Molecular Scissors: Lambda Digest Student Materials

Save this PDF as:

Size: px
Start display at page:

Download "Molecular Scissors: Lambda Digest Student Materials"

Transcription

1 Molecular Scissors: Lambda Digest Student Materials Introduction 2 Pre-Lab Questions. 5 Lab Protocol 6 Data Collection Worksheet. 9 Post-Lab Questions and Analysis.. 10 Plasmid Maps. 13 Last updated: August 7, 2017

2 Molecular Scissors Introduction Do you know what restriction enzymes are? Also known as restriction endonucleases, restriction enzymes are important enzymes that cut DNA at specific sequences called restriction sites. Restriction enzymes were discovered when scientists noticed that bacterial viruses (bacteriophages) can infect some bacterial cells and not others. The bacterial host cells that are resistant to infection produce enzymes that cut the invading viral DNA. The small fragments of viral DNA cannot be used to make new complete viruses stopping infection of the bacteria cell. Scientists named these enzymes restriction endonucleases or restriction enzymes for their ability to restrict or limit viral infection (see Figure 1). Figure 1. Bacteria defending themsleves against bacteriophages Since the discovery of the first restriction enzyme, hundreds of restriction enzymes that recognize and cut DNA at different restriction sites have been identified. The name of each restriction enzyme comes from the genus, species and strain of the bacteria that naturally produced it. For example, the enzyme EcoRI comes from: E = Eschericia genus co = coli species R = strain RY13 I = roman numeral I for the first enzyme indentified in the bacterium Most of the restriction ezymes used by scientists recognize restriction sites that are four to eight base pairs long. Let s look at a restriction site for EcoRI: 5 GAATTC 3 3 CTTAAG 5 Look closely at the sequences. Do you notice anything special? Read the top strand left to right outloud.now read the bottom strand right to left. Did you notice that you were reading the same sequence? This is called a palindrome and it is often a characteristic of restriction sites. In this case, EcoRI cuts between the G and the A when reading from 5 2

3 to 3. Because the enzyme cuts each of the two strands of the restriction site, it leaves staggered cuts that produce sticky ends. These short, unpaired sequences are the same for any DNA that is cut by EcoRI. This is sometime indicated in this manner: 5 G/AATTC 3 5 G AATTC 3 or 3 CTTAA/G 5 3 CTTAA G 5 While not as common, some enzymes like HaeIII cut both strands of DNA at the same position, producing blunt ends. 5 ATCAGG/CCATT 3 5 ATCAGG CCATT 3 3 TAGTCC/GGTAA 5 3 TAGTCC GGTAA 5 The ability of restriction enzymes to cut DNA at known sites make them an important tool in biotechnology. Scientists can cut open a DNA sequence and insert another sequence into the opening (Figure 2). Figure 2. Using restriction enzymes to create recombinant DNA Original double-stranded DNA molecule with a single restriction site for EcoRI GAATTC CTTAAG 5 restriction enzyme site Cut with restriction enzyme Fragments of original DNA molecule produced by digestion with EcoRI and double-stranded DNA to be inserted into original DNA molecule. 5 3 G AATTC CTTAA G AATTC 3 G G 3 CTTAA 5 Join DNA fragments with DNA ligase New DNA composed of original molecule and inserted molecule G AATTC G AATTC 5 CTTAA G CTTAA G Why do you think this is such an important procedure? If you thought about inserting DNA from one organism into another organism, making certain drugs, or fixing a genetic disease then you are on the right track. For example, if a scientist wants to study a specific protein, she can insert the gene for that protein into bacterial DNA and have millions of bacterial cells make the protein. It is not quite that simple, but you get the idea. Restriction enzymes also allow scientists to create maps of DNA based on the postion of restriction sites. One kind of physical map of DNA is a restriction map. Restriction maps include the location and order of sites cut by different restriction enzymes (see Figure 3). These physical maps are important to scientists as they identifiy and work with DNA molecules. 3

4 Figure 3. Restriction map of lambda DNA cut with BamHI , Fragment sizes basepairs (bp) How do you create a restriction map? After the DNA is cut with different enzymes, scientists separate the fragments by gel electrophoresis and analyze the resulting patterns. Gel electrophoresis is a common way to measure molecular sizes. Here is an analogy to explain gel electrophoresis. Imagine a very dense forest of trees where each tree is only one foot away from every other tree. You and a mouse must each run through the forest from point A to point B. You and the mouse begin at the same time. Which will reach the other side first - you or the mouse? In gel electrophoresis, the gel is analogous to the overgrown forest. The gel is a mesh formed of polymers, much like JELL-O. JELL-O is a mesh of gelatin made from animal products like collagen. The gels for electrophoresis are a mesh of agarose, which is purified from seaweed. In gel electrophoresis the molecules are analogous to you and the mouse. Small molecules will move more quickly through the mesh than will large molecules, for the same reasons that the mouse moves more quickly through the thick forest than you do. So far so good, but once a molecule is suspended in the gel, why does it move? DNA, RNA and protein molecules often have a surface charge. This means that if an electric field is applied to the gel, molecules with a negative surface charge will move through the gel towards the positively charged anode and molecules with a positive surface charge will move through the gel towards the negatively charged cathode. When two (or more) molecules have the same charge the molecules will move through the gel based upon their size, smaller molecules move faster through the gel then larger molecules (Figure 4). Figure 4. Agarose gel electrophoresis of DNA In this lab, you will being using DNA from a bacteriophage called lambda ( ) and cutting it with two enzymes: EcoRI and HindIII. Once you have cut the DNA, you will run it on an electrophoresis gel and compare lambda ( ) cut with the two different enzymes and the uncut lambda ( ) DNA. To make things a little more interesting, the enzymes are not identified. There are two tubes A and B. One has EcoRI, and the the other has HindIII. Your job is to figure out which tube contains which enzyme. 4

