Protein Quantitation using various Modes of High Performance Liquid Chromatography

Size: px
Start display at page:

Download "Protein Quantitation using various Modes of High Performance Liquid Chromatography"

Transcription

1 Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Protein Quantitation using various Modes of High Performance Liquid Chromatography Grotefend, S.; Wroblewitz, S.; Kaminski, L.; Limberger, M.; Watt, S.; El Deeb, S.; Wätzig, H. Innsbruck, Tuesday, September 20 th

2 Quantitative Protein Analysis Gel Electrophoresis Capillary Electrophoresis Protein Quantitation Mass Spectrometry High Performance Liquid Chromatography 20th September 2011 l HPLC for Protein Analysis l Page 2

3 Quantitative Protein Analysis by HPLC Differences, similarities and evaluation SEC SAX RP WCX ProPac WCX-10 (250 x 4 mm, Dionex) Uptisphere-C4 300 Å, 5 µm (150 x 4.6 mm, Interchim) ProSwift SAX-1S (50 x 4.6 mm, Dionex) BioSep S-3000, 5 µm (300 x 7.8 mm, Phenomenex) Proteema 300 Å, 5 μm ( 300 x 8 mm, PSS) 20th September 2011 l HPLC for Protein Analysis l Page 3

4 Ideal Size Exclusion Chromatography (1) Ovalbumin (2) Myoglobin (1) (2) PSS Proteema SEC column Eluent: Phosphate buffer ph 6.6 with 0.3 M NaCl Flow rate: 1 ml/min Detection: 214 nm Injection volume: 60 µl 20th September 2011 l HPLC for Protein Analysis l Page 4

5 Non-Ideal Size Exclusion Chromatography (1) Ovalbumin (2) Myoglobin Concentration each 0.4 mg/ml (1) Repeatability area (RSD% n=20) Day-to-day (2) precision area (RSD% n=60) PSS Proteema SEC column Eluent: 17 mm phosphate buffer ph 6.35 Flow rate: 1 ml/min Detection: 214 nm Injection volume: 20 µl LOQ Ovalbumin < 0.4 µg/ml Myoglobin < 0.4 µg/ml Concept according to: Kopaciewicz, W. and Regnier F.E., Anal. Biochem.;126 (1982) th September 2011 l HPLC for Protein Analysis l Page 5

6 Non-Ideal SEC - Phenomenex (1) Ovalbumin (2) Myoglobin PSS Proteema SEC (2) Phenomenex BioSep 3000 Eluent: 17 mm phosphate buffer ph 6.35 Flow rate: 1 ml/min Detection: 214 nm Injection volume: 40 µl (1) 20th September 2011 l HPLC for Protein Analysis l Page 6

7 SEC of a monoclonal antibody (1) Dimer (2) Monomer (3) Fragment Peak (2) Phenomenex BioSep 3000 Eluent: 100 mm phosphate buffer ph 6.80 Flow rate: 1 ml/min Day-to-day precision t R Detection: Repeatability 214 nm Day-to-day Injection area pooled volume: 10 precision µl area (RSD % n=60) (RSD % n=20) (RSD % n=60) (1) Dimer (2) Monomer (3) Fragment (3) all area (1) Method according to: Phenomenex BioSep Product manual, application: IgG aggregates 20th September 2011 l HPLC for Protein Analysis l Page 7

8 Routine analysis SEC data of mab Phast GmbH Sample all Area A&M Stab Sample Area Monomer Area Dimer RSD % pooled RSD % pooled area RSD % area area per per day between days sample (diff. samples) Phast GmbH (n=2) (n=4) 1.86 (n=4) A&M Stab (n=3/5/6) (n=9/15/18) (n=4) Monomer Dimer th September 2011 l HPLC for Protein Analysis l Page 8

9 Strong Anion Exchange Chromatography (1) Dionex ProSwift SAX-1S RSD % (area) = 2.31%; without Vial 1 = Eluents: 0.784% A) 20 mm Tris-HCl buffer ph 8.6 RSD % (t R ) = 1.03% B) Eluent A + 1 M NaCl Gradient: 98% - 50% A in 5 min Flow rate: 2 ml/min RSD % (area) = 1.90% Detection: 214 RSD nm % (t R ) = 1.98% Injection volume: 60 µl (1) Myoglobin (2) Ovalbumin (3) BSA Area Myoglobin Ovalbumin BSA (2) (3) RSD % (area) = 3.21% RSD % (t R ) = 1.98% Injection-Blank Ovalbumin Injection BSA Blank Myoglobin LOQ < 15 µg/ml Runs Method according to: Dionex Corp., Product manual for ProSwift monolithic columns (2008) 44-45, modified 20th September 2011 l HPLC for Protein Analysis l Page 9

10 RP-HPLC (1) Ovalbumin (2) BSA (3) Myoglobin Repeatability area pooled (RSD% n=20) (2) (3) Day-to-day precision area (RSD% n=60) LOQ BSA Detection: 214 <15 nm µg/ml Ovalbumin Ovalbumin (1) 5.51 Myoglobin Myoglobin Interchim Uptisphere C4 Eluents: A) 5% ACN : 95% water + 0.1% TFA B) 95% ACN : 5% water + 0.1% TFA Gradient: % B in 26 min Flow rate: 0.5 ml/min Injection volume: 50 µl (3) 15 µg/ml (1) ~ 10 µg/ml Modified according to: Bradshaw, T.P., Phenomenex; Introduction to Protein and Peptide HPLC (1998) th September 2011 l HPLC for Protein Analysis l Page 10

11 Routine analysis - external RP data (Phast GmbH) Detection: DAD Sample Area Method/ RSD % pooled Detection area per sample Detection: FLD Sample Area 1 Area RSD % pooled RSD % area area per day between (dif. samples) days DAD 1.69 (n=3) 1.47 (n=9) (n=6) FLD (n=5/2) (n=9) (n=7) Peak Peak th September 2011 l HPLC for Protein Analysis l Page 11

