Homework #6. From the primary textbook (Shuler, et. al. 3 rd ed.), problems 10.2, 10.5, 10.8.

Size: px
Start display at page:

Download "Homework #6. From the primary textbook (Shuler, et. al. 3 rd ed.), problems 10.2, 10.5, 10.8."

Transcription

1 Homework #6 From the primary textbook (Shuler, et. al. 3 rd ed.), problems 10.2, 10.5, CBEN 460 Fall October 18, 2017

2 AMANULLAH, A., J. M. 0TERRO, M. MIKOLA, A. Hsu, J. ZHANG, J. AUNINS, H. B. SCHREYER, J. A. HOPE, AND A. P. Russo, "Novel Micro-Bioreactor High Throughput Technology for Cell Culture Process Development: Reproducibility and Scalability Assessment of Fed-Batch CHO Cultures," Biotechnol. Bioeng. 106: 57-67, BuLL, D. N., R. W. THOMA, AND T. E. STINNETT, "Bioreactors for Submerged Culture," Adv. Biotechnol. Processes 1: 1-30, BYLUND, F., F. GUILLARD, S.-0. ENFORS, C. TRAGARDH, AND G. LARSSON, "Scale Down of Recombinant Protein Production: A Comparative Study of Scaling Performance," Bioprocess Eng. 20: , GARCIA-OCHEA, F., AND E. GoMEZ, " Bioreactor Scale Up and Oxygen Transfer Rate in Microbial Processes: An Overview," Biotechnology Advances 27: , JosT, J., "Selected Bioengineering Problems in Stirred-Tank Fermenters," in S. L. Sandler and B. A. Finlayson, eds., Chemical Engineering Education in a Changing Environment, Engineering Foundation, New York, JUNKER, B. H., M. STANIK, C. BARNA, P. SALMON, E. PAUL, AND B. C. Bu ckland, "Influence of Impeller Type on Power Input in Fermentation Vessels," Bioprocess Eng. 18: , KARGI, F., AND M. Moo-YouNG, "Transport Phenomena in Bioprocesses," in Comprehensive Biotechnology, Vol. 2, M. Moo-Young, ed., Pergamon Press, Oxford, UK, 1985, pp KIM, B. J., J. DIAO, AND M. L. SHULER, "Mini-scale Bioprocessing Systems for Highly Parallel Animal Cell Cultures," Biotechnol. Progr. 28: , KLUTZ, S., J. MAGNUS, M. LOBEDANN, P. SCHAWN, B. MAISER, J. NIKLAS, M. TEMMING, AND G. SCHEMBECKER, "Developing the Biofacility of the F uture Based on Continuous Processing and Single-Use Technology," J. Biotechnol. 213: , KOMIVES, C., AND R. S. PARKER, "Bioreactor State Estimation and Control," Curr. Opin. Biotechnol. 14: , LoFFELHOLZ, C., S. C. KAISER, M. KRAUME, R. EIBL, AND D. EIBL, "Dynamic Single-use Bioreactors Used in Modern Liter and m 3 -scale Biotechnological Processes: Engineering Characteristics and Scaling Up," Adv. Biochem. Eng./Biotechnol. 138: 1-44, POHLSCHEIDT, M., S. CHARANIYA, C. BORK, M. JENZSCH, T. NOETZEL, AND A. LUEBBERT, "Bioprocess and Fermentation Monitoring," Chapter 69, pp , in Upstream Industrial Biotechnology: Equipment, Process Design, Sensing, Control, and cgmp Operations, Vol. 2, M. C. Flickenger, ed., RAMEEZ, S., S. S. MosTAFA, C. MILLER, AND A. SHUKLA, " High-Throughput Miniaturized Bioreactors for Cell Culture Process Development; Reproducibility, Scalability and Control," Biotechnol. Progr. 30: , PR OBLEM S The air supply to a fermenter was turned off for a short period of time and then restarted. A value for C* of 7.3 mg/1 has been determined for the operating conditions. Use the tabulated measurements of dissolved oxygen (DO) values in the following table to estimate the oxygen uptake rate and kla in this system. 366 Selection, Scale-Up, Operation, and Control of Bioreactors Chap. 10

3 R, gy of dv. Wn e," : m iler ~ nt, nee m, ten- 185, tile! NG, ous pin. irt,?am ~ ra-.zed :onhen ms. tble Time (min) DO (mg/1) - I 3.3 Air off Air on II A value of kla = 30 h- 1 has been determined for a fermenter at its maximum practical agitator rotational speed and with air being sparged at 0.5 I gas/1 reactor volume-min. E. coli with a q 0, of I 0 mmol 0 2 /g-dry wt-h are to be cultured. The critical dissolved oxygen concentration is 0.2 mg/1. The solubility of oxygen from air in the fermentation broth is 7.3 mg/1 at 30 C. a. What maximum concentration of E. coli can be sustained in this fermenter under aerobic conditions? b. What concentration could be maintained if pure oxygen was used to sparge the reactor? You are asked to design the temperature control system for a large fermenter. a. Estimate the required cooling-water flow rate for a 100,000 I fermenter with an 80,000 1 working volume when the rate of oxygen consumption is 100 mmol 0 2 /1 -h. The desired operating temperature is 35 C. A cooling coil is to be used. The minimum allowable temperature differential between the cooling water and the broth is soc. Cooling water is available at l5 C. The heat capacities of the broth and the cooling water are roughly equal. b. Estimate the required length of cooling coil if the coil has a 2.5-cm diameter and the overall heat transfer coefficient is 1420 J/s-m 2-0 C A lethal agent (KCN) was added to the fermentation medium in the presence of aeration using diffusors. Dissolved oxygen (DO) concentration increased with time as follows when N = 100 rev/min: t (min) DO(mg/L) 0 I Saturation DO concentration in the fermentation medium is 7.0 mg/l. a. Determine oxygen transfer coefficient kla. b. Determine k La when Ni is increased to 200 rev/min.. 10 Problems 367

