 200, Seattle, WA 98102 Phone: (855) 466-8667 Intended Use The clonoseq Assay is an in vitro diagnostic that uses multiplex polymerase chain

More information

Intended Use. Contraindications. Special Conditions for Use. Summary and Explanation

Intended Use. Contraindications. Special Conditions for Use. Summary and Explanation clonoseq Assay Adaptive Biotechnologies Corporation 1551 Eastlake Ave E, Suite 200, Seattle, WA 98102 Phone: (855) 466-8667 Intended Use The clonoseq Assay is an in vitro diagnostic that uses multiplex

More information

Implementation of Ion AmpliSeq in molecular diagnostics

Implementation of Ion AmpliSeq in molecular diagnostics Implementation of Ion AmpliSeq in molecular diagnostics The Rotterdam Experience Ronald van Marion Deelnemersbijeenkomst SKML sectie Pathologie Amersfoort, 26 mei 2016 Molecular Diagnostics in Rotterdam

More information

SMRT Analysis Barcoding Overview (v6.0.0)

SMRT Analysis Barcoding Overview (v6.0.0) SMRT Analysis Barcoding Overview (v6.0.0) Introduction This document applies to PacBio RS II and Sequel Systems using SMRT Link v6.0.0. Note: For information on earlier versions of SMRT Link, see the document

More information

Sequencing applications. Today's outline. Hands-on exercises. Applications of short-read sequencing: RNA-Seq and ChIP-Seq

Sequencing applications. Today's outline. Hands-on exercises. Applications of short-read sequencing: RNA-Seq and ChIP-Seq Sequencing applications Applications of short-read sequencing: RNA-Seq and ChIP-Seq BaRC Hot Topics March 2013 George Bell, Ph.D. http://jura.wi.mit.edu/bio/education/hot_topics/ RNA-Seq includes experiments

More information

FFPE in your NGS Study

FFPE in your NGS Study FFPE in your NGS Study Richard Corbett Canada s Michael Smith Genome Sciences Centre Vancouver, British Columbia Dec 6, 2017 Our mandate is to advance knowledge about cancer and other diseases and to use

More information

Experimental Design. Sequencing. Data Quality Control. Read mapping. Differential Expression analysis

Experimental Design. Sequencing. Data Quality Control. Read mapping. Differential Expression analysis -Seq Analysis Quality Control checks Reproducibility Reliability -seq vs Microarray Higher sensitivity and dynamic range Lower technical variation Available for all species Novel transcript identification

More information

DATA FORMATS AND QUALITY CONTROL

DATA FORMATS AND QUALITY CONTROL HTS Summer School 12-16th September 2016 DATA FORMATS AND QUALITY CONTROL Romina Petersen, University of Cambridge (rp520@medschl.cam.ac.uk) Luigi Grassi, University of Cambridge (lg490@medschl.cam.ac.uk)

More information

Quality Control of Next Generation Sequence Data

Quality Control of Next Generation Sequence Data Quality Control of Next Generation Sequence Data January 17, 2018 Kane Tse, Assistant Bioinformatics Coordinator Canada s Michael Smith Genome Sciences Centre BC Cancer Agency Canada s Michael Smith Genome

More information

Analysis of data from high-throughput molecular biology experiments Lecture 6 (F6, RNA-seq ),

Analysis of data from high-throughput molecular biology experiments Lecture 6 (F6, RNA-seq ), Analysis of data from high-throughput molecular biology experiments Lecture 6 (F6, RNA-seq ), 2012-01-26 What is a gene What is a transcriptome History of gene expression assessment RNA-seq RNA-seq analysis

More information

Illumina Read QC. UCD Genome Center Bioinformatics Core Monday 29 August 2016

Illumina Read QC. UCD Genome Center Bioinformatics Core Monday 29 August 2016 Illumina Read QC UCD Genome Center Bioinformatics Core Monday 29 August 2016 QC should be interactive Error modes Each technology has unique error modes, depending on the physico-chemical processes involved

More information

Get to Know Your DNA. Every Single Fragment.

Get to Know Your DNA. Every Single Fragment. HaloPlex HS NGS Target Enrichment System Get to Know Your DNA. Every Single Fragment. High sensitivity detection of rare variants using molecular barcodes How Does Molecular Barcoding Work? HaloPlex HS

More information

Read Quality Assessment & Improvement. UCD Genome Center Bioinformatics Core Tuesday 14 June 2016

Read Quality Assessment & Improvement. UCD Genome Center Bioinformatics Core Tuesday 14 June 2016 Read Quality Assessment & Improvement UCD Genome Center Bioinformatics Core Tuesday 14 June 2016 QA&I should be interactive Error modes Each technology has unique error modes, depending on the physico-chemical

More information

Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering

Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering Alissa Interpret The next evolution of Cartagenia Bench Case Study: Implementing ACMG guidelines on sequence variant interpretation: software-assisted variant curation and filtering At a Glance In this

More information

Course Presentation. Ignacio Medina Presentation

Course Presentation. Ignacio Medina Presentation Course Index Introduction Agenda Analysis pipeline Some considerations Introduction Who we are Teachers: Marta Bleda: Computational Biologist and Data Analyst at Department of Medicine, Addenbrooke's Hospital

More information

Data Retrieval from GenBank

Data Retrieval from GenBank Data Retrieval from GenBank Peter J. Myler Bioinformatics of Intracellular Pathogens JNU, Feb 7-0, 2009 http://www.ncbi.nlm.nih.gov (January, 2007) http://ncbi.nlm.nih.gov/sitemap/resourceguide.html Accessing

More information

Pioneering Clinical Omics

Pioneering Clinical Omics Pioneering Clinical Omics Clinical Genomics Strand NGS An analysis tool for data generated by cutting-edge Next Generation Sequencing(NGS) instruments. Strand NGS enables read alignment and analysis of

More information

HaloPlex HS. Get to Know Your DNA. Every Single Fragment. Kevin Poon, Ph.D.

HaloPlex HS. Get to Know Your DNA. Every Single Fragment. Kevin Poon, Ph.D. HaloPlex HS Get to Know Your DNA. Every Single Fragment. Kevin Poon, Ph.D. Sr. Global Product Manager Diagnostics & Genomics Group Agilent Technologies For Research Use Only. Not for Use in Diagnostic

More information

Discovering gene regulatory control using ChIP-chip and ChIP-seq. An introduction to gene regulatory control, concepts and methodologies

Discovering gene regulatory control using ChIP-chip and ChIP-seq. An introduction to gene regulatory control, concepts and methodologies Discovering gene regulatory control using ChIP-chip and ChIP-seq An introduction to gene regulatory control, concepts and methodologies Ian Simpson ian.simpson@.ed.ac.uk bit.ly/bio2_2012 The Central Dogma

More information

Fundamentals of Next-Generation Sequencing: Technologies and Applications

Fundamentals of Next-Generation Sequencing: Technologies and Applications Fundamentals of Next-Generation Sequencing: Technologies and Applications Society for Hematopathology European Association for Haematopathology 2017 Workshop Eric Duncavage, MD Washington University in

More information

Use of Spike-ins for Sample Tracking in Agilent Array CGH

Use of Spike-ins for Sample Tracking in Agilent Array CGH Use of Spike-ins for Sample Tracking in Agilent Array CGH Application Note Authors Srirangan Sampath, Ph.D., FACMG and Heather Klein PreventionGenetics Iman Kishawi, Ph.D. Agilent Technologies, Inc. Abstract

More information