12 Weak Cation Exchange Chromatography (1) (1) Ovalbumin (2) Cytochrome C (3) Lysozyme Repeatability area pooled (RSD% n=20) Dionex ProPack WCX-10 Dionex Eluents: ProPack A) 17 mm WCX-10 phosphate buffer ph 6.0 Eluents: A) B) 17 Eluent mm phosphate A + 1 M NaCl buffer ph 6.0 Gradient: B) Eluent 98-68% A + A 1 in M 14 NaCl min Gradient: Flow rate: % ml/min A in 14 min Flowrate: Detection: ml/min nm Detection: Injection 214 volume: nm 25 LOQ µl Injection volume: 10 µl Day-to-day precision area (RSD% n=60) (3) Ovalbumin (1) <10 µg/ml (1) Ovalbumin Cytochrome C <10 µg/ml (2) (2) Myoglobin Lysozyme <10 µg/ml (2) Method according to: Dionex Corp., Product manual for ProPac IEX columns (2007) th September 2011 l HPLC for Protein Analysis l Page 12

13 Quantitative Protein Analysis by HPLC: Similarities 18 Equipment RSD% Scattered light, electronic noise Typical total noise: - statical: < 5x Detection: 8 - UV DAD - dynamical: < 1x10-3 Sample pretreatment: - weighted sample 2 0 Concentration dependence - filtration - ultrasonic bath 0,0% 0,1% 1,0% 10,0% 100,0% content, log scale Repeatability System precision Udo Schepers, Joachim Ermer, Lutz Preu, Hermann Wätzig J. Chromatogr. B, 810, (2004) 20th September 2011 l HPLC for Protein Analysis l Page 13

14 Quantitative Protein Analysis by HPLC: Differences Separation mechanisms, selectivity Chemical noise S/N ratio Baseline characteristics SAX WCX Peak shapes SEC Myoglobin, Ovalbumin SAX Myoglobin, Ovalbumin, BSA SAX Blank CE separation Ovalbumin Redweik, S. RP Myoglobin, Ovalbumin, BSA RP Blank RP WCX Blank WCX Ovalbumin, Cytochrom C, Lysozym 20th September 2011 l HPLC for Protein Analysis l Page 14

15 Overall Conclusions Peak capacity [peaks/10 min] Selectivity Precision Analysis time LOQ [µg/ml] Sample/ Mobile Repeatability area Day-to-day [min] precision area phase RSD best RSD I % worst (n=20) % (n=60) preparation SEC Oval Myo BSA Oval Myo BSA PSS < Phe SEC ø ø SAX RP (+20) 1.59 < WCX SAX (+18) 1.41 < RP CIEF 16.7 approx approx. +(+) 2.0 ø (+22) 5.63 < 15 ø ++ SEC Oval Cyto Lyso Oval Cyto not yet (+) 12 mab measured Lyso +++ WCX Dimer Monomer Fragment all area Dimer Monomer Fragment all area RSD % area typically < 2% without individual optimization mab CE data: Suratman, A., Wätzig, H.; J. Sep. Sci., 2008, 31, and unpublished 20th September 2011 l HPLC for Protein Analysis l Page 15

16 Further possible improvements Method development for analysis of monoclonal antibodies with WCX, RP-4 and SAX Strategies for individual method optimization Analysis of Variance with data from protein analysis Role of sample pretreatment 20th September 2011 l HPLC for Protein Analysis l Page 16

17 Acknowledgements, Montlucon (Fra), Homburg (Ger) Markus Limberger, Andreas Ziegler, Mainz (Ger) Steven Watt 20th September 2011 l HPLC for Protein Analysis l Page 17

18

19 Chromatographic conditions mobile Phase Eluent A SEC non ideal SAX WCX RP phosphate buffer tris-hcl buffer phosphate buffer 5% ACN : 95% water + 0.1% TFA Eluent B Ø Eluent A + 1 M NaCl gradient Ø linear 98% - 50% A Eluent A + 1 M NaCl linear 98%-68% A ionic strength mm 20 mm mm Ø ph-value ~ % ACN : 5% water +0.1% TFA linear 15%-100% B flow rate 1 ml/min 2 ml/min 1 ml/min 0.5 ml/min analysis time 16 min 5 min 17 min 26 min injection volume 40 µl 60 µl 25 µl 50 µl detection wavelength 214 nm 214 nm 214 nm 214 nm 20th September 2011 l HPLC for Protein Analysis l Page 19

20 Chromatographic conditions - Matuzumab mobile Phase Eluent A SEC phosphate buffer RP 5% ACN : 95% water + 0.1% TFA Eluent B Ø 95% ACN : 5% water +0.1% TFA gradient Ø isocratic 50% A : 50% B ionic strength 100 mm Ø ph-value 6.80 ~ 1.9 flow rate 1 ml/min 0.5 ml/min analysis time 15 min 12 min sample content 2.5 mg/ml 3.3 mg/ml injection volume 10 µl 50 µl detection wavelength 214 nm 214 nm 20th September 2011 l HPLC for Protein Analysis l Page 20

21 Protein properties Proteins MW [Da] pi Myoglobin 17, Ovalbumin 45, BSA 66, Cytochrome C 13, Lysozyme 14, Dumetz, A.C. et al, Protein Scie.; 16 (2007) Gochman-Hecht, H., Bianco-Peled, H.; J. Coll. Interf. Scie. 297 (2006) th September 2011 l HPLC for Protein Analysis l Pagee 21

22 HPLC systems SAX Hitachi Merck SEC/RP/WCX Elite LaChrom (VWR) Solvent pump L-6200A L-2130 Autosampler AS-2000A AS 2203 Detector (UV-Vis) L-4250 L-2400 Interface D-6000 organizer Software D7000 HSM (Merck) EZ Chrom Elite Vers th September 2011 l HPLC for Protein Analysis l Page 22

23 Size determination of Matuzumab Phenomenex BioSep Product manual; calibration curve 20th September 2011 l HPLC for Protein Analysis l Page 23

24 Control charts RP peak shapes 20th September 2011 l HPLC for Protein Analysis l Page 24

25 RP-Separation of Matuzumab (EMD 72000) + DTT Interchim Uptisphere C4 Eluents: A) 5% ACN : 95% water + 0.1% TFA B) 95% ACN : 5% water + 0.1% TFA isocratic: 50:50 Flow rate: 0.5 ml/min Detection: 280 nm Injection volume: 50 µl 20th September 2011 l HPLC for Protein Analysis l Page 25

26 SEC of an IgG antibody + DTT (1) MW ~ 740 kda Phenomenex BioSep 3000 Eluent: 100 mm phosphate buffer ph 6.80 Flow rate: 1 ml/min Detection: 214 nm Peak RSD % tinjection R (n=18) volume: RSD 10 µl % area (n=18) (1) (2) (3) (2) (3) MW < 1 kda MW < 5 kda 20th September 2011 l HPLC for Protein Analysis l Page 26

