SUPPLEMENTAL MATERIAL FOR. Structure of Bacterial Transcription Factor SpoIIID and Evidence for a Novel

Size: px
Start display at page:

Download "SUPPLEMENTAL MATERIAL FOR. Structure of Bacterial Transcription Factor SpoIIID and Evidence for a Novel"

Transcription

1 SUPPLEMENTAL MATERIAL FOR Structure of Bacterial Transcription Factor SpoIIID and Evidence for a Novel Mode of DNA Binding Bin Chen, Paul Himes, Yu Liu, Yang Zhang, Zhenwei Lu, Aizhuo Liu, Honggao Yan, and Lee Kroos Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA 1

2 Table S1. Intermolecular NOEs observed in the SpoIIID DNA complex SpoIIID resonances Possible DNA resonances a DNA resonance chemical shifts b (ppm) Ser35 HN CYT H5 or any ribose H Thr36 HN ADE H6 or CYT H Glu43 HN Ribose H2, H2, H4, H5 or H Arg44 HN Ribose H2, H2, H4, H5 or H5 3.52, 3.26 Lys64 HN Ribose H2, H2, H4, H5 or H Arg67 HN Ribose H2, H2, H4, H5 or H ADE H2, H8 or CYT H6 or THY H6 or GUA 7.56 H8 or ADE H6 or CYT H4 or GUA H2 Gly71 HN Ribose H2, H2, H4, H5 or H5 3.62, 3.96 CYT H5 or any ribose H1 5.91, 6.14 Gly72 HN CYT H5 or any ribose H ADE H2, H8 or CYT H6 or THY H6 or GUA 7.79 H8 or ADE H6 or CYT H4 or GUA H2 Ala74 HN Ribose H2, H2, H4, H5 or H5 3.54, 3.96 ADE H2, H8 or CYT H6 or THY H6 or GUA 7.79 H8 or ADE H6 or CYT H4 or GUA H2 Thr75 HN Ribose H2, H2, H4, H5 or H5 3.96, 4.37 CYT H5 or any ribose H1 6.08, 6.40 Lys76 HN Ribose H2, H2, H4, H5 or H CYT H5 or any ribose H a The ambiguous chemical shift assignments were based on the DNA chemical shift data in the Biological Magnetic Resonance Data Bank ( b All intermolecular NOEs were obtained from the 3D 13 C, 15 N-filtered (F1), 15 N-edited (F3) NOESY spectrum in comparison with the 3D 15 N-edited NOESY spectrum. 2

3 Table S2. Substitutions in SpoIIID and corresponding plasmid and E. coli strain designations SpoIIID substitution pph4 derivative a E. coli strain b K34A pph251 PH251B H38A pph252 PH252B K39A pph253 PH253B E43A pph254 PH254B R44A pph255 PH255B K76A pph258 PH258B K78A pph259 PH259B K80A pph260 PH260B K81A pph261 PH261B a pph4 is a pet-21b (Novagen) derivative in which spoiiid is expressed from a T7 RNA polymerase promoter (1). b Plasmids were transformed into E. coli BL21 (DE3) (Novagen). 3