5 Molecular Scissors Pre-Lab Questions Directions: After reading through the introduction and protocol for the Molecular Scissors lab, answer the following questions. 1. What are restriction enzymes, and where are they found in nature? 2. You find a type of bacteria that is resistant to the T-4 bacteriophage. How might you explain the bacterium s resistance to this virus? 3. The restriction enzyme PvuI recognizes a 6 base pair, palindromic sequence in double stranded DNA. Three bases of one strand are given. Complete the restriction site for PvuI. 5 T C G PvuI cuts both strands of DNA. The position of the first cut is indicated by the arrow above. Draw an arrow to indicate the position of the second cut. 4. Imagine you have a circular piece of bacterial DNA (a plasmid) in which you want to insert a gene to study a protein. You need to decide what restriction enzyme to use to cut open the plasmid EcoRI or HaeIII. What enzyme would you use to cut the plasmid? Explain your answer. 5. Many molecules of DNA from a virus have been cut with various combinations of the restriction enzymes EcoRI, BamHI, HindIII. The restriction map and resulting gel are shown below. Which sample on the gel shows DNA that has been cut with both BamHI and HindIII? Explain your answer. DNA from virus wells EcoRI BamHI EcoRI HindIII 5

6 Molecular Scissors Lab Protocol There s been a mix up in the lab labels on your tubes of restriction enzymes have fallen off. You know that you have a tube of EcoRI and a tube of HindIII, but you don t know which one is which. In order to identify the enzymes in tubes A and B, you will have to perform digests of DNA from a bacteriophage called lambda ( ). Once you have cut the DNA you will run it on an electrophoresis gel to compare the cut and uncut DNA and the results of the two different enzymes. By comparing the gel results to the restrictions maps in Figure 5 you will be able to figure which tube contains which enzyme. Figure 5: Restriction Maps for Lambda/HindIII and Lambda/EcoRI Materials: check your workstations to make sure all supplies are present before beginning the lab. Student Workstation: Common Workstation: 1 ice bucket or styrofoam cup with crushed ice 37 C water bath or incubator 1 p20 micropipette and pipette tips 65 C water bath or incubator 1 microcentrifuge tube rack microcentrifuge (optional) 1 tube with 200 L water UV light or blue light 1 tube CutSmart buffer with 20 L buffer transilluminator 1 tube lambda DNA with 10 L DNA (500 ng/ l) 1X electrophoresis buffer 1 tube Enzyme A with 1 L restriction enzyme 1 tube Enzyme B with 1 L restriction enzyme 1 tube DNA Ladder with 10 L Quick Load 1kb Extend Ladder 1 tube Control (empty) 1 tube loading dye with 30 L 6X dye 1 agarose gel (0.6%) with DNA stain 1 electrophoresis unit with power supply 1 extra fine point permanent marker 6

7 Caution: Keep all reagent tubes on ice. Procedure: 1. Find the four microcentrifuge tubes labeled enz A, enz B, Control and Ladder 2. Using your p20 micropipette, set up the restriction digests using Table 1 below. It is a good idea to check off the reagents as you add them. Table 1: Set-up for restriction digest of lambda with EcoRI and HindIII. Add the Tube Following Reagents: Enz A Enz B Control Ladder Water 42 L 42 L 43 L 5 L CutSmart Buffer 5 L 5 L 5 L none DNA 2 L 2 L 2 L none Enzyme A (already added) 1 L none none none Enzyme B (already added) none 1 L none none Ladder (already added) none none none 10 L Total Volume 50 L 50 L 50 L 15 L Caution: Make sure you use a clean tip for each pipetting transfer. 3. Using the centrifuge, quickly spin the tubes to get all the reagents to the bottom. If you do not have a centrifuge, you can gently tap them on the bench to consolidate the contents in the bottom of the tube. 4. Put all tubes except the Ladder in the 37 C water bath for minutes or for the time it takes you to make your gel. 5. During the incubation, add 5 L of sterile water to the tube labeled ladder. 6. Prepare or source a 0.6% agarose gel and 1X electrophoresis buffer as instructed by your teacher. 7. Remove your reaction tubes from the 37 C water bath. Stopping Point Check with your teacher before continuing with the protocol. 8. Add 8 L of loading dye to the reaction tubes (Enz A, Enz B and Control). Mix by flicking the tube and pool reagents at the bottom by centrifuging or by tapping the tube on the bench. Caution: Make sure you use a clean tip for each reaction tube. 9. After loading dye is added, heat your reaction tubes to 65 C for 5 minutes. Move tubes directly to ice. Caution: Do not heat the Ladder. 7

8 10. Assemble the gel box and position it where it will run. Tip: Check to make sure that the gel tray is in the correction orientation with the wells closest to the negative electrode. 11. Load 15 L of each sample and the ladder into a well of the gel. Record which sample went into which well. Use Table 2 to help you know where on the gel each sample is loaded. 12. Run your samples as instructed by your teachers until the front loading dye is two-thirds of the way down the gel. Table 2: Gel electrophoresis Caution: Make sure you use a clean tip for each sample. Lane (left to right) Sample name While the gel is running, calculate the size of the restriction fragments that you expect when lamda DNA is cut with each of the enzymes. Record them in Table 3 below. Table 3: Single digest restriction fragments of Lambda DNA cut with EcoRI and Hindlll Restriction Fragments 23,130 2,027 HindIII Fragments in descending order Restriction Fragments EcoRI Fragments in descending order Hint: for the Hind III digest, look at the map in Figure 5. Starting at start and moving to the first restriction site, the size of the fragment is 23,130 bp. To determine the size of the second fragment, subtract the base pair number of the first site (23,130) from the number of the second site (25,157). Continue this process, recording the size of the fragments in the table. When you have finished, in the second column of the table list the fragments in descending order. 14. Once your gel is finished running, examine the location of the bands, and complete the data collection worksheet. 8