Size Exclusion BioHPLC Columns

Size Exclusion BioHPLC Columns Size Exclusion BioHPLC Columns Size Exclusion Product Families Particle Porosity Functionalities Particle Pore Size Application Sizes Agilent Bio SEC- Silica Fully porous N/A um 00A, 0A, 00A High efficiency

More information

Size Exclusion BioHPLC columns Ion Exchange BioHPLC columns

Size Exclusion BioHPLC columns Ion Exchange BioHPLC columns Confidently separate and characterize bio-molecules with Agilent BioHPLC columns Size Exclusion BioHPLC columns Ion Exchange BioHPLC columns "It's a struggle to isolate and identify charge variants of

More information

BioHPLC columns. Tim Rice Biocolumn Technical Specialist

BioHPLC columns. Tim Rice Biocolumn Technical Specialist BioHPLC columns Tim Rice Biocolumn Technical Specialist AU Typical Application Areas Size Exclusion: Aggregation Analysis Ion Exchange: Charge Isoform Analysis 0.035 Monomer 0.030 0.025 0.020 0.015 Dimer

More information

Fast Agilent HPLC for Large Biomolecules

Fast Agilent HPLC for Large Biomolecules Fast Agilent HPLC for Large Biomolecules Technical Overview Introduction Agilent media for the analysis of large biomolecules is available in an array of pore sizes to maximize selectivity and capacity

More information

2012 Waters Corporation 1

2012 Waters Corporation 1 UPLC User meeeting April 2012 Principles and Practices for SEC, IEX for Intact Protein Analysis by UPLC anders_feldthus@waters.com 2012 Waters Corporation 1 Agenda Ion-Exchange Chromatography Theory and

More information

4/4/2013. BioHPLC columns. Paul Dinsmoor Biocolumn Technical Specialist. April 23-25, Size Exclusion BioHPLC Columns

4/4/2013. BioHPLC columns. Paul Dinsmoor Biocolumn Technical Specialist. April 23-25, Size Exclusion BioHPLC Columns BioHPLC columns Paul Dinsmoor Biocolumn Technical Specialist April 23-25, 2013 Size Exclusion BioHPLC Columns 1 NEW Size Exclusion Columns 5 m Particle 100Å, 150Å, 300Å, 500Å, 1000Å, 2000Å pore sizes High

More information

Multiple Detector Approaches to Protein Aggregation by SEC

Multiple Detector Approaches to Protein Aggregation by SEC Multiple Detector Approaches to Protein Aggregation by SEC Application Note BioPharma Author Andrew Coffey Agilent Technologies, Inc. Abstract Protein aggregation, where molecules assemble into dimers,

More information

Analysis of biomolecules by SEC and Ion-Exchange UPLC

Analysis of biomolecules by SEC and Ion-Exchange UPLC Analysis of biomolecules by SEC and Ion-Exchange UPLC Anders Feldthus, Waters Nordic 2011 Waters Corporation 1 Waters Commitment To develop, commercialize and market columns that when used on Waters ACQUITY

More information

The Agilent 1260 Infinity BioInert Quaternary Pump. Scope of a low-pressure mixing UHPLC pump with Bio-Inert Capabilities

The Agilent 1260 Infinity BioInert Quaternary Pump. Scope of a low-pressure mixing UHPLC pump with Bio-Inert Capabilities The Agilent 1260 Infinity BioInert Quaternary Pump Scope of a low-pressure mixing UHPLC pump with Bio-Inert Capabilities Patrick Cronan Applications Scientist Agilent Technologies Boston, MA 1 Comparison

More information

Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility

Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility Technical Overview Introduction Agilent AdvanceBio SEC columns are a new family of size exclusion chromatography (SEC) columns

More information

Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC

Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC The Agilent 126 Infinity Bio-Inert Quaternary LC System and the AdvanceBio SEC 3Å, 2.7 µm Column Application Note Biologics

More information

Mass Spectrometry Analysis of Liquid Chromatography Fractions using Ettan LC MS System

Mass Spectrometry Analysis of Liquid Chromatography Fractions using Ettan LC MS System GUIDE TO LC MS - December 21 1 Spectrometry Analysis of Liquid Chromatography Fractions using Ettan LC MS System Henrik Wadensten, Inger Salomonsson, Staffan Lindqvist, Staffan Renlund, Amersham Biosciences,

More information

Validation of a Dual Wavelength Size Exclusion HPLC Method with Improved Sensitivity to Detect Aggregates of a Monoclonal Antibody Biotherapeutic

Validation of a Dual Wavelength Size Exclusion HPLC Method with Improved Sensitivity to Detect Aggregates of a Monoclonal Antibody Biotherapeutic Validation of a Dual Wavelength Size Exclusion HPLC Method with Improved Sensitivity to Detect Aggregates of a Monoclonal Antibody Biotherapeutic By J. Tompkins1, T. Spurgeon 1, R. Tobias 1, J. Anders1,

More information

mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science

mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science 2 Structure of IgG and Typical Forms of Heterogeneity Protein and mab Separation by HPLC Size difference? YES Size Exclusion

More information

Application Note. Author. Abstract. Biopharmaceuticals. Verified for Agilent 1260 Infinity II LC Bio-inert System. Sonja Schneider

Application Note. Author. Abstract. Biopharmaceuticals. Verified for Agilent 1260 Infinity II LC Bio-inert System. Sonja Schneider Combining small-scale purification and analysis of monoclonal antibodies on one instrument Protein purification with high-volume injection using the Agilent 126 Infinity Bio-inert Quaternary LC System

More information

High-resolution Analysis of Charge Heterogeneity in Monoclonal Antibodies Using ph-gradient Cation Exchange Chromatography

High-resolution Analysis of Charge Heterogeneity in Monoclonal Antibodies Using ph-gradient Cation Exchange Chromatography High-resolution Analysis of Charge Heterogeneity in Monoclonal Antibodies Using ph-gradient Cation Exchange Chromatography Agilent 1260 Infinity Bio-inert Quaternary LC System with Agilent Bio Columns

More information

Mobile Phase Optimization in SEC Method Development

Mobile Phase Optimization in SEC Method Development Application Note Pharma & Biopharma Mobile Phase Optimization in SEC Method Development Author Richard Hurteau Agilent Technologies, Inc., Wilgton, DE, USA Abstract Aggregation of monoclonal antibody (mab)