4 10.5. A laboratory-scale stirred-tank fermenter of volume 5 I (Do/H = 112) is to be scaled up to 500 I by using the following criteria: DilDo = 1/3, N = 100 rev/min. Determine the size of the fermenter, impeller diameter and speed for each case: a. Constant oxygen transfer rate b. Constant power/volume c. Constant impeller tip speed d. Constant mixing time Consider Example What would be the substrate concentrations in each compartment in the 10 I and 10,000 I tanks if the probe were placed in the bottom compartment? Consider the 10 I and 10,000 I tanks described in Example Suppose that fully continuous operation is to be used, Fwas fixed at 5 mg/1-s for both tanks, and D = 0.2 h- 1 for each tank with fluid removal from the top. What fraction of the inlet substrate would be consumed in each tank? If the biomass yield coefficient were 0.5 g cells/g substrate and YPtx = 0.1 g product/g cells, what would be the effect on volumetric productivity upon scale-up? A continuous culture system is being constructed. The fermentation tank is to be 50,000 I in size, and the residence time is to be 2 h. A continuous sterilizer is to be used. The unsterilized medium contains l0 4 spores/l. The value of k" has been determined to be I min- 1 at 121 C and 61 min- 1 at 140 C. For each temperature (121 C and 140 C), determine the required residence time in the holding section so as to ensure that 99% of the time 4 weeks of continuous operation can be obtained without contamination (due to contaminants in the liquid medium) Discuss the effects of mixing on sterilization in a batch fermenter A medium containing a vitamin is to be sterilized. Assume that the number of spores initially present is 10 5 /1. The values of the pre-arrhenius constant and 0 " for the spores are E 0 " = 65 kcal/g-mol For the inactivation of the vitamin, the values of E 0 " and a are E 0 " = 10 kcal/g-mol The initial concentration of the vitamin is 30 mg/1. Compare the amount of active vitamin in the sterilized medium for 10 I and 10,000 I fermenters when both are sterilized at 121 C when we require in both cases that the probability of an unsuccessful fermentation be Ignore the effects of the heat-up and cool-down periods Consider the data given in the following table on the temperature changes in a 10,000 I fermenter, which includes the heat-up and cool-down periods. Use the values for the Arrhenius parameters given in Problem 10.8 and assume an initial spore concentration of 10 5 II and a vitamin concentration of 30 mg/ Selection, Scale-Up, Operation, and Control of Bioreactors Chap. 10

5 Time(min) Temperature ( 0 C) a. What is the probability of a successful sterilization? b. What fraction of the vitamin remains undegraded? c. What fraction of the vitamin is degraded in the sterilization period? d. What fraction of the vitamin is degraded in the heat-up and cool-down periods? e: What is the fraction of spores deactivated in the heat-up and cool-down cycles? E. coli has a maximum respiration rate, qo,max, of about 240 mg Oi g-dry wt-h. It is desired to achieve a cell mass of 20 g dry wt/1. The kla is 120 h- 1 in a 1000 I reactor (800 I working volume). A gas stream enriched in oxygen is used (i.e., 80% 0 2 ), which gives a value of C* = 28 mg/l. If oxygen becomes limiting, growth and respiration slow; following is an example: qo, = 0.2 mg/1 +CL max l- it i- 1] te Ill Here CL is the dissolved oxygen concentration in the fermenter. What is CL when the cell mass is at 20 g/1? The temperature history of the heating and cooling of a 40,000 I tank during sterilization of medium follows: 0 to 15 min, T = 85 C; 15 to 40 min, T = 12! C; 40 to 50 min, T = 85 C; 50 to 60 min, T = 55 C; > 60 min, T = 30 C. The medium contains vitamins, the most fragile of the vitamins has an activation energy for destruction of 10 kcal/g-mol, and the value of a (see equation 10.18) is min-'. Assume vitamin destruction is first order and the initial concentration is 50 mg/1. R is 1.99 cal/g-mol-k The medium contains spores/l. The spores have an 0 " = 65 kcal/g-mol, and k" at 121 C is 1.02 min-'. Estimate the probability of a successful sterilization. What fraction of the vitamin remains active? Estimate kla from Figure 10.5 if C* is 35 mg/1 due to the use of nearly pure oxygen rather than air. In cultivation of baker's yeast in a stirred and aerated tank, lethal agents are added to the fermentation medium to kill the organisms immediately. Increase in dissolved oxygen (DO) concentration upon addition of lethal agents is followed with the aid of a DO analyzer and a recorder. Using the following data, determine the oxygen transfer coefficient (kla) for the reactor. Saturation DO concentration is C* = 9 mg/1. 10 Problems 369

6 Time (min) DO (mg/1) A stirred-tank reactor is to be scaled down from I 0 m 3 to 0.1 m 3. The dimensions of the large tank are D 1 =2m; D,. = 0.5 m; N = 100 rpm. a. Determine the dimensions of the small tank (D 1, D,., H) by using geometric similarity. b. What would be the required rotational speed of the impeller in the small tank if the following criteria were used? bl. Constant tip speed b2. Constant impeller Re number An autoclave malfunctions, and the temperature reaches only C. The sterilization time at the maximum temperature was 20 min. The jar contains I 0 I of complex medium that has 10 5 spores/!. At 12l C, kd = 1.0 min- 1 and Eod = 90 kcal/g-mol. What is the probability that the medium was sterile? You are asked to design a continuous sterilizer to produce 330,000 Lid of sterile media. The system must operate for 30 days with the probability of failure to be The initial concentration of spores in the medium is 10 4 /1. The value of kd is 1 min- 1 at 121 C and 60 min- 1 at 140 C. a. Estimate the residence time in the sterilizer at 121 C necessary to achieve the desired probability of success. b. Estimate the residence time required at 140 C. c. What is the ratio of residence times for high-temperature, short-time sterilization to operation at 121 oc? One hundred tubes are to be sterilized. Each tube contains 10 ml of fluid. The value of kd = 0.6 min- 1 The tubes are sterilized for 20 min. Ten of the tubes showed growth of contaminants. What was the concentration of spores in the tubes? 370 Selection, Scale-Up, Operation, and Control of Bioreactors Chap. 10

Scale-up in Bioprocess Sandip Bankar and Tero Eerikainen

Scale-up in Bioprocess Sandip Bankar and Tero Eerikainen Scale-up in Bioprocess and Tero Eerikainen sandip.bankar@aalto.fi CONTROL OF BIOPROCESS SANDIP BANKAR AND TERO EERIKAINEN sandip.bankar@aalto.fi https://www.sartorius.com/en/products/bioreactors-fermentors/single-use/biostat-str/