9 Molecular Scissors Data Collection Worksheet Directions: After completing the Molecular Scissors lab, answer the questions below. 1. On the image below draw what you see after gel electrophoresis Ladder (Kb) electrode electrode 2. Determine which enzyme was EcoRI and which was HindIII. Record it below. Enzyme A Enzyme B 3. The restriction site for EcoRI is GAATTC. Based on your results, how many times does the sequence occur in the lambda sequence? 4. When you compare the restriction maps to your results, are there any missing bands? Can you suggest any reasons why there is this discrepancy? 5. What is the total length of the Lambda DNA? 9

10 Molecular Scissors Post-Lab Questions and Analysis Directions: After completing the Molecular Scissors lab, answer the questions below. Scientists can use electrophoresis results to determine the size of unknown DNA samples. Scientists have determined that DNA fragments move through the gel at at rate that is inversely proportional to the log 10 of their molecular weight (or number of base pairs). So, if you run a set of fragments with known sizes on a gel along with the unknown fragment, you can create a standard curve with the known fragments and use it to determine the size of the unknown fragments. Let s try it A B C 1. The gel image above depicts a gel with a DNA standard in lane 1 and two unknowns in lanes 3 and 5. Measure the distance that each band in the DNA standard has moved from the well and record it next to the corresponding band in Table 4 (on the next page). Tip: You should measure from the front edge of the well to the leading edge (furthest from the well) of each band. 2. Measure the distance that each of the unknown bands has traveled from the wells and record the distance in Table Use the data from Table 4 to create a standard curve using either Excel or semi-log paper. The x axis is distance traveled, and the y axis is base pair length. Connect the data points with a best-fit line. 4. Use the standard curve to determine the size of the three unknown fragments. Record the size of the fragments A, B and C in Table 4. 10

11 Table 4. Restriction digest gel of two unknowns. DNA Standard Size (bp) of DNA Distance (mm) moved from well 23,000 Skip this band very large bands will skew the standard curve Band 9, B A Size (bp) of DNA Unknowns Distance (mm) moved from well 6,557 C 4,361 2,322 2, Use the data from Table 4 to create a standard curve using either Excel or semi-log paper. The x axis is distance traveled and the y axis is base pair length. Connect the data points with a best-fit line. 6. Use the standard curve to determine the size of the three unknown fragments. Record the size of the fragments A, B and C in Table 4. 11

12 12

13 Maps of Lambda DNA with EcoRI and HindIII Restriction sites 13

Mission (Im)possible: Plasmid Mapping Student Materials

Mission (Im)possible: Plasmid Mapping Student Materials Mission (Im)possible: Plasmid Mapping Student Materials Introduction... 2 Pre-Lab Questions... 6 Lab Protocol... 7 Data Collection Worksheet... 11 Post-Lab Questions and Analysis... 12 Last updated: August

More information

Mission (Im)possible: Determine the Identity of Unknown Plasmids. Student Materials. Introduction Lab Protocol... 5

Mission (Im)possible: Determine the Identity of Unknown Plasmids. Student Materials. Introduction Lab Protocol... 5 Mission (Im)possible: Determine the Identity of Unknown Plasmids Student Materials Introduction... 2 Lab Protocol... 5 Data Collection Worksheet... 9 Pre-Lab Questions... 10 Post-Lab Questions and Analysis...

More information

AP Biology: Unit 5: Development. Forensic DNA Fingerprinting: Using Restriction Enzymes Bio-Rad DNA Fingerprinting Kit

AP Biology: Unit 5: Development. Forensic DNA Fingerprinting: Using Restriction Enzymes Bio-Rad DNA Fingerprinting Kit Forensic DNA Fingerprinting: Using Restriction Enzymes Bio-Rad DNA Fingerprinting Kit Background: Scientists working in forensic labs are often asked to perform DNA profiling or fingerprinting to analyze

More information

Molecular Scissors: Lambda Digest Teacher Materials

Molecular Scissors: Lambda Digest Teacher Materials Molecular Scissors: Lambda Digest Teacher Materials Students will conduct a restriction digest of lambda DNA using two unknown enzymes. They will use the results of gel electrophoresis to identify the

More information

Objectives Introduction restriction endonucleases Examples: Hind III: Eco RI: Pst I:

Objectives Introduction restriction endonucleases Examples: Hind III: Eco RI: Pst I: Objectives Before doing this lab you should understand how gel electrophoresis separates DNA molecules present in a mixture and how restriction endonucleases function. After doing this lab you should be

More information

Group Members: Lab Station: BIOTECHNOLOGY: Gel Electrophoresis

Group Members: Lab Station: BIOTECHNOLOGY: Gel Electrophoresis BIOTECHNOLOGY: Gel Electrophoresis Group Members: Lab Station: Restriction Enzyme Analysis Standard: AP Big Idea #3, SB2 How can we use genetic information to identify and profile individuals? Lab Specific

More information

How Can Pieces of DNA Solve a Puzzle?

How Can Pieces of DNA Solve a Puzzle? Introduction How Can Pieces of DNA Solve a Puzzle? One of the basic tools of modern biotechnology is DNA splicing: cutting DNA and linking it to other DNA molecules. The basic concept behind DNA splicing

More information

Lesson 1 Introduction to Restriction Analysis

Lesson 1 Introduction to Restriction Analysis Lesson 1 Introduction to Restriction Analysis Consideration 1. How Does DNA Become Fragmented Into Pieces? DNA consists of a series of nitrogenous base molecules held together by weak hydrogen bonds. These

More information

AP Biology Lab 6 MOLECULAR BIOLOGY

AP Biology Lab 6 MOLECULAR BIOLOGY AP Biology Laboratory Date: Name and Period: AP Biology Lab 6 MOLECULAR BIOLOGY OVERVIEW In this lab you will investigate some basic principles of molecular biology: 1. Plasmids containing specific fragments

More information

Lab 9 Restriction Enzyme Analysis

Lab 9 Restriction Enzyme Analysis Name Assignment # Lab 9 Restriction Enzyme Analysis http://www.phschool.com/science/biology_place/labbench/lab6/concepts2.html 1) Define restriction enzyme 2) Define recognition sequence 3) Label the images