More information

TSK-GEL BioAssist Series Ion Exchange Columns

TSK-GEL BioAssist Series Ion Exchange Columns Separation Report No. 100 TSK-GEL BioAssist Series Ion Exchange Columns Table of Contents 1. Introduction 2 2. Basic Properties 2 2-1 Ion-Exchange Capacity and Pore Characteristics 2 2-2 Separation of

More information

High-throughput and Sensitive Size Exclusion Chromatography (SEC) of Biologics Using Agilent AdvanceBio SEC Columns

High-throughput and Sensitive Size Exclusion Chromatography (SEC) of Biologics Using Agilent AdvanceBio SEC Columns High-throughput and Sensitive Size Exclusion Chromatography (SEC) of Biologics Using Agilent AdvanceBio SEC Columns Agilent AdvanceBio SEC 3 Å, 2.7 µm columns Application note Bio-Pharmaceutical Author

More information

TOYOPEARL GigaCap Series

TOYOPEARL GigaCap Series TOYOPEARL GigaCap Series INTRODUCTION Ion Exchange Chromatography (IEC) is one of the most frequently used chromatographic modes for the separation and purification of biomolecules. Compared with other

More information

Choosing the Right Calibration for the Agilent Bio SEC-3 Column

Choosing the Right Calibration for the Agilent Bio SEC-3 Column Choosing the Right Calibration for the Agilent Bio SEC-3 Column Application Note Biotherapeutics & Biosimilars Author Keeley Mapp Agilent Technologies, Inc Introduction Size exclusion chromatography (SEC)

More information

Molecular Characterization of Biotherapeutics The Agilent 1260 Infi nity Multi-Detector Bio-SEC Solution with Advanced Light Scattering Detection

Molecular Characterization of Biotherapeutics The Agilent 1260 Infi nity Multi-Detector Bio-SEC Solution with Advanced Light Scattering Detection Molecular Characterization of Biotherapeutics The Agilent 126 Infi nity Multi-Detector Bio-SEC Solution with Advanced Light Scattering Detection Application Note Biologics and Biosimilars Authors Sonja

More information

Intact and reduced mab/adc fragment separation on reversed phase chromatography with mass spec detection

Intact and reduced mab/adc fragment separation on reversed phase chromatography with mass spec detection PM1016 Intact and reduced mab/adc fragment separation on reversed phase chromatography with mass spec detection Proteomix RP-1000 1 Possible Different cysteine ADC components under acidic/denaturing condition

More information

R R Innovation Way P/N SECKIT-7830 Newark, DE 19711, USA Tel: Fax: Website: Published in November 2013

R R Innovation Way P/N SECKIT-7830 Newark, DE 19711, USA Tel: Fax: Website:  Published in November 2013 5-100 Innovation Way Newark, DE 19711, USA Tel:302-3661101 Fax:302-3661151 Website: www.sepax-tech.com Published in November 2013 P/N SECKIT-7830 These Phases are developed based on innovative surface

More information

Zwitterion Chromatography ZIC

Zwitterion Chromatography ZIC Zwitterion Chromatography ZIC A novel technique, with unique selectivity, suitable for preparative scale separations? PhD Einar Pontén What is Zwitterion Chromatography? Our definition: Liquid chromatography

More information

mabs and ADCs analysis by RP

mabs and ADCs analysis by RP mabs and ADCs analysis by RP Shanhua Lin, Ph.D. The world leader in serving science Protein and mab Separation by HPLC Size difference? YES Size Exclusion Chromatography (SEC) MAbPac SEC-1 NO NO Charge

More information

A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies

A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies Combining Size Exclusion Chromatography with Method Development and Light Scattering Application Note Biotherapeutics and Biosimilars

More information

Developing Quantitative UPLC Assays with UV

Developing Quantitative UPLC Assays with UV Developing Quantitative UPLC Assays with UV Detection for Antibodies & Other Proteins Steve Taylor 2011 Waters Corporation 1 Outline UPLC technology for RP protein separations Method development parameters

More information

High Throughput Sub-4 Minute Separation of Antibodies using Size Exclusion Chromatography

High Throughput Sub-4 Minute Separation of Antibodies using Size Exclusion Chromatography High Throughput Sub-4 Minute Separation of Antibodies using Size Exclusion Chromatography TSKgel APPLICATION NOTE Introduction Gel Filtration Chromatography (GFC) is a powerful analytical tool in the separation

More information

Understanding the Effects of Common Mobile Phase Additives on the Performance of Size Exclusion Chromatography

Understanding the Effects of Common Mobile Phase Additives on the Performance of Size Exclusion Chromatography Understanding the Effects of Common Mobile Phase Additives on the Performance of Size Exclusion Chromatography 1 Presentation Importance of aggregate analysis in BioPharma manufacturing Analytical techniques

More information

Separation of Monoclonal Antibodies Using TSKgel HPLC Columns

Separation of Monoclonal Antibodies Using TSKgel HPLC Columns ANALYSIS S e p a r a t i o n R e p o r t N o. 7 4 Separation of Monoclonal Antibodies Using TSKgel HPLC Columns Table of Contents 1. Introduction 1 2. Separation Mode and Purification Method 1 3. Applications

More information

ProSwift and PepSwift Monolith Columns for Biomolecule Analysis

ProSwift and PepSwift Monolith Columns for Biomolecule Analysis columns ProSwift and PepSwift Monolith Columns for Biomolecule Analysis ProSwift and PepSwift Monolith columns accelerate HPLC without relying on ultrahigh pressure pumps. The columns use a unique monolith

More information

Columns for Biomolecules BioLC Column Lines

Columns for Biomolecules BioLC Column Lines Columns for Biomolecules BioLC Column Lines Monoclonal Antibodies Glycans GlycanPac Nucleic Acids DNAPac Protein A Accucore Amide-HILIC DNAPac PA1 SEC-1 GlycanPac AXH-1 DNAPac PA2 SCX-1 GlycanPac AXR-1

More information

Seamless Method Transfer from an Agilent 1260 Infinity Bio-inert LC to an Agilent 1260 Infinity II Bio-inert LC