More information

PTT304 Fermentation Technology. Sterilization and Equipment

PTT304 Fermentation Technology. Sterilization and Equipment PTT304 Fermentation Technology Sterilization and Equipment Sterilization Reading assignments: Chapter 10 Shuler & Kargi Sterilization Fermentation process involves cultivation of a single microorganisms,

More information

Evaluating the Use of Airlift Pumps for Bioreactor Applications

Evaluating the Use of Airlift Pumps for Bioreactor Applications Proceedings of the 4 th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'17) Toronto, Canada August 21 23, 2017 Paper No. 134 DOI: 10.11159/ffhmt17.134 Evaluating the Use of Airlift

More information

Presenter: Suprvisor: Selection, Scale up and Operation of Bioreactors

Presenter: Suprvisor: Selection, Scale up and Operation of Bioreactors In the Name of God Presenter: Maryam Shahmansouri Suprvisor: Dr.Reza Gheshlaghi Selection, Scale up and Operation of Bioreactors (Chapter 10 Shuler) 1 Outline types of Bioreactors problems in large reactors

More information

Outline. Upstream Processing: Development & Optimization

Outline. Upstream Processing: Development & Optimization Upstream Processing: Development & Optimization Kamal Rashid, Ph.D., Director Biomanufacturing Education & Training Center Worcester Polytechnic Institute Outline Introduction to Upstream processing Microbial

More information

Pfenex : A Fermentation Platform based on Pseudomonas fluorescens

Pfenex : A Fermentation Platform based on Pseudomonas fluorescens Pfenex : A Fermentation Platform based on Pseudomonas fluorescens Deisy Corredor, PhD. Upstream Group Leader Global Bio-Production Summit Feb 6 th - 2018 Outline Fermentation Process Development Scale-Up

More information

Available online Research Article

Available online  Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(3):814-818 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Experimental studies on determination of volumetric

More information

Bioreactor System ERT 314. Sidang /2012

Bioreactor System ERT 314. Sidang /2012 Bioreactor System ERT 314 Sidang 1 2011/2012 Chapter 3:Types of Bioreactors Week 4-5 Handouts : Chapter 13 in Doran, Bioprocess Engineering Principles Background to Bioreactors The bioreactor is the heart

More information

Single-Use Cultivation in a Classical Format:

Single-Use Cultivation in a Classical Format: Single-Use Cultivation in a Classical Format: Reflecting the demand for single-use manufacturing by implementing stirred single-use bioreactors based on classical standards Dr. Andreas Kocourek, Sartorius

More information

Oxygen transfer conditions in the production of rainbow trout growth hormone (rtgh) by Escherichia coli

Oxygen transfer conditions in the production of rainbow trout growth hormone (rtgh) by Escherichia coli Indian Journal of Biotechnology Vol 7, April 2008, pp 225-229 Oxygen transfer conditions in the production of rainbow trout growth hormone (rtgh) by Escherichia coli Usama Beshay* Bioprocess Development

More information

Cork Institute of Technology. Summer 2005 CE4.6 Chemical and Biochemical Reactors (Time: 3 Hours) Section A

Cork Institute of Technology. Summer 2005 CE4.6 Chemical and Biochemical Reactors (Time: 3 Hours) Section A Cork Institute of Technology Bachelor of Engineering (Honours in Chemical and Process Engineering Award (Bachelor of Engineering in Chemical and Process Engineering Award Answer any FOUR questions. (NFQ

More information

Scale-up & scale-down between the two. worlds of shaken and stirred bioreactors

Scale-up & scale-down between the two. worlds of shaken and stirred bioreactors Scale-up & scale-down between the two worlds of shaken and stirred bioreactors Prof. Dr.-Ing. Jochen Büchs AVT - Biochemical Engineering, RWTH Aachen University Sammelbau Biologie, D - 52074 Aachen, Germany

More information

Simulating Process Limitations in Microbial Cultivation: A Parallel Two-Compartment Scale-Down Approach

Simulating Process Limitations in Microbial Cultivation: A Parallel Two-Compartment Scale-Down Approach APPLICATION NOTE No. 301 I February 2016 Simulating Process Limitations in Microbial Cultivation: A Parallel Two-Compartment Scale-Down Approach Michael H. Limberg 1, Stephan Zelle 2, Christiane Schlottbom

More information

Continuous Xylose Fermentation by Candida shehatae in a Two-Stage Reactor

Continuous Xylose Fermentation by Candida shehatae in a Two-Stage Reactor In: Scott, Charles D., ed. Proceedings of the 9th symposium on biotechnology for fuels and chemicals; 1987 May 5-8; Boulder, CO. In: Applied Biochemistry and Biotechnology. Clifton, NJ: Humana Press; 1988:

More information

Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization

Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization Péter Bakonyi, Nándor Nemestóthy, Katalin Bélafi-Bakó Research Institute on Bioengineering, Membrane Technology

More information

Scalability of the Mobius CellReady Single-use Bioreactor Systems

Scalability of the Mobius CellReady Single-use Bioreactor Systems Application Note Scalability of the Mobius CellReady Single-use Bioreactor Systems Abstract The Mobius CellReady single-use bioreactor systems are designed for mammalian cell growth and recombinant protein

More information

KGC SCIENTIFIC FERMENTER DESIGN INDUSTRIAL SCALE

KGC SCIENTIFIC  FERMENTER DESIGN INDUSTRIAL SCALE KGC SCIENTIFIC www.kgcscientific.com FERMENTER DESIGN INDUSTRIAL SCALE Definition of Biotechnology Utilization of bioprocess using microorganism, plant tissue, and animal cell, and components of them for

More information

Eppendorf In touch with life

Eppendorf In touch with life Eppendorf In touch with life Scalable Cell Culture Using Rigid-Wall, Single-Use Bioreactors Eppendorf BioBLU Single-Use Vessels analytica, Dr. Christof Knocke, May 10, 2016 Sample Handling Cell Handling

More information

Efficient operation of the HyPerforma 5:1 Single-Use Bioreactor at low working volume

Efficient operation of the HyPerforma 5:1 Single-Use Bioreactor at low working volume APPLICATION NOTE HyPerforma : Single-Use Bioreactor Efficient operation of the HyPerforma : Single-Use Bioreactor at low working volume Introduction The Thermo Scientific HyPerforma : Single-Use Bioreactor

More information

Fermentation monitoring. Dissolved oxygen ph Temperature Offgas monitoring Substrate (glucose)

Fermentation monitoring. Dissolved oxygen ph Temperature Offgas monitoring Substrate (glucose) Bioreactor Monitoring & Control Bioreactor Monitoring & Control Basic principles of process control Fermentation monitoring Dissolved oxygen ph Temperature Offgas monitoring Substrate (glucose) Useful

More information

Homework #3. From the textbook, problems 9.1, 9.2, 9.3, 9.10, In 9.2 use q P = 0.02 g P / g cell h.