More information

Restriction Enzyme Analysis of DNA- Student Handout

Restriction Enzyme Analysis of DNA- Student Handout Restriction Enzyme Analysis of DNA- Student Handout How to set up a restriction enzyme reaction Restriction enzymes (or restriction endonucleases) cleave DNA in a very specific fashion. Type II restriction

More information

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017)

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017) BIOLOGY 163 LABORATORY RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017) Physical mapping of genomes is an important part of modern molecular genetics. As it's name implies, physical mapping seeks

More information

DNA Fingerprinting. Student Manual. Contents

DNA Fingerprinting. Student Manual. Contents DNA Fingerprinting Student Manual Contents Page Lesson 1 Introduction to DNA Fingerprinting...19 Lesson 2 Restriction Digests of DNA Samples...21 Lesson 3 Electrophoresis and Staining of DNA Samples...28

More information

DNA Restriction Digestion Analysis

DNA Restriction Digestion Analysis PR041 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name DNA Restriction Digestion Analysis Teacher s Guidebook (Cat. # BE-307) think proteins!

More information

DNA Restriction Digestion Analysis

DNA Restriction Digestion Analysis PR041 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name DNA Restriction Digestion Analysis Teacher s Guidebook (Cat. # BE 307) think proteins!

More information

Lambda (λ) DNA Restriction Digest and Electrophoresis Lab

Lambda (λ) DNA Restriction Digest and Electrophoresis Lab Lambda (λ) DNA Restriction Digest and Electrophoresis Lab Procedure DAY ONE: restriction digestion Today we will be exposing the lambda DNA to restriction enzymes. For background knowledge, make sure you

More information

Restriction Analysis of Purified para-r

Restriction Analysis of Purified para-r Restriction Analysis of Purified para-r INTRODUCTION The restriction analysis will provide final proof that the cells transformed during Laboratory 6, cloned overnight in LB/amp and purified in Lab 10

More information

1. Why do DNA restriction fragments and plasmids separate when analyzed by gel electrophoresis?

1. Why do DNA restriction fragments and plasmids separate when analyzed by gel electrophoresis? INTRODUCTION When biologists clone a gene in order to produce human insulin, they create a recombinant plasmid that has the insulin gene. To do so, they use restriction enzymes to create DNA fragments

More information

Agenda (Monday-Wednesday)

Agenda (Monday-Wednesday) Agenda (Monday-Wednesday) Chapter 12 Recombinant DNA Technology Recombinant DNA Techniques DNA Fingerprinting and Forensic Science DNA Fingerprinting Techniques Pre-lab 8 activities Tomorrow: Day One of

More information

Student Manual. Pre-Lab Introduction to DNA Fingerprinting STUDENT MANUAL BACKGROUND

Student Manual. Pre-Lab Introduction to DNA Fingerprinting STUDENT MANUAL BACKGROUND BACKGROUND Pre-Lab Introduction to DNA Fingerprinting You are about to perform a procedure known as DNA fingerprinting. The data obtained may allow you to determine if the samples of DNA that you will

More information

AP Biology. Investigation 9: Biotechnology:Restriction Enzyme Analysis of DNA. Investigation 9: Restriction Enzyme Analysis

AP Biology. Investigation 9: Biotechnology:Restriction Enzyme Analysis of DNA. Investigation 9: Restriction Enzyme Analysis AP Biology Investigation 9: Biotechnology:Restriction Enzyme Analysis of DNA In this investigation, you will learn how to use restriction Learning Objectives enzymes and gel electrophoresis to create genetic

More information

1. What is the structure and function of DNA? Describe in words or a drawing the structure of a DNA molecule. Be as detailed as possible.

1. What is the structure and function of DNA? Describe in words or a drawing the structure of a DNA molecule. Be as detailed as possible. INTRODUCTION In the Program Introduction, you learned that the increase in diabetes in the United States has resulted in a great demand for its treatment, insulin. You also learned that the best way to

More information

Biotechnology Explorer

Biotechnology Explorer Biotechnology Explorer DNA Fingerprinting Kit Instruction Manual Catalog Number 166-0007-EDU www.explorer.bio-rad.com Lyophilized reagents can be stored at room temperature. Store DNA markers at 4 ºC,

More information

Analysis of Precut Lambda DNA. Evaluation copy

Analysis of Precut Lambda DNA. Evaluation copy Analysis of Precut Lambda DNA Computer 6B Restriction enzymes are a special class of proteins that cut DNA at specific sites and have become an indispensable tool in molecular biology. Restriction enzymes,

More information

Synthetic Biology for

Synthetic Biology for Synthetic Biology for Plasmids and DNA Digestion Plasmids Plasmids are small DNA molecules that are separate from chromosomal DNA They are most commonly found as double stranded, circular DNA Typical plasmids

More information

DNA RESTRICTION ANALYSIS

DNA RESTRICTION ANALYSIS DNA RESTRICTION ANALYSIS In this experiment, DNA from the bacteriophage Lambda (48,502 base pairs in length) is cut with a variety of restriction enzymes and the resulting fragments are separated using

More information

Restriction Analysis of DNA MiniLab

Restriction Analysis of DNA MiniLab Restriction Analysis of DNA MiniLab Student s Guide Cat# M6053 Version 030619 Table of Contents Objectives 2 Laboratory Safety 2 Introduction 3 Instructions 6 Results and Analysis 10 Appendix A - Gel Electrophoresis

More information

Student Manual. Restriction Digestion and Analysis of Lambda DNA Kit

Student Manual. Restriction Digestion and Analysis of Lambda DNA Kit Student Manual Restriction Digestion and Analysis of Lambda DNA Kit Contents Overview Lesson 1 Lesson 2 Lesson 3 Introduction to Restriction Analysis Restriction Digestion (Laboratory Procedure) Review

More information

CHAPTER 4A MAKING SURE YOU VE GOT A RECOMBINANT PLASMID. CHAPTER 4A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

CHAPTER 4A MAKING SURE YOU VE GOT A RECOMBINANT PLASMID. CHAPTER 4A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved. CHAPTER 4A MAKING SURE YOU VE GOT A RECOMBINANT PLASMID 55 INTRODUCTION When biologists clone a gene in order to produce human insulin, they create a recombinant plasmid that has the human insulin gene.