Seamless Method Transfer from an Agilent 1260 Infinity Bio-inert LC to an Agilent 1260 Infinity II Bio-inert LC Seamless Method Transfer from an Agilent 1 Infinity Bio-inert LC to an Agilent 1 Infinity II Bio-inert LC Charge Variant Analysis of Rituximab Innovator and Biosimilar Application Note Biologics & Biosimilars

More information

ION EXCHANGE KIT FOR MAB SEPARATIONS

ION EXCHANGE KIT FOR MAB SEPARATIONS ION EXCHANGE KIT FOR MAB SEPARATIONS Sepax Technologies, Inc. 5 Innovation Way Newark, Delaware, USA Tel: (32) 366-111 Fax: (32) 366-1151 Toll free: www.sepax-tech.com Content Introduction... 1 Technical

More information

Superdex 200 Increase columns

Superdex 200 Increase columns Data file 29-42-69 AC Size exclusion chromatography Superdex 2 Increase columns Superdex 2 Increase prepacked columns (Fig 1) are designed for size exclusion chromatography (SEC)/high resolution gel filtration

More information

Characterization of mab aggregation using a Cary 60 UV-Vis Spectrophotometer and the Agilent 1260 Infinity LC system

Characterization of mab aggregation using a Cary 60 UV-Vis Spectrophotometer and the Agilent 1260 Infinity LC system Characterization of mab aggregation using a Cary 60 UV-Vis Spectrophotometer and the Agilent 1260 Infinity LC system Application Note Biopharmaceuticals Authors Arunkumar Padmanaban and Sreelakshmy Menon

More information

Chromatographic Workflows for Biopharmaceutical Characterization

Chromatographic Workflows for Biopharmaceutical Characterization Chromatographic Workflows for Biopharmaceutical Characterization Dr. Ken Cook European Bioseparation Sales Support Expert Thermo Fisher Scientific, Hemel Hempstead/Germany The world leader in serving science

More information

Fast mass transfer Fast separations High throughput and improved productivity Long column lifetime Outstanding reproducibility Low carryover

Fast mass transfer Fast separations High throughput and improved productivity Long column lifetime Outstanding reproducibility Low carryover columns ProSwift Reversed-Phase Monolith Columns for Protein Analysis ProSwift reversed-phase columns use a unique monolith technology for fast, high-resolution HPLC and LC/MS separations of proteins.

More information

Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns

Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns Anne Blackwell Bio Columns Product Support Scientist Suresh Babu Senior Application

More information

Optimizing Protein Separations with Agilent Weak Cation-Exchange Columns

Optimizing Protein Separations with Agilent Weak Cation-Exchange Columns Optimizing Protein Separations with Agilent Weak Cation-Exchange Columns Application Note Biopharmaceuticals Author Andrew Coffey Agilent Technologies, Inc. Abstract Columns containing weak cation-exchange

More information

Size Exclusion Chromatography of Biosimilar and Innovator Insulin Using the Agilent AdvanceBio SEC column

Size Exclusion Chromatography of Biosimilar and Innovator Insulin Using the Agilent AdvanceBio SEC column Size Exclusion Chromatography of Biosimilar and Innovator Insulin Using the Agilent AdvanceBio SEC column Application Note Bio-Pharmaceutical Authors M. Sundaram Palaniswamy and Andrew Coffey Agilent Technologies,

More information

Chromatography column for therapeutic protein analysis

Chromatography column for therapeutic protein analysis PRODUCT SPECIFICATIONS ProPac Elite WCX Column Chromatography column for therapeutic protein analysis Benefits Superior resolution power for proteins, monoclonal antibodies, and associated charge variants

More information

Superdex 200 Increase columns

Superdex 200 Increase columns GE Healthcare Life Sciences Data file 29-452-69 AA Size exclusion chromatography Superdex 2 Increase columns Superdex 2 Increase prepacked columns (Fig 1) are designed for size exclusion chromatography

More information

EAG.COM MATERIALS SCIENCES APPLICATION NOTE. By J. Tompkins 1, T. Spurgeon 1, R. Tobias 1, J. Anders 1, E. Butler-Roberts 2, and M.

EAG.COM MATERIALS SCIENCES APPLICATION NOTE. By J. Tompkins 1, T. Spurgeon 1, R. Tobias 1, J. Anders 1, E. Butler-Roberts 2, and M. MATERIALS SCIENCES NOW WHETHER THE LINER IS THE PROBLEM? HOW DO YOU EVALUATE HYDROPHOBIC COMPOUNDS BY SPME? HOW DO YOU COMPARE FEEDSTOCK SUPPLIERS? O YOU COMPLY WITH ? HOW DO YOU ADDRESS AN

More information

Size exclusion chromatography for Biomolecule analysis: A "How to" Guide

Size exclusion chromatography for Biomolecule analysis: A How to Guide Size exclusion chromatography for Biomolecule analysis: A "How to" Guide introduction The chromatographic separation of biomolecules based on their size in solution is known as Size Exclusion Chromatography

More information

Higher Order mab Aggregate Analysis using New Innovative SEC Technology

Higher Order mab Aggregate Analysis using New Innovative SEC Technology Higher Order mab Aggregate Analysis using New Innovative SEC Technology Ronald E. Majors, Ph.D. LCGC No. America West Chester, PA USA WCBP 2016 Washington, DC Linda Lloyd, Ph.D. Agilent Technologies Church

More information

ph gradient analysis of IgG1 therapeutic monoclonal antibodies using a 5 µm WCX column

ph gradient analysis of IgG1 therapeutic monoclonal antibodies using a 5 µm WCX column APPLICATION NOTE 21845 ph gradient analysis of IgG1 therapeutic monoclonal antibodies using a 5 µm WCX column Authors Julia Baek, Shane Bechler, Shanhua Lin, Stacy Tremintin Thermo Fisher Scientific, Sunnyvale,

More information

ProPac Elite WCX, 5 μm Particle, for Fast, High Resolution Protein and mab Analysis. July 2018

ProPac Elite WCX, 5 μm Particle, for Fast, High Resolution Protein and mab Analysis. July 2018 ProPac Elite WCX, 5 μm Particle, for Fast, High Resolution Protein and mab Analysis July 218 ProPac Elite WCX Acidic Variants Basic Variants 5µm Weak Cation Exchange Column Chemistry based on Thermo Scientific

More information

YMC-BioPro NEW. porous and nonporous IEX columns. For the analysis and separation of peptides, proteins and biomolecules