Homework #3. From the textbook, problems 9.1, 9.2, 9.3, 9.10, In 9.2 use q P = 0.02 g P / g cell h. Homework #3 From the textbook, problems 9.1, 9.2, 9.3, 9.10, 9.15 In 9.2 use q P = 0.02 g P / g cell h. In 9.10 the factor k s is k d, the kinetic factor for the cell death. Also, use r=0 for part (b)

More information

A shaking bioreactor equipped with twin ceramic membranes for acetic acid production using Acetobacter pasteurianus

A shaking bioreactor equipped with twin ceramic membranes for acetic acid production using Acetobacter pasteurianus Biotechnology Letters 24: 1987 1991, 2002. 2002 Kluwer Academic Publishers. Printed in the Netherlands. 1987 A shaking bioreactor equipped with twin ceramic membranes for acetic acid production using Acetobacter

More information

Bioreactor Process Control Principles from Lab to Industrial Scale. Daniel Egger & Manfred Zinn

Bioreactor Process Control Principles from Lab to Industrial Scale. Daniel Egger & Manfred Zinn Bioreactor Process Control Principles from Lab to Industrial Scale Daniel Egger & Manfred Zinn Agenda What is industrial production Scale up importance Classic scale up principles Problems in industrial

More information

Biotechnology : Unlocking the Mysterious of Life Seungwook Kim Chem. & Bio. Eng.

Biotechnology : Unlocking the Mysterious of Life Seungwook Kim Chem. & Bio. Eng. Biotechnology : Unlocking the Mysterious of Life 2004 Seungwook Kim Chem. & Bio. Eng. Biotechnology in movies Biotechnology is An area of applied bioscience and technology which involves the practical

More information

advanced microscale bioreactor for cell line development

advanced microscale bioreactor for cell line development advanced microscale bioreactor for cell line development For rapid evaluation of multiple bioreactor cultures at microscale, increasing productivity of cell line development and providing significant savings

More information

Continuous bioremediation of phenol polluted air in an external loop airlift bioreactor with packed bed Hossein Nikakhtari 1 and Gordon A.

Continuous bioremediation of phenol polluted air in an external loop airlift bioreactor with packed bed Hossein Nikakhtari 1 and Gordon A. CONTINUOUS BIOREMEDIATION OF PHENOL POLLUTED AIR IN AN EXTERNAL LOOP AIRLIFT BIOREACTOR 211 Continuous bioremediation of phenol polluted air in an external loop airlift bioreactor with packed bed Hossein

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2018 IJSRST Volume 4 Issue 5 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology A Review Scale Up Fermentation Procedure Sikander Ali, Muhammad Faiq Ali, Maryam Sameer,

More information

TECHNICAL PAPER. Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1. By: Dr.

TECHNICAL PAPER. Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1. By: Dr. TECHNICAL PAPER Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1 By: Dr. Alvin Nienow Senior Technical Consultant The Merrick Consultancy Merrick & Company

More information

9 Reasons To Consider A Single-Use Fermentor

9 Reasons To Consider A Single-Use Fermentor 9 Reasons To Consider A Single-Use Fermentor Dedicated Fermentation Technology Replacing Stainless Steel Systems in Bioprocess Markets By Nephi Jones Historically, the rigorous performance demands of industrial

More information

Bioreactors and Fermenters. Biometrix Corporation (800)

Bioreactors and Fermenters. Biometrix Corporation (800) Bioreactors and Fermenters Biometrix Corporation (800)-890-89 1 Course Objectives This lesson will discuss bioreactors including basic operations, typical instrumentation configurations and calibration

More information

Scale up/scale down strategies and devices 16/11/2016

Scale up/scale down strategies and devices 16/11/2016 Scale up/scale down strategies and devices 16/11/2016 Valentina Mangiafridda MEng Gas Lab and Fermentation Manager 2016 Centre for Process Innovation Limited. All Rights Reserved. CPI mission We use applied

More information

Simulation of Feedforward-Feedback Control of Dissolved Oxygen (DO) of Microbial Repeated Fed-batch Culture

Simulation of Feedforward-Feedback Control of Dissolved Oxygen (DO) of Microbial Repeated Fed-batch Culture Simulation of Feedforward-Feedback Control of Dissolved Oxygen (DO) of Microbial Repeated Fed-batch Culture ing Gao 1,, Huibin in 2 1 Shandong Provincial Key ab for Distributed Computer Software Novel

More information

Probing control in B. licheniformis fermentations

Probing control in B. licheniformis fermentations Probing control in B. licheniformis fermentations Johnsson, Ola; Andersson, Jonas; Johnsson, Charlotta 211 Link to publication Citation for published version (APA): Johnsson, O., Andersson, J., & Johnsson,

More information

Enthalpy Calculations. Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions.