More information

Who s Your Daddy? Teacher s Guide Engage: This can be done individually, in lab groups, or as a whole class discussion. We know we can cut paper, or

Who s Your Daddy? Teacher s Guide Engage: This can be done individually, in lab groups, or as a whole class discussion. We know we can cut paper, or Who s Your Daddy? Teacher s Guide Engage: This can be done individually, in lab groups, or as a whole class discussion. We know we can cut paper, or string with scissors, but can we cut things we cannot

More information

MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien

MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien Introduction MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien The field of molecular genetics has resulted in a number of practical applications that have been of tremendous

More information

Restriction Digest Basics MiniLab

Restriction Digest Basics MiniLab Restriction Digest Basics MiniLab Student s Guide Cat# M6050 Version 071918 5 TTTTTTGATATCTTTTTTT 3 3 AAAAAACTATAGAAAAAAA 5 5 TTTTTTGAT 3 5 ATCTTTTTTT 3 3 AAAAAACTA 5 3 TAGAAAAAAA 5 Table of Contents Objectives

More information

LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA

LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA I. Objectives The purpose of today s lab is to learn how to set up and run an agarose gel, separate DNA fragments on the gel, and

More information

Friday, June 12, 15. Biotechnology Tools

Friday, June 12, 15. Biotechnology Tools Biotechnology Tools Biotechnology: Tools and Techniques Science of biotechnology is based on recombining DNA of different organisms of another organism. Gene from one organism spliced into genome of another

More information

Restriction Enzymes and Lambda DNA

Restriction Enzymes and Lambda DNA Restriction Enzymes and Lambda DNA Computer 6B Restriction enzymes have become an indispensable tool of molecular researchers over the past fifty years. This unique group of enzymes function as molecular

More information

10 Restriction Analysis of Genomic DNA

10 Restriction Analysis of Genomic DNA 10 Restriction Analysis of Genomic DNA Objectives: A) To determine the rough location of restriction sites of an unknown restriction enzyme and B) to use this information to determine the identity of this

More information

Biotechniques (Biol 410) 13. DNA Extraction & Gel Electrophoresis

Biotechniques (Biol 410) 13. DNA Extraction & Gel Electrophoresis Biotechniques (Biol 410) 13. DNA Extraction & Gel Electrophoresis Laboratory Objectives Extract DNA from cells using an alternative to Column purification Learn to prepare and pour gel DNA Electrophoresis

More information

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 8: DNA Restriction Digest (II) and DNA Sequencing (I)

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 8: DNA Restriction Digest (II) and DNA Sequencing (I) Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 8: DNA Restriction Digest (II) and DNA Sequencing (I) We have made considerable progress in our analysis of the gene for

More information

RFLP ANALYSIS OF DNA LABORATORY

RFLP ANALYSIS OF DNA LABORATORY RFLP ANALYSIS OF DNA LABORATORY BIG PICTURE You will be working with an essential research method widely used in genetics, conservation biology, and forensics. The lab is divided into three sections. Part

More information

Genetic Engineering & Recombinant DNA

Genetic Engineering & Recombinant DNA Genetic Engineering & Recombinant DNA Chapter 10 Copyright The McGraw-Hill Companies, Inc) Permission required for reproduction or display. Applications of Genetic Engineering Basic science vs. Applied

More information

LAB 1: AN INTRODUCTION TO MICROVOLUMETRICS AND PIPETTING

LAB 1: AN INTRODUCTION TO MICROVOLUMETRICS AND PIPETTING Name: Book # Per. Name: Name: Book # Book # LAB 1: AN INTRODUCTION TO MICROVOLUMETRICS AND PIPETTING PRELAB: 1. Approximately 28 drops of liquid, from a medicine dropper or disposable pipette, equals 1

More information

CRIME SCENE INVESTIGATOR: DNA Profiling

CRIME SCENE INVESTIGATOR: DNA Profiling Bio101- LAB 8 Name: CRIME SCENE INVESTIGATOR: DNA Profiling OBJECTIVES: To review the structure and function of DNA Understand and perform DNA digests To gain experience using the micropipettes and gel

More information

Genetic Diagnosis. electrophoresis. During the lab, genetic testing was done for the cystic fibrosis gene in a young

Genetic Diagnosis. electrophoresis. During the lab, genetic testing was done for the cystic fibrosis gene in a young Meyers 1 Keya Meyers Genetic Diagnosis Abstract: In this lab two processes were observed: restriction fragment polymorphism and gel electrophoresis. During the lab, genetic testing was done for the cystic

More information

Lab 1 Flow Chart : Learning basic laboratory skills

Lab 1 Flow Chart : Learning basic laboratory skills Lab Flow Chart : Learning basic laboratory skills RD Red dye solution S Dye S2 Dye 2 S3 Dye 3 H 2 O Water X TAE X Lab.: Basic pipetting and serial dilution 2 Plunger button Tip ejector Display window Barrel

More information

Biotechnology (Chapter 20) Objectives

Biotechnology (Chapter 20) Objectives Biotechnology (Chapter 20) Objectives Understand the background science behind the technology applications Understand the tools and details of the technology Develop familiarity with performing the select

More information

Biology Teach Yourself Series Topic 12: Molecular Biology (Unit 4)

Biology Teach Yourself Series Topic 12: Molecular Biology (Unit 4) TSSM 2017 Page 1 of 7 Biology Teach Yourself Series Topic 12: Molecular Biology (Unit 4) A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 2017