YMC-BioPro NEW. porous and nonporous IEX columns. For the analysis and separation of peptides, proteins and biomolecules NEW porous and nonporous IEX columns For the analysis and separation of peptides, proteins and biomolecules QA / SP Pore size / nm: Particle size / μm: 5 Charged group: -CH N + (CH 3 ) 3 / -CH CH CH SO

More information

CX-1 ph Gradient Buffer

CX-1 ph Gradient Buffer User Manual CX-1 ph Gradient Buffer 065534 Revision 03 May 2016 For Research Use Only. Not for use in diagnostic procedures. Product Manual for CX-1 ph Gradient Buffer A (ph 5.6) (125 ml P/N: 083273) (250

More information

NISTmAb characterization with a high-performance RP chromatography column

NISTmAb characterization with a high-performance RP chromatography column APPLICATION NOTE 21848 NISTmAb characterization with a high-performance RP chromatography column Author Xin Zhang Thermo Fisher Scientific, Sunnyvale, CA, USA Keywords MAbPac RP column, inter-column reproducibility,

More information

HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates

HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates Julia Baek, Shanhua Lin, Xiaodong Liu, Thermo Fisher Scientific, Sunnyvale, CA Application Note 2126 Key Words Size exclusion

More information

ProSEC 300S. Protein Characterization columns

ProSEC 300S. Protein Characterization columns ProSEC 300S Protein Characterization columns Agilent s ProSEC 300S is a silica-based material specifically designed for the analysis of proteins by aqueous size exclusion chromatography. With a proprietary

More information

Phenyl Membrane Adsorber for Bioprocessing

Phenyl Membrane Adsorber for Bioprocessing Phenyl Membrane Adsorber for Bioprocessing Sartobind Hydrophobic Interaction Membrane Chromatography The low substitution of the phenyl ligand on the membrane allows for mild elution of biomolecules such

More information

Application Note. Author. Abstract. Pharmaceuticals. Detlef Wilhelm ANATOX GmbH & Co. KG. Fuerstenwalde, Germany mau

Application Note. Author. Abstract. Pharmaceuticals. Detlef Wilhelm ANATOX GmbH & Co. KG. Fuerstenwalde, Germany mau Development, validation, and comparison of an HPLC method to analyze paracetamol and related impurities according to the European Pharmacopoeia (EP) and USP using the Agilent 1120 Compact LC and the Agilent

More information

'Tips and Tricks' for Biopharmaceutical Characterization using SEC

'Tips and Tricks' for Biopharmaceutical Characterization using SEC 'Tips and Tricks' for Biopharmaceutical Characterization using SEC Waters Corporation 2012 Waters Corporation 1 Waters Commitment To develop, commercialize and market columns that, when used on Waters

More information

Application of Agilent AdvanceBio Desalting-RP Cartridges for LC/MS Analysis of mabs A One- and Two-dimensional LC/MS Study

Application of Agilent AdvanceBio Desalting-RP Cartridges for LC/MS Analysis of mabs A One- and Two-dimensional LC/MS Study Application of Agilent AdvanceBio Desalting-RP Cartridges for LC/MS Analysis of mabs A One- and Two-dimensional LC/MS Study Application note Biotherapeutics and Biologics Authors Suresh Babu C.V., Anne

More information

Data File. HiLoad Superdex 30 prep grade HiLoad Superdex 75 prep grade HiLoad Superdex 200 prep grade. Pre-packed gel filtration columns

Data File. HiLoad Superdex 30 prep grade HiLoad Superdex 75 prep grade HiLoad Superdex 200 prep grade. Pre-packed gel filtration columns P H A R M A C I A B I O T E C H HiLoad Superdex 30 prep grade HiLoad Superdex 75 prep grade HiLoad Superdex 200 prep grade Data File Pre-packed gel filtration columns HiLoad columns are XK laboratory columns

More information

UHPLC for Large Bio-Therapeutics

UHPLC for Large Bio-Therapeutics UHPLC for Large Bio-Therapeutics Ken Cook EU Bio-separations Support Expert June 2015 1 The world leader in serving science Various Types of Antibody-Based Therapeutics mab Fab fragment Cimzia (certolizumab

More information

Phenyl Membrane Adsorber for Bioprocessing

Phenyl Membrane Adsorber for Bioprocessing Phenyl Membrane Adsorber for Bioprocessing Sartobind Hydrophobic Interaction Membrane Chromatography The low substitution of the phenyl ligand on the membrane allows for mild elution of biomolecules such

More information

Application Note. Biopharma. Authors. Abstract. James Martosella, Phu Duong Agilent Technologies, Inc Centreville Rd Wilmington, DE 19808

Application Note. Biopharma. Authors. Abstract. James Martosella, Phu Duong Agilent Technologies, Inc Centreville Rd Wilmington, DE 19808 Reversed-Phase Optimization for Ultra Fast Profiling of Intact and Reduced Monoclonal Antibodies using Agilent ZORBAX Rapid Resolution High Definition 3SB-C3 Column Application Note Biopharma Authors James

More information

Agilent Ion-Exchange BioHPLC Columns CHARACTERIZE CHARGED VARIANTS OF PROTEINS WITH SPEED AND CONFIDENCE

Agilent Ion-Exchange BioHPLC Columns CHARACTERIZE CHARGED VARIANTS OF PROTEINS WITH SPEED AND CONFIDENCE Agilent Ion-Exchange BioHPLC Columns CHARACTERIZE CHARGED VARIANTS OF PROTEINS WITH SPEED AND CONFIDENCE Now you have more columns and more choices to improve your charged-variant analysis of proteins

More information

Aggregate/Fragment Analysis

Aggregate/Fragment Analysis Agilent Biocolumns Aggregate/Fragment Analysis Application Compendium Contents Background 2 Getting Started 3 How to Guide - Size Exclusion Chromatography for Biomolecule Analysis - 5991-3651EN 4 Featured

More information

Dedicated UPLC Chemistries for BioTherapeutics Joe Walsh WITS BioPharm Session 2016

Dedicated UPLC Chemistries for BioTherapeutics Joe Walsh WITS BioPharm Session 2016 Dedicated UPLC Chemistries for BioTherapeutics Joe Walsh WITS BioPharm Session 2016 2016 Waters Corporation 1 Market Drivers In 2014, 5/10 of the top selling drugs globally were monoclonal antibodies (mabs)