4 Table 3S. Oligonucleotides used in this study Oligonucleotide a Sequence b LK2331 (K34A) c 5 -ggaatttggtgtttccgcaagtacagtacacaagg-3 LK ccttgtgtactgtacttgcggaaacaccaaattcc-3 LK2333 (H38A) 5 -ggtgtttccaaaagtacagtagccaaggatttaacagagcgtc-3 LK gacgctctgttaaatccttggctactgtacttttggaaacacc-3 LK2335 (K39A) 5 -caaaagtacagtacacgcggatttaacagagcgtc-3 LK gacgctctgttaaatccgcgtgtactgtacttttg-3 LK2337 (E43A) 5 -gtacacaaggatttaacagcgcgtctgcctgaaattaac-3 LK gttaatttcaggcagacgcgctgttaaatccttgtgtac-3 LK2339 (R44A) 5 -cacaaggatttaacagaggcgctgcctgaaattaaccccg-3 LK cggggttaatttcaggcagcgcctctgttaaatccttgtg-3 LK2345 (K76A) 5 -ggaggagaagcgacagcgctcaaatataaaaaag-3 LK cttttttatatttgagcgctgtcgcttctcctcc-3 LK2347 (K78A) 5 -gaggagaagcgacaaagctcgcgtataaaaaagatg-3 LK catcttttttatacgcgagctttgtcgcttctcctc-3 LK2349 (K80A) 5 -gcgacaaagctcaaatatgcgaaagatgaaattctcgaag-3 LK cttcgagaatttcatctttcgcatatttgagctttgtcgc-3 LK2351 (K81A) 5 -gacaaagctcaaatataaagcggatgaaattctcgaagg-3 LK ccttcgagaatttcatccgctttatatttgagctttgtc-3 a Oligonucleotides are shown in pairs that were used for mutagenesis. b Boldface type indicates a mutation. c For each pair of oligonucleotides used for mutagenesis, the substitution is indicated in parentheses. 4

5 Table S4. Ambiguous interaction restraints for modeling the SpoIIID DNA complex Active residues for SpoIIID Passive residues for dsdna Method determined Lys34, His38, Lys39, Lys78, Any DNA nucleotide Mutational analysis Lys80, Lys81 HN of Ser35, Thr36, Glu43, See Supplementary Table S1 Intermolecular NOEs Arg44, Lys64, Arg67, Gly71, Gly72, Ala74, Thr75, Lys76 Active residues for dsdna a Passive residues for SpoIIID CYT4, THY5, THY6, GUA7, THY8, CYT9, CYT10, GUA19, GUA20, ADE21, CYT22, Any SpoIIID residue (1-81) Mutational analysis and/or sequence conservation ADE23, ADE24, GUA25 a See Figure S2 for base numbering. 5

6 mother cell forespore engulfment SpoIIID E polar septum coat K mother cell lysis Figure S1. Morphological changes and transcription factors during B. subtilis sporulation. Nutrient limitation initiates the process, causing a polar septum to form, which divides the cell into mother cell and forespore compartments. Differential transcription in the two cell types is directed by specific sigma subunits of RNA polymerase (2,3). After E RNA polymerase becomes active in the mother cell, it directs transcription of the gene for SpoIIID. The mother cell membrane of the septum engulfs the forespore (orange arrows), and channels (green) form between the two cell types (4-7). Fission of the mother cell membrane near the pole pinches the forespore off as a free protoplast inside the mother cell. In the absence of SpoIIID, some genes under E control are still expressed and engulfment is completed, but then the process of endospore formation stops. Although the blockage is not completely understood, one crucial function of SpoIIID is to activate transcription by E RNA polymerase of the gene for K (8,9). Genes under K control produce proteins that assemble a coat around the forespore, lyse the mother cell, and prepare the spore to germinate when nutrients are sensed (10). 6

7 5 1 GC 28 2 CG 27 3 GC 26 4 CG 25 5 TA 24 6 TA 23 7 GC 22 8 TA 21 9 CG CG TA AT AT TA 15 5 Figure S2. Numbering of bases in the 14-bp DNA duplex bound by SpoIIID. The idealized binding site consensus sequence indicated by the arrow in Figure 5A and in Figure S5A is bases

8 Wt Wt or Position of Ala substitution M Wt SpoIIID Figure S3. Purified SpoIIID proteins. SDS-PAGE followed by Coomassie blue staining of SeeBlue Plus 2 Prestained markers (M) (Invitrogen) with sizes (kda) indicated, a 2-fold dilution series of wild-type (Wt) SpoIIID starting at 0.5 g, unknown amounts of SpoIIID K76A and SpoIIID R44A, and 1 g of wild-type or single-ala-substituted SpoIIID as indicated. Based on the result, it was estimated that 0.5 g and 0.25 g of SpoIIID K76A and SpoIIID R44A had been loaded on the gel. 8