Enthalpy Calculations. Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions. Enthalpy Calculations Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions. Enthalpy Change as a Result of Temperature Sensible heat is the

More information

F1 1/10 R&D BIOREACTORS/FERMENTORS

F1 1/10 R&D BIOREACTORS/FERMENTORS F1 1/10 R&D BIOREACTORS/FERMENTORS THE COMPANY Bionet is a specialist in Bioprocesses Engineering. We provide equipment (Bioreactors, Cross-Flow Filtration Systems and Cleaning-In-Place Systems) and advanced

More information

Available online Research Article. Reactor design strategy: Production of xanthan from sugarcane broth

Available online  Research Article. Reactor design strategy: Production of xanthan from sugarcane broth Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(5):323-329 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Reactor design strategy: Production of xanthan from

More information

Chapter 7 Mass Transfer

Chapter 7 Mass Transfer Chapter 7 Mass Transfer Mass transfer occurs in mixtures containing local concentration variation. For example, when dye is dropped into a cup of water, mass-transfer processes are responsible for the

More information

version BROCHURE Laboratory Bioreactor / Fermentor

version BROCHURE Laboratory Bioreactor / Fermentor version 1.0 2018 BROCHURE Laboratory Bioreactor / Fermentor Laboratory Winpact Benchtop SIP (FS-05S / FS-07S) Semi-automatic sterilization-in-place for stainless steel vessels Stainless steel vessel compatible

More information

Introduction to Biotechnology and Bioprocess Engineering A Course for the Chemical Engineering Curriculum

Introduction to Biotechnology and Bioprocess Engineering A Course for the Chemical Engineering Curriculum Introduction to Biotechnology and Bioprocess Engineering A Course for the Chemical Engineering Curriculum Michael Gyamerah and Irvin W. Osborne-Lee, Chemical Engineering Department, Prairie View A&M University,

More information

Bioreactor System ERT 314. Sidang /2011

Bioreactor System ERT 314. Sidang /2011 Bioreactor System ERT 314 Sidang 1 2010/2011 Chapter 2:Types of Bioreactors Week 2 Choosing the Cultivation Method The Choice of Bioreactor Affects Many Aspects of Bioprocessing. Product concentration

More information

Hydrodynamic and Mass Transfer Study in a Mechanically Stirred Hybrid Airlift Bioreactor Based on Impeller Type

Hydrodynamic and Mass Transfer Study in a Mechanically Stirred Hybrid Airlift Bioreactor Based on Impeller Type Hydrodynamic and Mass Transfer Study in a Mechanically Stirred Hybrid Bioreactor Based on Impeller Type Sérgio S. de Jesus, Aline Santana, and Rubens Maciel Filho Abstract The analysis of the influence

More information

BioLector I 48 Parallel Microbioreactors. High-Throughput Real-Time Monitoring Scalability Automation.

BioLector I 48 Parallel Microbioreactors. High-Throughput Real-Time Monitoring Scalability Automation. BioLector I 48 Parallel Microbioreactors High-Throughput Real-Time Monitoring Scalability Automation m2p-labs The Microbioreactor Company www.m2p-labs.com High Information Content for fast Selection BioLector

More information

Bio Reactor Systems. Contact for further information, or call +44 (0)

Bio Reactor Systems. Contact for further information, or call +44 (0) Bio Reactor Systems The bench mark for R+D Bio-reactors Single and parallel fully automated, modular systems Aerobic, anaerobic plus microbial, cell cultures and bio-fuels Range of interchangeable size

More information

Cell free xanthan gum production using continuous recycled packed fibrous-bed bioreactor-membrane

Cell free xanthan gum production using continuous recycled packed fibrous-bed bioreactor-membrane Malaysian Journal of Microbiology, Vol () 008, pp. - Cell free xanthan gum production using continuous recycled packed fibrous-bed bioreactor-membrane Rosalam S *. Krishnaiah D. and Bono A. Advanced membrane

More information

A Novel Method of Simulating Oxygen Mass Transfer in Two-Phase Partitioning Bioreactors

A Novel Method of Simulating Oxygen Mass Transfer in Two-Phase Partitioning Bioreactors A Novel Method of Simulating Oxygen Mass Transfer in Two-Phase Partitioning Bioreactors David R. Nielsen, Andrew J. Daugulis, P. James McLellan Department of Chemical Engineering, Queen s University, Kingston,

More information

Oxygen Mass Transfer Rate in a Pressurized Lab-Scale Stirred Bioreactor

Oxygen Mass Transfer Rate in a Pressurized Lab-Scale Stirred Bioreactor Pressurized bioreactor 1779 Marlene Lopes Manuel Mota Isabel Belo University of Minho, Centre of Biological Engineering, IBB Institute for Biotechnology and Bioengineering, Braga, Portugal. Research Article

More information

Solid-Liquid two-phase partitioning bioreactors for the treatment of gas-phase VOCs

Solid-Liquid two-phase partitioning bioreactors for the treatment of gas-phase VOCs 427 Solid-Liquid two-phase partitioning bioreactors for the treatment of gas-phase VOCs Department of Chemical Engineering, Queen s University, Kingston Ontario Canada K7L3N6 ABSTRACT Two-Phase Partitioning

More information

Shortening Timelines for Upstream Bioprocessing of Protein-based Therapeutics

Shortening Timelines for Upstream Bioprocessing of Protein-based Therapeutics Shortening Timelines for Upstream Bioprocessing of Protein-based Therapeutics Dr Jincai Li Executive Director, Biologics Process Development, Wuxi AppTec, China. li_jincai@wuxiapptec.com Sarah Wang Technical

More information

a. Sulfite Oxidation (Cooper, Ind. Eng. Chem. 336, 504, 1944)

a. Sulfite Oxidation (Cooper, Ind. Eng. Chem. 336, 504, 1944) 7. Measurement of k L a and OUR a. Sulfite Oxidation (Cooper, Ind. Eng. Chem. 336, 504, 1944) Relies on the rate of conversion of 0.5 M sodium sulfite to sodium sulfate in the presence of cobalt ion catalyst:

More information

The Influence of Cyclic Glucose Feedin$ on a Continuous Bakers' Yeast Culture

The Influence of Cyclic Glucose Feedin$ on a Continuous Bakers' Yeast Culture Biotechnology Letters Vol 7 No 4 235-240 (1985) The Influence of Cyclic Glucose Feedin$ on a Continuous Bakers' Yeast Culture E.Heinzle, J.Moes, and I.J.Dunn Chemical EngineeringLaboratory (TCL), Federal

More information

2.4 TYPES OF MICROBIAL CULTURE

2.4 TYPES OF MICROBIAL CULTURE 2.4 TYPES OF MICROBIAL CULTURE Microbial culture processes can be carried out in different ways. There are three models of fermentation used in industrial applications: batch, continuous and fed batch

More information

Friday November 4, 2016

Friday November 4, 2016 Friday November 4, 2016 http://2020heinsite.blogspot.fi/2012/05/fermentation.html 15 Feedback Have you studied biochemistry and microbiology in your earlier studies? (17) Yes (4) No (6) Studied related