More information

columns P r o P a c H I C C o l u m n S o l u t i o n s f o r P r o t e i n A n a l y s i s

columns P r o P a c H I C C o l u m n S o l u t i o n s f o r P r o t e i n A n a l y s i s columns P r o P a c H I C - 1 C o l u m n S o l u t i o n s f o r P r o t e i n A n a l y s i s Hydrophobic Interaction Chromatography (HIC) is an important tool for protein chemists separating proteins

More information

Faster Separations Using Agilent Weak Cation Exchange Columns

Faster Separations Using Agilent Weak Cation Exchange Columns Faster Separations Using Agilent Weak Cation Exchange Columns Application Note BioPharma Author Andrew Coffey Agilent Technologies, Inc. Abstract Ion exchange is a commonly used technique for the separation

More information

Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus

Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus Robert Birdsall, Thomas Wheat, and Weibin Chen Waters Corporation,

More information

Agilent Technologies April 20,

Agilent Technologies April 20, Agilent Technologies April 20, 2015 1 Improving HPLC Characterization of Biomolecules Agilent Solutions to Separation Challenges Paul Dinsmoor Technical Specialist, Bio- Columns Agilent Technologies April

More information

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS Agilent AdvanceBio Columns ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS with Agilent ZORBAX RRHD 3Å 1.8 µm columns ns Rapid resolution high definition columns for UHPLC protein and peptide separations

More information

mab Titer Analysis with the Agilent Bio-Monolith Protein A Column

mab Titer Analysis with the Agilent Bio-Monolith Protein A Column mab Titer Analysis with the Agilent Bio-Monolith Protein A Column Application Note Biopharmaceuticals and Biosimilars Authors Emmie Dumont, Isabel Vandenheede, Pat Sandra, and Koen Sandra Research Institute

More information

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS Agilent AdvanceBio Columns ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS with Agilent ZORBAX RRHD 3Å 1.8 µm columns ns Rapid resolution high definition columns for UHPLC protein and peptide separations

More information

Optimization of the Effective Separations for Peptides and Proteins Using High Durable Packing Materials for HPLC. YMC CO., LTD.

Optimization of the Effective Separations for Peptides and Proteins Using High Durable Packing Materials for HPLC. YMC CO., LTD. Optimization of the Effective Separations for Peptides and Proteins Using High Durable Packing Materials for HPLC Naohiro Kuriyama*, Noriko Shoji, Katsunori Taniguchi and Toshiharu Kamata YMC CO., LTD.

More information

Monoclonal Antibody Analysis on a Reversed-Phase C4 Polymer Monolith Column

Monoclonal Antibody Analysis on a Reversed-Phase C4 Polymer Monolith Column Monoclonal Antibody Analysis on a Reversed-Phase C4 Polymer Monolith Column Shane Bechler 1, Ken Cook 2, and Kelly Flook 1 1 Thermo Fisher Scientific, Sunnyvale, CA, USA; 2 Thermo Fisher Scientific, Runcorn,

More information

Agilent 1260 Infinity Bio-inert Quaternary LC System. Infinitely better for bio-molecule analysis

Agilent 1260 Infinity Bio-inert Quaternary LC System. Infinitely better for bio-molecule analysis Agilent 0 Infinity Bio-inert Quaternary LC System Infinitely better for bio-molecule analysis AGILENT 0 INFINITY BIO-INERT LC INFINITELY BETTER FOR BIO-MOLECULE ANALYSIS The Agilent 0 Infinity Bio-inert

More information

Agilent 1290 Infinity II 2D-LC Solution Biopharmaceutical Polymer Analysis. WCBP Jan 2017 Washington, DC

Agilent 1290 Infinity II 2D-LC Solution Biopharmaceutical Polymer Analysis. WCBP Jan 2017 Washington, DC Agilent 1290 Infinity II 2D-LC Solution Biopharmaceutical Polymer Analysis WCBP Jan 2017 Washington, DC 1 Overview Resolving power and how to measure it Why two-dimensional LC? Setup of a 2D-LC System

More information

Application Note. Authors. Abstract. Biopharmaceuticals

Application Note. Authors. Abstract. Biopharmaceuticals Characterization of monoclonal antibodies on the Agilent 126 Infinity Bio-inert Quaternary LC by Size Exclusion Chromatography using the Agilent BioSEC columns Application Note Biopharmaceuticals Authors

More information

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column Disulfide Linkage Analysis of IgG1 using an Agilent 126 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column Application Note Biotherapeutics & Biosimilars Author M. Sundaram

More information

Separation Science Built for Biopharma

Separation Science Built for Biopharma Separation Science Built for Biopharma Pharma & Biopharma Tours 2016 The world leader in serving science Overview 1. Evolution of UHPLC built for biopharma Meet the family 2. What makes Vanquish different?

More information

TSKgel G2000SWXL Columns for the Reproducible Analysis of Bovine Serum Albumin

TSKgel G2000SWXL Columns for the Reproducible Analysis of Bovine Serum Albumin TSKgel G2000SWXL Columns for the Reproducible Analysis of Bovine Serum Albumin introduction Figure 2. BSA Loading Capacity Study experimental conditions Column: Mobile Phase: Figure 1. Analysis of BSA

More information

Physical Stability of a Silica- Based Size Exclusion Column for Antibody Analysis

Physical Stability of a Silica- Based Size Exclusion Column for Antibody Analysis Physical Stability of a Silica- Based Size Exclusion Column for Antibody Analysis Atis Chakrabarti* and Roy Eksteen + Tosoh Bioscience LLC, King of Prussia, PA 19406 *Corresponding Author. + Current address:

More information

Fast protein separations with ion exchange columns

Fast protein separations with ion exchange columns Fast protein separations with ion exchange columns Koji Nakamura*, Yoshio Kato and Shuichi Okuzono Nanyo Research Lab, Tosoh Corporation, 4560 Kaisei-cho, Shunan, Yamaguchi 746-8501, Japan TP106 0807 ISPPP-05

More information

Analysis of Monoclonal Antibodies and Their Fragments by Size-Exclusion Chromatography Coupled with an Orbitrap Mass Spectrometer

Analysis of Monoclonal Antibodies and Their Fragments by Size-Exclusion Chromatography Coupled with an Orbitrap Mass Spectrometer Analysis of Monoclonal Antibodies and Their Fragments by ize-exclusion Chromatography Coupled with an Orbitrap Mass pectrometer hanhua Lin, Hongxia Wang, Zhiqi Hao, and Xiaodong Liu Thermo Fisher cientific,