9 9

10 Figure S4. Secondary structural elements and NOEs of SpoIIID. (a) The secondary structural elements of SpoIIID and a summary of the sequential and medium-range NOEs, presence of HN- H 2 O cross-peaks, 13 C chemical shift indices for C and C, and cartoon representation of - helices. Residues that exhibited a cross-peak between HN and H 2 O resonances in the 3D 1 H- 15 N NOESY-HSQC spectrum are marked by *. Triangles indicate proline residues. Chemical shift indices (CSI) for C, C, and C characteristic for -helical regions are represented by ( ). (b) Distribution of NOEs along the sequence of SpoIIID. The number of intra-residue (white), sequential (light gray), medium-range (dark gray), and long-range (black) NOEs at each position is graphed. 10

11 a b Probe 10 CATTAGGACAAGCGCT 18 CATTAGGACAAACGCT 19 CATTAGGACAAGTGCT 20 CATTAGGACAAGCACT 21 CATTAGGACAAGCGTT 22 CATTAGGACGAGCGTT K d Position of Ala substitution SpoIIID: (nm) B Probe: U Figure S5. Binding of SpoIIID to DNA. (a) Sequences of DNA probes and apparent K d for binding of wild-type SpoIIID. Only one strand of each probe is shown. The arrow denotes the idealized binding site consensus sequence in probe 10 and underlined bases in the other probes indicate differences from probe 10. Apparent K d s are the average of a least 3 determinations ± 1 standard deviation. (b) EMSAs of SpoIIID R44A and SpoIIID K39A binding to probes Altered SpoIIID proteins (840 nm) were tested with different probes (indicated below the panel) (0.1 nm). Bound (B) and unbound (U) probe are indicated. 11

12 Figure S6. Schematic summary of hydrogen bonding interactions between SpoIIID and DNA in the top 10 models (a) and in the best model (b). Black lines in (a) indicate that at least one hydrogen bonding interaction is formed in all 10 models between a residue of SpoIIID and a phosphate oxygen, sugar, or base of DNA, while red lines indicate at least one interaction in greater than 8 models, blue lines greater than 5 models, and green lines less than 5 models. In the best model (b), some residues of SpoIIID form 2 or 3 hydrogen bonds with phosphate oxygens of DNA, as indicated by the numbers. 12

13 Helix 1 Helix 2 Helix 3 Helix 4 Helix 5 Figure S7. Alignment of SpoIIID orthologs. The highest scoring sequence from each species was identified using blastp (11, 12) with B. subtilis SpoIIID as the query, and the sequences were aligned using Clustal W (13). The results were visualized using ESPript (14). Numbers refer to residues in B. subtilis SpoIIID, which is marked with a star to the left. White, red, and black letters indicate identical, conserved, and less-conserved residues, respectively. Regions of B. subtilis SpoIIID that are -helical are indicated above the sequences. Adapted from (1).

14 REFERENCES 1. Himes, P., McBryant, S., and Kroos, L. (2010) Two regions of Bacillus subtilis transcription factor SpoIIID allow a monomer to bind DNA. J. Bacteriol. 192, Kroos, L. (2007) The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu. Rev. Genet. 41, Losick, R., and Stragier, P. (1992) Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355, Camp, A. H., and Losick, R. (2008) A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol. Microbiol. 69, Camp, A. H., and Losick, R. (2009) A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev. 23, Doan, T., Morlot, C., Meisner, J., Serrano, M., Henriques, A. O., Moran, C. P., Jr., and Rudner, D. Z. (2009) Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis. PLoS Genet. 5, e Meisner, J., Wang, X., Serrano, M., Henriques, A. O., and Moran, C. P., Jr. (2008) A channel connecting the mother cell and forespore during bacterial endospore formation. Proc. Natl. Acad. Sci. USA 105, Halberg, R., and Kroos, L. (1994) Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J. Mol. Biol. 243, Kroos, L., Kunkel, B., and Losick, R. (1989) Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243, Eichenberger, P., Fujita, M., Jensen, S. T., Conlon, E. M., Rudner, D. Z., Wang, S. T., Ferguson, C., Haga, K., Sato, T., Liu, J. S., and Losick, R. (2004) The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman Basic local alignment search tool. J. Mol. Biol. 215: Gish, W., and D. J. States Identification of protein coding regions by database similarity search. Nat. Genet. 3: Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins Clustal W and Clustal X version 2.0. Bioinformatics 23: Gouet, P., E. Courcelle, D. I. Stuart, and F. Metoz ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:

Supplementary Note 1. Enzymatic properties of the purified Syn BVR

Supplementary Note 1. Enzymatic properties of the purified Syn BVR Supplementary Note 1. Enzymatic properties of the purified Syn BVR The expression vector pet15b-syn bvr allowed us to routinely prepare 15 mg of electrophoretically homogenous Syn BVR from 2.5 L of TB-medium

More information

Structure and Possible Mechanism of the CcbJ Methyltransferase from Streptomyces caelestis

Structure and Possible Mechanism of the CcbJ Methyltransferase from Streptomyces caelestis Supplemental material to accompany Structure and Possible Mechanism of the CcbJ Methyltransferase from Streptomyces caelestis Jacob Bauer, a Gabriela Ondrovičová, a Lucie Najmanová, b Vladimír Pevala,

More information

Key Area 1.3: Gene Expression

Key Area 1.3: Gene Expression Key Area 1.3: Gene Expression RNA There is a second type of nucleic acid in the cell, called RNA. RNA plays a vital role in the production of protein from the code in the DNA. What is gene expression?

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Figure S1. Study of mgtl translation in vitro. (A) Detection of 5 LR RNA using wild-type and anti-sd (91-95) substituted templates in a transcription-translation

More information

Supplemental Information. Structural Basis for Guide RNA Processing and. Seed-Dependent DNA Targeting by CRISPR-Cas12a

Supplemental Information. Structural Basis for Guide RNA Processing and. Seed-Dependent DNA Targeting by CRISPR-Cas12a Molecular Cell, Volume 66 Supplemental Information Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a Daan C. Swarts, John van der Oost, and Martin Jinek Figure

More information

-7 ::(teto) ::(teto) 120. GFP membranes merge. overexposed. Supplemental Figure 1 (Marquis et al.)

-7 ::(teto) ::(teto) 120. GFP membranes merge. overexposed. Supplemental Figure 1 (Marquis et al.) P spoiie -gfp -7 ::(teto) 120-91 ::(teto) 120 GFP membranes merge overexposed Supplemental Figure 1 (Marquis et al.) Figure S1 TetR-GFP is stripped off the teto array in sporulating cells that contain

More information

Chapter 14 Regulation of Transcription

Chapter 14 Regulation of Transcription Chapter 14 Regulation of Transcription Cis-acting sequences Distance-independent cis-acting elements Dissecting regulatory elements Transcription factors Overview transcriptional regulation Transcription

More information

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words).

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words). 1 Quiz1 Q1 2011 Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words) Value Correct Answer 1 noncovalent interactions 100% Equals hydrogen bonds (100%) Equals H-bonds

More information

Solutions to Quiz II

Solutions to Quiz II MIT Department of Biology 7.014 Introductory Biology, Spring 2005 Solutions to 7.014 Quiz II Class Average = 79 Median = 82 Grade Range % A 90-100 27 B 75-89 37 C 59 74 25 D 41 58 7 F 0 40 2 Question 1

More information

Gene regulation II Biochemistry 302. Bob Kelm March 1, 2004

Gene regulation II Biochemistry 302. Bob Kelm March 1, 2004 Gene regulation II Biochemistry 302 Bob Kelm March 1, 2004 Lessons to learn from bacteriophage λ in terms of transcriptional regulation Similarities to E. coli Cis-elements (operator elements) are adjacent