More information

Design and CFD analysis of mass transfer and shear stresses distributions in airlift reactor

Design and CFD analysis of mass transfer and shear stresses distributions in airlift reactor University of Sherbrooke From the SelectedWorks of Rachid BANNARI June 3, 2009 Design and CFD analysis of mass transfer and shear stresses distributions in airlift reactor Rachid Bannari Brahim Selma Abdelfettah

More information

BIOREACTOR ENGINEERING Chapter 8. Faculty of Chemical & Natural Resources Engineering Bioreactor/Fermenter Systems by Chew Few Ne

BIOREACTOR ENGINEERING Chapter 8. Faculty of Chemical & Natural Resources Engineering Bioreactor/Fermenter Systems by Chew Few Ne BIOREACTOR ENGINEERING Chapter 8 Bioreactor/Fermenter Systems by Chew Few Ne Faculty of Chemical & Natural Resources Engineering cfne@ump.edu.my Chapter Description Topic Outcome Classify types of bioreactor/fermenter

More information

Homework #6. From the primary textbook (Shuler, et. al.) on cell growth, problems (6.3 or 6.5) and (6.10 or 6.14).

Homework #6. From the primary textbook (Shuler, et. al.) on cell growth, problems (6.3 or 6.5) and (6.10 or 6.14). Homework #6 From the primary textbook (Shuler, et. al.) on cell growth, problems (6.3 or 6.5) and (6.10 or 6.14). CBEN 460 Fall 2017 1 October 9, 2017 FREDERICKSON, A. G., R. D. MEGEE III, AND H. M. TsUCHIYA,

More information

LARGE SCALE PRODUCTION OF LACCASE BY PLEUROTUS OSTREATUS IMI IN BIOREACTOR

LARGE SCALE PRODUCTION OF LACCASE BY PLEUROTUS OSTREATUS IMI IN BIOREACTOR LARGE SCALE PRODUCTION OF LACCASE BY PLEUROTUS OSTREATUS IMI 395545 IN BIOREACTOR ABSTRACT In this chapter large scale laccase production from Pleurotus ostreatus IMI 395545 in a bench top bioreactor was

More information

Thermo Scientific HyClone Single-Use Bioreactor Products and Capabilities. Discovery Development Production

Thermo Scientific HyClone Single-Use Bioreactor Products and Capabilities. Discovery Development Production Thermo Scientific HyClone Single-Use Bioreactor Products and Capabilities Discovery Development Production Introduction Leading the way in Single-Use Bioreactors Since its introduction, the Thermo Scientific

More information

Evaluation and Modeling of the Aerobic Stirred Bioreactor Performances for Fungus Broths

Evaluation and Modeling of the Aerobic Stirred Bioreactor Performances for Fungus Broths A.-I. GALACTION et al., Evaluation and Modeling of the Aerobic Stirred, Chem. Biochem. Eng. Q. 19 (1) 87 97 (2005) 87 Evaluation and Modeling of the Aerobic Stirred Bioreactor Performances for Fungus Broths

More information

BioLector Pro Microfluidic Bioprocess Control

BioLector Pro Microfluidic Bioprocess Control BioLector Pro Microfluidic Bioprocess Control 32 Parallel Microbioreactors ph Control Continuous Feeding Online Monitoring Scalability m2p-labs The Microbioreactor Company www.m2p-labs.com Full Bioprocess

More information

Physical State in Which Naphthalene and Bibenzyl are Utilized by Bacteria

Physical State in Which Naphthalene and Bibenzyl are Utilized by Bacteria APPLIED MicRosoLowy, June 1972, p. 1077-1081 Copyright i 1972 American Society for Microbiology Vol. 23, No. 6 Printed in U.S.A. Physical State in Which Naphthalene and Bibenzyl are Utilized by Bacteria

More information

BioBundles. Real bioreactors, really small.

BioBundles. Real bioreactors, really small. BioBundles Real bioreactors, really small. Save Time and Money with mycontrol and Small-Scale Bioreactors Starting with smaller bioreactor cultures is the most cost effective way to develop a new process

More information

Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species

Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species Zainab Z. Ismail * Department of Environmental Engineering, Baghdad University Baghdad, Iraq and Ali J. Jaeel

More information

BCT Loop Reactor Technology

BCT Loop Reactor Technology BCT Loop Reactor Technology By BUSS ChemTech AG www.buss-ct.com Hohenrainstrasse 10 CH-4133 Pratteln 1, Switzerland Tel. + 41 (0) 618 256 462 Fax. +41 (0) 618 256 737 Abstract This paper highlights the

More information

Model based control of fed-batch fermentations. Dr.sc.ing. Juris Vanags

Model based control of fed-batch fermentations. Dr.sc.ing. Juris Vanags Model based control of fed-batch fermentations Dr.sc.ing. Juris Vanags Substrate feeding in fed-batch fermentations general state (1) 1. Fed-batch is used, if it is necessary to ensure a high biomass concentration;

More information

Reverse Spin Technology Innovative Principle of Microbial Cultivation

Reverse Spin Technology Innovative Principle of Microbial Cultivation Reverse Spin Technology Innovative Principle of Microbial Cultivation Medical Biological Research & Technologies Data Logging and Analysis Authors V. Bankovsky, I. Bankovsky, P. Bankovsky, J. Isakova,

More information

Improved mass transfer allows selection of high performers in early stage development

Improved mass transfer allows selection of high performers in early stage development Improved mass transfer allows selection of high performers in early stage development Small scale systems for suspension cultures, such as standard orbital shakers are widely used in cultivating micro-organisms.