More information

Experiment 5. Restriction Enzyme Digest and Plasmid Mapping. VY NGUYEN 26 February 2016

Experiment 5. Restriction Enzyme Digest and Plasmid Mapping. VY NGUYEN 26 February 2016 Experiment 5 Restriction Enzyme Digest and Plasmid Mapping VY NGUYEN 26 February 2016 ABSTRACT 1. Understand the use of restriction enzymes as biotechnology tools 2. Become familiar with the principles

More information

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau 7.1 Techniques for Producing and Analyzing DNA SBI4U Ms. Ho-Lau What is Biotechnology? From Merriam-Webster: the manipulation of living organisms or their components to produce useful usually commercial

More information

Biotechnology DNA technology

Biotechnology DNA technology Biotechnology Biotechnology is the manipulation of organisms or their components to make useful products The applications of DNA technology affect everything from agriculture, to criminal law, to medical

More information

Manipulation of Purified DNA

Manipulation of Purified DNA Manipulation of Purified DNA To produce the recombinant DNA molecule, the vector, as well as the DNA to be cloned, must be cut at specific points and then joined together in a controlled manner by DNA

More information

SIX MOLECULAR BIOLOGY

SIX MOLECULAR BIOLOGY SIX MOLECULAR BIOLOGY OVERVIEW In this lab you will investigate some basic principles of molecular biology: 1. Plasmids containing specific fragments of foreign DNA will be used to transform Escherichia

More information

Exercise 20 GEL ELECTROPHORESIS OF DNA SAMPLES (Plasmids, PCR products & Restriction Fragments)

Exercise 20 GEL ELECTROPHORESIS OF DNA SAMPLES (Plasmids, PCR products & Restriction Fragments) Exercise 20 GEL ELECTROPHORESIS OF DNA SAMPLES (Plasmids, PCR products & Restriction Fragments) Introduction Gel electrophoresis is a technique or procedure allowing DNA fragments to be separated on the

More information

Chapter 11. Restriction mapping. Objectives

Chapter 11. Restriction mapping. Objectives Restriction mapping Restriction endonucleases (REs) are part of bacterial defense systems. REs recognize and cleave specific sites in DNA molecules. REs are an indispensable tool in molecular biology for

More information

Restriction Enzyme Cleavage of DNA and Electrophoresis (AP Biology Lab 6B)

Restriction Enzyme Cleavage of DNA and Electrophoresis (AP Biology Lab 6B) The Biotechnology Education Company Revised and Updated Restriction Enzyme Cleavage of DNA and Electrophoresis (AP Biology Lab 6B) EDVO-Kit 112 See Page 3 for storage instructions. EXPERIMENT OBJECTIVE:

More information

DNA FINGERPRINTING & ORANGUTAN PARENTAGE

DNA FINGERPRINTING & ORANGUTAN PARENTAGE DNA FINGERPRINTING & ORANGUTAN PARENTAGE 1 DNA FINGERPRINTING & ORANGUTAN PARENTAGE DNA, or deoxyribonucleic acid, is found in all living organisms. DNA is a long chain of nucleotides, the order of which

More information

Learning Basic Laboratory Skills

Learning Basic Laboratory Skills How to use a micropipette? Plunger/ Volume adjustment Tip ejector Volume display Clockwise: decrease volume Anti-clockwise: increase volume nd stop Rest To adjust volume Do NOT over turn the plunger! To

More information

Biotechnology: Tools and Techniques

Biotechnology: Tools and Techniques Biotechnology Tools The science of biotechnology is based on recombining the DNA of different organisms. That is, a gene from one organism is spliced into the genome of another organism. Biotechnology

More information

DNA FINGERPRINTING AND HEDGEHOG RE-COLONISATION OF EUROPE DNA, or deoxyribonucleic acid, is found in all

DNA FINGERPRINTING AND HEDGEHOG RE-COLONISATION OF EUROPE DNA, or deoxyribonucleic acid, is found in all DNA FINGERPRINTING AND HEDGEHOG RE-COLONISATION OF EUROPE DNA, or deoxyribonucleic acid, is found in all living organisms. DNA is a long chain of nucleotides, the order of which differs from organism to

More information

A. Introduction. Figure 1 Figure 2

A. Introduction. Figure 1 Figure 2 Varsity Biology Molecular Biotechnology Lab Decode the Candy Dye Essential Questions: How can we use Gel electrophoresis to separate molecules? How do we use the equipment (which will be important in the

More information

Gel Electrophoresis: Quantitative length and mass measurements of DNA

Gel Electrophoresis: Quantitative length and mass measurements of DNA BIO440 Genetics Lab Humboldt State University Gel Electrophoresis: Quantitative length and mass measurements of DNA Electrophoresis, and in particular agarose gel electrophoresis, is an integral analysis

More information

PreLab Activity I: Restriction Enzymes 1. What is the sequence of the complementary DNA strand? Draw it.

PreLab Activity I: Restriction Enzymes 1. What is the sequence of the complementary DNA strand? Draw it. PreLab Activity I: Restriction Enzymes 1. What is the sequence of the complementary DNA strand? Draw it. 2. Assume you cut this fragment with the restriction enzyme EcoRI. The restriction site for EcoRI

More information

DNA FINGERPRINTING & OTTER POPULATIONS

DNA FINGERPRINTING & OTTER POPULATIONS DNA FINGERPRINTING & OTTER POPULATIONS 1 DNA FINGERPRINTING AND OTTER POPULATIONS DNA, or deoxyribonucleic acid, is found in all living organisms. DNA is a long chain of nucleotides, the order of which

More information

Amgen Laboratory Series. Tabs C and E

Amgen Laboratory Series. Tabs C and E Amgen Laboratory Series Tabs C and E Chapter 2A Goals Describe the characteristics of plasmids Explain how plasmids are used in cloning a gene Describe the function of restriction enzymes Explain how to