More information

Charge Heterogeneity Analysis of Rituximab Innovator and Biosimilar mabs

Charge Heterogeneity Analysis of Rituximab Innovator and Biosimilar mabs Charge Heterogeneity Analysis of Rituximab Innovator and Biosimilar mabs Application Note Author Suresh Babu C.V. Agilent Technologies India Pvt. Ltd, Bangalore, India Abstract This Application Note describes

More information

Column for High Performance,High-Binding Capacity Ion Exchange Chromatography:TSKgel SuperQ-5PW and Its Applications

Column for High Performance,High-Binding Capacity Ion Exchange Chromatography:TSKgel SuperQ-5PW and Its Applications ANALYSIS S e p a r a t i o n R e p o r t N o. 9 3 Column for High Performance,High-Binding Capacity Ion Exchange Chromatography:TSKgel SuperQ-5PW and Its Applications Table of Contents 1. Introduction

More information

Characterization of IgG monomers & their aggregates

Characterization of IgG monomers & their aggregates Characterization of IgG monomers & their aggregates A comparison between column calibration & multi-detection SEC PROTEIN AGGREGATION MOLECULAR SIZE MOLECULAR STRUCTURE MOLECULAR WEIGHT Introduction In

More information

Evaluation by Competent Authorities

Evaluation by Competent Authorities LANXESS Deutschland GmbH Chlorophene 07/2007 ACTIVE SUBSTANCE RESIDUES IN ANIMAL AND HUMAN BODY FLUIDS AND TISSUES JUSTIFICATION FOR NON-SUBMISSION OF DATA Official use only Other existing data [ ] Technically

More information

Superdex 75 Increase columns

Superdex 75 Increase columns GE Healthcare Size exclusion chromatography Superdex 7 Increase columns Superdex 7 Increase prepacked columns are designed for rapid separation and analysis of proteins with molecular weights ranging from

More information

Capillary Electrophoresis of Proteins

Capillary Electrophoresis of Proteins Capillary Electrophoresis of Proteins SDS Capillary Gel Electrophoresis SDS-CGE Outline CE-SDS Gel Analysis Description of Technique Method Development Tips PA800 plus kits SDS-MW IgG Purity & Heterogeneity

More information

ACQUITY UPLC Protein BEH SEC Columns and Standards

ACQUITY UPLC Protein BEH SEC Columns and Standards and Standards CONTENTS I. INTRODUCTION II. CONFIGURING AN ACQUITY UPLC SYSTEM FOR USE IN SEC PROTEIN SEPARATIONS a. Calibrators III. GETTING STARTED a. ecord installation b. Column connectors c. Column

More information

Q and S HyperCel Sorbents

Q and S HyperCel Sorbents Product Note USD 9 () Q and S HyperCel Sorbents High Productivity Ion Exchangers for Protein Capture and Separations Product Description and Application Overview Introduction Q and S HyperCel sorbents

More information

Discovery BIO Wide Pore

Discovery BIO Wide Pore Discovery BIO Wide Pore Solutions to Protein and Peptide Separation Challenges T403118 2 Agenda: What is Discovery BIO Wide Pore Physical characteristics Why we developed it and for whom Performance demonstrations

More information

Performance Characteristics of the Agilent 1220 Infinity Gradient LC system

Performance Characteristics of the Agilent 1220 Infinity Gradient LC system Performance Characteristics of the Agilent 122 Infinity Gradient LC system An integrated LC system for conventional LC and UHPLC Technical Overview 7 5 4 3 2 1.5 1 1.5 2 2.5 3 Introduction The Agilent

More information

Superose 6 HR 10/30 Superose 12 HR 10/30

Superose 6 HR 10/30 Superose 12 HR 10/30 Superose 6 HR 10/30 Superose 12 HR 10/30 INSTRUCTIONS Columns prepacked with Superose are designed for high performance gel filtration of proteins, peptides, polynucleotides and other biomolecules. Introduction

More information

A universal chromatography method for aggregate analysis of monoclonal antibodies

A universal chromatography method for aggregate analysis of monoclonal antibodies APPLICATION NOTE A universal chromatography method for aggregate analysis of monoclonal antibodies No. 2161 Amy Farrell 1, Jonathan Bones 1, and Ken Cook 2 1 NIBRT, Dublin, Ireland; 2 Thermo Fisher Scientific,

More information

Technical Data. Analytical Data

Technical Data. Analytical Data Technical Data High resolution analysis of monoclonal antibodies utilizing cation exchange column YMC-BioPro SP-F Analysis of Monoclonal Antibody (MAb) Pharmaceuticals Using Non-Porous Type Ion Exchange

More information

Analysis of Intact and C-terminal Digested IgG1 on an Agilent Bio MAb 5 µm Column

Analysis of Intact and C-terminal Digested IgG1 on an Agilent Bio MAb 5 µm Column Analysis of Intact and C-terminal Digested IgG1 on an Agilent Bio MAb µm Column Application Note BioPharma Authors Xiaomi Xu and Phu T Duong Agilent Technologies, Inc. Abstract Nearly all proteins undergo

More information

CHARACTERIZATION & PURIFICATION

CHARACTERIZATION & PURIFICATION Ultra-High Efficiency GFC/SEC BIOMOLECULE CHARACTERIZATION & PURIFICATION AT EXTREMELY AFFORDABLE PRICES AGGREGATES ADC mab BIOSIMILARS NEW 1.8 µm SEC-X1 Replace Waters BEH 1.7 µm SEC columns to: Save

More information

Universal Solution for Monoclonal Antibody Quantification in Biological Fluids Using Trap-Elute MicroLC-MS Method

Universal Solution for Monoclonal Antibody Quantification in Biological Fluids Using Trap-Elute MicroLC-MS Method Universal Solution for Monoclonal Antibody Quantification in Biological Fluids Using Trap-Elute MicroLC-MS Method Featuring the SCIEX QTRAP 6500+ LC-MS/MS System with OptiFlow Turbo V source and M5 MicroLC

More information

Characterize mab Charge Variants by Cation-Exchange Chromatography

Characterize mab Charge Variants by Cation-Exchange Chromatography Characterize mab Charge Variants by Cation-Exchange Chromatography Application Note Biologics and Biosimilars Authors Isabel Vandenheede, Emmie Dumont, Pat Sandra, and Koen Sandra Research Institute for

More information