More information

PROCESS ECONOMICS PROGRAM

PROCESS ECONOMICS PROGRAM PROCESS ECONOMICS PROGRAM Abstract Process Economics Program Report No. 188 SRI INTERNATIONAL Menlo Park, California 94025 BIOTl3CHNOLOCY REACTION SYSTEMS (March 1987) Most bioreactions are carried out

More information

Contents. Preface XI Nomenclature XIII. Part I Basic Concepts and Principles 1

Contents. Preface XI Nomenclature XIII. Part I Basic Concepts and Principles 1 V Preface XI Nomenclature XIII Part I Basic Concepts and Principles 1 1 Introduction 3 1.1 Background and Scope 3 1.2 Dimensions and Units 4 1.3 Intensive and Extensive Properties 6 1.4 Equilibria and

More information

Reverse Spin Technology Innovative Principle of Microbial Cultivation

Reverse Spin Technology Innovative Principle of Microbial Cultivation Reverse Spin Technology Innovative Principle of Microbial Cultivation Authors V. Bankovsky, I. Bankovsky, P. Bankovsky, J. Isakova, I. Djackova, A. Sharipo, J. Eskin, A. Dišlers, R. Rozenstein, V. Saricev,

More information

Roots in Tofu Liquid Waste by Streptococcus

Roots in Tofu Liquid Waste by Streptococcus Japan Journal of Food Engineering, Vol. 8, No. 1, pp. 29-33, Mar. 2007 Note Effect of Temperature on L-Lactic Acid Fermentation from Fresh Cassava Roots in Tofu Liquid Waste by Streptococcus bovis SuriPto

More information

Cultivation of sensitive cell lines - Improving bioreactor performance by dynamic membrane aeration

Cultivation of sensitive cell lines - Improving bioreactor performance by dynamic membrane aeration Cultivation of sensitive cell lines - Improving bioreactor performance by dynamic membrane aeration Björn Frahm, Helmut Brod Bioprocessing Summit Optimizing Cell Culture Technology, Boston, 2010-08-24

More information

TheInfluenceofSomeEngineeringVariablesUpontheMorphology ofrhizopusnigricansinastirredtankbioreactor

TheInfluenceofSomeEngineeringVariablesUpontheMorphology ofrhizopusnigricansinastirredtankbioreactor P. NIDARŠIÈ-PLAZL, The Influence of Some Engineering Variables Upon the, Chem. Biochem. Eng. Q. 20 (3) 275 280 (2006) 275 TheInfluenceofSomeEngineeringVariablesUpontheMorphology ofrhizopusnigricansinastirredtankbioreactor

More information

Trouble-shooting Fermentation and Primary recovery manufacturing issues in order to optimize antigen expression for the Vaccine business

Trouble-shooting Fermentation and Primary recovery manufacturing issues in order to optimize antigen expression for the Vaccine business Trouble-shooting Fermentation and Primary recovery manufacturing issues in order to optimize antigen expression for the Vaccine business Tim Lee, Ph.D. 1 Agenda Fermentation manufacturing issues in antigen

More information

CHAPTER 2 CULTURE TYPE

CHAPTER 2 CULTURE TYPE CHAPTER 2 CULTURE TYPE All types of micro-organisms are grown in suspension with the exception of cell culture, in which cells can also be anchorage dependent. Suspension the micro-organism can grow successfully

More information

Single-Use Simplicity

Single-Use Simplicity Single-Use Simplicity BioBLU c and BioBLU p Single-Use Vessels for cell culture »Proven stirred-tank design meets single-use technology.«reliable performance and ease-of-use Combine the benefits of single-use

More information

Efficient operation of the HyPerforma 5:1 Single-Use Bioreactor at low working volume

Efficient operation of the HyPerforma 5:1 Single-Use Bioreactor at low working volume APPLICATION NOTE HyPerforma 5:1 Single-Use Bioreactor Efficient operation of the HyPerforma 5:1 Single-Use Bioreactor at low working volume Introduction The Thermo Scientific HyPerforma 5:1 Single-Use

More information

Special Additional Papers for B.Sc. (Hons.)Biotechnology Transcriptomics and Metabolomics (306) M.M.-100 Transcriptomics and Metabolomics Cloning and expression of heterologous genes: Redirecting metabolic

More information

Improving Single Use Bioreactor Design and Process Development: New Research Towards Intensifying Seed- Train and Scale-Up Methods Using 5:1 Turn-Down

Improving Single Use Bioreactor Design and Process Development: New Research Towards Intensifying Seed- Train and Scale-Up Methods Using 5:1 Turn-Down Improving Single Use Bioreactor Design and Process Development: New Research Towards Intensifying Seed- Train and Scale-Up Methods Using 5:1 Turn-Down Nephi Jones Advanced Technology R&D Manager BioProduction

More information

Application of Disposable Technologies in Biopharmaceutical Manufacturing

Application of Disposable Technologies in Biopharmaceutical Manufacturing BMD Summit, Disposables for Biopharm Production 13th December 2005 Reston, VA, USA Application of Disposable Technologies in Biopharmaceutical Manufacturing Martin Wrankmore, Continuous Improvement Lead,

More information

Evaluation of a probing feeding strategy in large scale cultivations

Evaluation of a probing feeding strategy in large scale cultivations ISSN 28 5316 ISRN LUTFD2/TFRT--761--SE Evaluation of a probing feeding strategy in large scale cultivations Stéphane Velut Lena de Maré Jan Peter Axelsson Per Hagander Department of Automatic Control Lund

More information

Evaluating FermOpt as a tool for teaching fermentation and optimization principles

Evaluating FermOpt as a tool for teaching fermentation and optimization principles Evaluating FermOpt as a tool for teaching fermentation and optimization principles Mark Lay and Janis Swan Department of Engineering, University of Waikato, Private Bag 3105, Hamilton, New Zealand mclay@waikato.ac.nz,

More information

Journal of Chemical and Pharmaceutical Research, 2014, 6(1): Research Article

Journal of Chemical and Pharmaceutical Research, 2014, 6(1): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(1):289-293 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 The application of process mass spectrometer in

More information

Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes Karimi et al. Iranian Journal of Environmental Health Sciences & Engineering 213, 1:6 IRANIAN JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING RESEARCH ARTICLE Open Access Oxygen mass transfer in

More information

Professor Wei-Shou Hu Spring 2007 ChEn 5751

Professor Wei-Shou Hu Spring 2007 ChEn 5751 Professor Wei-Shou Hu Spring 2007 ChEn 5751 Cell Culture Bioreactors Basic Types of Bioreactors................................................... 1 Segregated Bioreactors (Dead Zone Present)\Compartmentalized

More information

Cultivation of aggressive microbial cultures of Pichia and Bacillus using the HyPerforma 30 L and 300 L Single-Use Fermentors