More information

AGAROSE GEL ELECTROPHORESIS OF DNA

AGAROSE GEL ELECTROPHORESIS OF DNA AGAROSE GEL ELECTROPHORESIS OF DNA Why would anyone want to study DNA? Scientists have learned that the incredible amount of information stored in DNA can answer many questions and solve problems, which

More information

Bio 121 LAB 11 INSTRUCTIONS - DNA II

Bio 121 LAB 11 INSTRUCTIONS - DNA II Bio 121 LAB 11 INSTRUCTIONS - DNA II In the first part of today's lab we will demonstrate that the DNA which we extracted last week can create heritable changes in the phenotype of bacterial cells. We

More information

Forensic DNA Fingerprinting

Forensic DNA Fingerprinting Forensic DNA Fingerprinting Day 1 Practice Using Micropipettes We recommend that you familiarize your students with proper pipetting techniques prior to Lesson 1. Have your students learn how to transfer

More information

Exploring DNA. Copying DNA in a laboratory the polymerase chain reaction

Exploring DNA. Copying DNA in a laboratory the polymerase chain reaction Exploring DNA Scientists can not explore and manipulate DNA Copying DNA in a laboratory the polymerase chain reaction Use DNA to reveal its owner s identity DNA profiling and mapping DNA by finding where

More information

Bio 160: DNA Fingerprinting Name:

Bio 160: DNA Fingerprinting Name: Bio 160: DNA Fingerprinting DNA Fingerprinting Name: OBJECTIVES: To review the structure and function of DNA Understand and perform DNA digests To gain experience using the micropipettes and gel electrophoresis

More information

Directions: Please Return!

Directions: Please Return! Directions: Please Return! Electrophoresis Analysis: restriction enzyme cleavage of DNA Lab AP bio lab 9 (adapted from http://media.collegeboard.com/digitalservices/pdf/ap/bio-manual/bio_lab9-biorestrictionenzymeanalysisofdna.pdf

More information

Overview: The DNA Toolbox

Overview: The DNA Toolbox Overview: The DNA Toolbox Sequencing of the genomes of more than 7,000 species was under way in 2010 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant

More information

Techniques for Biotechnology!

Techniques for Biotechnology! Techniques for Biotechnology! Quantities for Molecular Biology: unlike other labs where we might measure volume in milliliters and mass in grams, in molecular biology / biotech labs, we use MUCH smaller

More information

LABORATORY 5: TRANSFORMING BACTERIA WITH THE LIGATION PRODUCTS

LABORATORY 5: TRANSFORMING BACTERIA WITH THE LIGATION PRODUCTS LABORATORY 5: TRANSFORMING BACTERIA WITH THE LIGATION PRODUCTS So far in your quest to clone a gene you have produced recombinant plasmids and verified that you made the para-r plasmid containing the rfp

More information

Figure 1. Map of cloning vector pgem T-Easy (bacterial plasmid DNA)

Figure 1. Map of cloning vector pgem T-Easy (bacterial plasmid DNA) Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 6: Ligation & Bacterial Transformation (Bring your text and laptop to class if you wish to work on your assignment during

More information

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES CHAPTER 11 BIOTECHNOLOGY : PRINCIPLES AND PROCESSES POINTS TO REMEMBER Bacteriophage : A virus that infects bacteria. Bioreactor : A large vessel in which raw materials are biologically converted into

More information

ADVANCED ELECTROPHORESIS

ADVANCED ELECTROPHORESIS Ref. ELECAVANZADA (4 practices) 1. EXPERIMENT OBJETIVE ADVANCED ELECTROPHORESIS The aim of this experiment is to introduce students to the knowledge of electrophoretic theory and to familiarize themselves

More information

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved. CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? 35 INTRODUCTION In the Program Introduction, you learned that the increase in diabetes in the United States has resulted in a great demand for its treatment,

More information

Molecular Biology (2)

Molecular Biology (2) Molecular Biology (2) Restriction endonucleases, RFLP, and gene cloning Mamoun Ahram, PhD Second semester, 2017-2018 Resources This lecture Cooper, pp 120-124 Endonucleases Enzymes that degrade DNA within

More information

Who s Your Daddy? Engage: Crime Scene video:

Who s Your Daddy? Engage: Crime Scene video: Who s Your Daddy? 1. Engage: Crime Scene video: Crime Lab Uses DNA to Solve Property Crimes in San Diego County. http://www.youtube.com/watch?v=dxyztbkmxwu Watch the clip and then have groups discuss and

More information

Biotechnology: DNA Technology & Genomics

Biotechnology: DNA Technology & Genomics Chapter 20. Biotechnology: DNA Technology & Genomics 2003-2004 1 The BIG Questions! How can we use our knowledge of DNA to: " diagnose disease or defect? " cure disease or defect? " change/improve organisms?!

More information

EXPERIMENT GENOMIC DNA ANALYSIS

EXPERIMENT GENOMIC DNA ANALYSIS EXPERIMENT GENOMIC DNA ANALYSIS Population diversity Studies We have 5 species of planarians (3 purchased from Carolina Biologicals, 2 obtained from the Levin lab) andmight have additional species found

More information

Restriction Analysis of Lambda DNA Miriam Golbert, College of the Canyons, Santa Clarita, CO

Restriction Analysis of Lambda DNA Miriam Golbert, College of the Canyons, Santa Clarita, CO INTRODUCTION To close the yellow note, click once to select it and then click the box in the upper left corner. To open the note, double click (Mac OS) or right click (Windows) on the note icon. Restriction

More information

Before oing this lab you should understand: ow gel electrophoresis separates DNA molecules present in a mixture;

Before oing this lab you should understand: ow gel electrophoresis separates DNA molecules present in a mixture; 9 SIX MOLECULAR BIOLOGY OVERVIEW In this lab you will investigate some basic principles of molecular biology: 1. Plasmids containing specific fragments of foreign DNA will be used to transform Escherichia

More information

BIO 121 LAB 10 - DNA I

BIO 121 LAB 10 - DNA I BIO 121 LAB 10 - DNA I All cellular organisms store their hereditary information as the precise sequence of nucleotides in DNA, just as written information is stored as the precise sequence of letters

More information

13-2 Manipulating DNA Slide 1 of 32

13-2 Manipulating DNA Slide 1 of 32 1 of 32 The Tools of Molecular Biology The Tools of Molecular Biology How do scientists make changes to DNA? Scientists use their knowledge of the structure of DNA and its chemical properties to study

More information

Student Manual. Pre-Lab Introduction to DNA Fingerprinting STUDENT MANUAL BACKGROUND

Student Manual. Pre-Lab Introduction to DNA Fingerprinting STUDENT MANUAL BACKGROUND BACKGROUND Pre-Lab Introduction to DNA Fingerprinting You are about to perform a procedure known as DNA fingerprinting. The data obtained may allow you to determine if the samples of DNA that you will

More information

minipcr TM Genes in Space Food Safety Lab: Mars Colony at Risk!

minipcr TM Genes in Space Food Safety Lab: Mars Colony at Risk! minipcr TM Genes in Space Food Safety Lab: Mars Colony at Risk! An E. coli outbreak affects astronaut food aboard the International Space Station. DNA samples from two food racks are analyzed to determine

More information

Session 4 Plasmid Mini-Preparation & Restriction Digestion

Session 4 Plasmid Mini-Preparation & Restriction Digestion Session 4 Plasmid Mini-Preparation & Restriction Digestion Learning Objective: The goal of this exercise is to become familiar with the procedure for isolating plasmid DNA from bacteria and running a restriction

More information

Student Manual. Pre-Lab Introduction to DNA Fingerprinting BACKGROUND STUDENT MANUAL

Student Manual. Pre-Lab Introduction to DNA Fingerprinting BACKGROUND STUDENT MANUAL BACKGROUND Pre-Lab Introduction to DNA Fingerprinting You are about to perform a procedure known as DNA fingerprinting. The data obtained may allow you to determine if the samples of DNA that you will

More information

BIOTECHNOLOGY EXPERIMENTS

BIOTECHNOLOGY EXPERIMENTS BIOTECHNOLOGY EXPERIMENTS by Patricia P. Rosen North Dakota State University Fargo, North Dakota Exercises from Biotechnology Education Project Sponsored by Monsanto Fund National Science Foundation and

More information

Appendix B. Fig. 1. The Structure of DNA

Appendix B. Fig. 1. The Structure of DNA Appendix B Prelab Activity 1 A Review of Restriction Enzymes DNA consists of a series of nitrogen base molecules held together by weak hydrogen bonds. These base pairs are in turn bonded to a sugar and

More information

The ramylase Project by Ellyn Daugherty

The ramylase Project by Ellyn Daugherty G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name The ramylase Project by Ellyn Daugherty Restriction Digestion to Verify pamylase Plasmid

More information

DNA FINGERPRINTING & JAPANESE KNOTWEED

DNA FINGERPRINTING & JAPANESE KNOTWEED DNA FINGERPRINTING & JAPANESE KNOTWEED 1 DNA FINGERPRINTING AND JAPANESE KNOTWEED DNA, or deoxyribonucleic acid, is found in all living organisms. DNA is a long chain of nucleotides, the order of which

More information

Restriction Enzymes Dna Scissors Answer Key

Restriction Enzymes Dna Scissors Answer Key RESTRICTION ENZYMES DNA SCISSORS ANSWER KEY PDF - Are you looking for restriction enzymes dna scissors answer key Books? Now, you will be happy that at this time restriction enzymes dna scissors answer

More information

Recombinant DNA recombinant DNA DNA cloning gene cloning

Recombinant DNA recombinant DNA DNA cloning gene cloning DNA Technology Recombinant DNA In recombinant DNA, DNA from two different sources, often two species, are combined into the same DNA molecule. DNA cloning permits production of multiple copies of a specific

More information

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Lesson Overview 14.3 Studying the Human Genome Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Nucleic acids are chemically different from other macromolecules

More information

LAB 1: DNA PRECUT BY RESTRICTION ENZYMES

LAB 1: DNA PRECUT BY RESTRICTION ENZYMES LAB 1: DNA PRECUT BY RESTRICTION ENZYMES Why would anyone want to study DNA? Scientists have learned that the incredible amount of information stored in DNA can answer many questions and solve problems

More information

10X ligation buffer ligase 1 vector DNA insert DNA H 2 O. 10 µl Total Volume. 10X ligation buffer ligase 1 vector DNA insert DNA

10X ligation buffer ligase 1 vector DNA insert DNA H 2 O. 10 µl Total Volume. 10X ligation buffer ligase 1 vector DNA insert DNA Biol/Chem 475 S07 Study problems for quiz 1 See also questions posed in lab handouts including ligase handout Answers to questions 1&2 included at the end of this document. 1. You plan to clone a 1.0 kb

More information

Student Manual. Pre-Lab Introduction to DNA Fingerprinting STUDENT MANUAL BACKGROUND

Student Manual. Pre-Lab Introduction to DNA Fingerprinting STUDENT MANUAL BACKGROUND BACKGROUND Pre-Lab Introduction to DNA Fingerprinting You are about to perform a procedure known as DNA fingerprinting. The data obtained may allow you to determine if the samples of DNA that you will

More information

ITS Sequencing in Millepora. 10/09 Subcloning DNA Fragments into pbluescript Preparation of pbluescript Vector

ITS Sequencing in Millepora. 10/09 Subcloning DNA Fragments into pbluescript Preparation of pbluescript Vector Page 1 of 5 10/09 Subcloning DNA Fragments into pbluescript Preparation of pbluescript Vector 1. Digest 1 µg of pbluescript with Eco RI 2. Following digestion, add 0.1 volumes of 3M sodium acetate (ph

More information