Cultivation of aggressive microbial cultures of Pichia and Bacillus using the HyPerforma 30 L and 300 L Single-Use Fermentors APPLICATION NOTE Cultivation of aggressive microbial cultures of Pichia and Bacillus using the HyPerforma 3 L and 3 L Single-Use Fermentors No. COL241 Jason Brown, Paula Decaria, Nephi Jones, Tommy Smith,

More information

Peter Neubauer Chair of Bioprocess Engineering, Technische Universität Berlin, DE berlin.de

Peter Neubauer Chair of Bioprocess Engineering, Technische Universität Berlin, DE   berlin.de Peter Neubauer Chair of Bioprocess Engineering, Technische Universität Berlin, DE http://www.bioprocess.tu berlin.de The Biotech Challenge o Biotechnology is a key technology of the 21 st century o 2030

More information

RoboLector Automated Fermentation. High-Throughput Real-Time Monitoring Scalability Automation

RoboLector Automated Fermentation. High-Throughput Real-Time Monitoring Scalability Automation Automated Fermentation High-Throughput Real-Time Monitoring Scalability Automation m2p-labs The Microbioreactor Company www.m2p-labs.com The Robotic Solution for your Fermentation The consists of a standard

More information

Cork Institute of Technology. Summer 2005 CE3.6 Reactor Design and Biochemical Engineering (Time: 3 Hours) Section A

Cork Institute of Technology. Summer 2005 CE3.6 Reactor Design and Biochemical Engineering (Time: 3 Hours) Section A Cork Institute of Technology Bachelor of Engineering (Honours) in Chemical & Process Engineering Stage 3 (Bachelor of Engineering in Chemical and Process Engineering Stage 3) (NFQ Level 8) Summer 005 CE3.6

More information

Course Objectives. Course Learning Outcomes. CHPE422: Bioprocess Engineering

Course Objectives. Course Learning Outcomes. CHPE422: Bioprocess Engineering CHPE422: Bioprocess Engineering Lecturer: Dr Sagheer Onaizi Office : 5D-40, College of Engineering Email:sagheer.onaizi@unizwa.edu.om ١ Course Objectives The key objectives of this course is to provide

More information

Laboratory experiments of lead biosorption by self-immobilized Rhizopus nigricans pellets in the batch stirred tank reactor and the packed bed column

Laboratory experiments of lead biosorption by self-immobilized Rhizopus nigricans pellets in the batch stirred tank reactor and the packed bed column A. KOGEJ and A. PAVKO, Lead Biosorption, Chem. Biochem. Eng. Q. 15 (2) 75 79 (2001) 75 Laboratory experiments of lead biosorption by self-immobilized Rhizopus nigricans pellets in the batch stirred tank

More information

Cells and Cell Cultures

Cells and Cell Cultures Cells and Cell Cultures Beyond pure enzymes, whole cells are used and grown in biotechnological applications for a variety of reasons: cells may perform a desired transformation of a substrate, the cells

More information

Advances in Environmental Technology 4 (2016) Advances in Environmental Technology. journal homepage:

Advances in Environmental Technology 4 (2016) Advances in Environmental Technology. journal homepage: Advances in Environmental Technology 4 (2016) 179-184 Advances in Environmental Technology journal homepage: http://aet.irost.ir Hydrodynamics and mass transfer investigation in three-phase airlift reactors

More information

Driving Innovation Through Bioengineering Solutions. a world-class business in a global hub for biotechnology

Driving Innovation Through Bioengineering Solutions. a world-class business in a global hub for biotechnology Driving Innovation Through Bioengineering Solutions a world-class business in a global hub for biotechnology Process Scale-Up & Tech Transfer Capabilities Unique blend of engineering and biotechnology

More information

Modeling of single cell protein production from cheese whey using tanks-in-series model

Modeling of single cell protein production from cheese whey using tanks-in-series model IRANIAN JOURNAL of BIOTECHNOLOGY, Vol. 5, No. 2, April 2007 Modeling of single cell protein production from cheese whey using tanks-in-series model Marjan Varedi Kolaei 1, Ramin Karimzadeh 2*, Seyed Abbas

More information

Scale-Up Analysis for a CHO Cell Culture Process in Large-Scale Bioreactors

Scale-Up Analysis for a CHO Cell Culture Process in Large-Scale Bioreactors ARTICLE Scale-Up Analysis for a CHO Cell Culture Process in Large-Scale Bioreactors Zizhuo Xing, Brian M. Kenty, Zheng Jian Li, Steven S. Lee Process Sciences, Biologics Manufacturing and Process Development,

More information

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 2010 A STUDY ON DENITRIFICATION IN A FLUIDIZED

More information

Biotechnology & Genetic Engineering Lecture ( 2-3 ) Assi. Prof. Rajaa Al -Anbaqi

Biotechnology & Genetic Engineering Lecture ( 2-3 ) Assi. Prof. Rajaa Al -Anbaqi Biotechnology & Genetic Engineering Lecture ( 2-3 ) Assi. Prof. Rajaa Al -Anbaqi 1 Biotechnology & Genetic Engineering Lecture ( 2) Assi. Prof. Rajaa Al -Anbaqi FERMENTATION IN FOOD BIOTECHNOLOGY Fermentation

More information

Single-Use Simplicity

Single-Use Simplicity Single-Use Simplicity BioBLU c and BioBLU p Single-Use Vessels for cell culture »Proven stirred-tank design meets single-use technology.«reliable performance and ease-of-use Combine the benefits of single-use

More information

Development and Verification of the Control System for Fed-Batch Phenol Degradation Processes

Development and Verification of the Control System for Fed-Batch Phenol Degradation Processes V. VOJTA et al., Development and Verification of the Control System for Fed-Batch, Chem. Biochem. Eng. Q. 16 (2) 59 67 (2002) 59 Development and Verification of the Control System for Fed-Batch Phenol

More information

A static bed bioreactor for immobilization of Rhizopus oryzae and L(+)-lactic acid production

A static bed bioreactor for immobilization of Rhizopus oryzae and L(+)-lactic acid production A static bed bioreactor for immobilization of Rhizopus oryzae and L(+)-lactic acid production Varunee Pimtong a,b, Ruethairat Boonsombat b, Nuttha Thongchul b a Program in Biotechnology, Faculty of Science,

More information