More information

Algorithms in Bioinformatics ONE Transcription Translation

Algorithms in Bioinformatics ONE Transcription Translation Algorithms in Bioinformatics ONE Transcription Translation Sami Khuri Department of Computer Science San José State University sami.khuri@sjsu.edu Biology Review DNA RNA Proteins Central Dogma Transcription

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10963 Supplementary Table 1 Data collection, phasing and refinement statistics. Crystal Native Derivative-1 (OsO 4 ) Derivative-2 (Orange-Pt) Data collection Space group C2 C2 C2 Cell

More information

Ch 10 Molecular Biology of the Gene

Ch 10 Molecular Biology of the Gene Ch 10 Molecular Biology of the Gene For Next Week Lab -Hand in questions from 4 and 5 by TUES in my mailbox (Biology Office) -Do questions for Lab 6 for next week -Lab practical next week Lecture Read

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 2 Supplementary Figure 1: Sequence alignment of HsHSD17B8 and HsCBR4 of with KAR orthologs. The secondary structure elements as calculated by DSSP and residue numbers are displayed

More information

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it What is life made of? 1665: Robert Hooke discovered that organisms are composed of individual compartments called cells

More information

Supplementary Information for. Structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction

Supplementary Information for. Structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction Supplementary Information for Structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction Takamasa Teramoto, Yukari Fujikawa, Yoshirou Kawaguchi, Katsuhisa

More information

What Are the Chemical Structures and Functions of Nucleic Acids?

What Are the Chemical Structures and Functions of Nucleic Acids? THE NUCLEIC ACIDS What Are the Chemical Structures and Functions of Nucleic Acids? Nucleic acids are polymers specialized for the storage, transmission, and use of genetic information. DNA = deoxyribonucleic

More information

Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msmeg) contain two ε (dnaq) exonuclease homologs.

Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msmeg) contain two ε (dnaq) exonuclease homologs. Supplementary Figure 1 Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msmeg) contain two ε (dnaq) exonuclease homologs. (a) Sequence alignment of the ε-exonuclease homologs from four different

More information

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it Life The main actors in the chemistry of life are molecules called proteins nucleic acids Proteins: many different

More information

Bundle 6 Test Review

Bundle 6 Test Review Bundle 6 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? Deoxyribonucleic

More information

Big Idea 3C Basic Review

Big Idea 3C Basic Review Big Idea 3C Basic Review 1. A gene is a. A sequence of DNA that codes for a protein. b. A sequence of amino acids that codes for a protein. c. A sequence of codons that code for nucleic acids. d. The end

More information

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Bioinformatics ONE Introduction to Biology Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Biology Review DNA RNA Proteins Central Dogma Transcription Translation

More information

Secondary structure of hvps4b (above) and sequence alignments of VPS4 proteins from

Secondary structure of hvps4b (above) and sequence alignments of VPS4 proteins from Supplemental Figure 1. Secondary structure of hvps4b (above) and sequence alignments of VPS4 proteins from different species as well as four other representative members of the meiotic clade of AAA ATPases.

More information

Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid

Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid Supplementary Figures Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid sequence of Drosophila RCC1. Same colors are for Figure 1 with sequence of β-wedge that interacts with Ran in

More information

Biochemistry 111. Carl Parker x A Braun

Biochemistry 111. Carl Parker x A Braun Biochemistry 111 Carl Parker x6368 101A Braun csp@caltech.edu Central Dogma of Molecular Biology DNA-Dependent RNA Polymerase Requires a DNA Template Synthesizes RNA in a 5 to 3 direction Requires ribonucleoside

More information

IB HL Biology Test: Topics 1 and 3

IB HL Biology Test: Topics 1 and 3 October 26, 2011 IB HL Biology Test: Topics 1 and 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What conditions must be met for the t-test to be applied?

More information

Videos. Lesson Overview. Fermentation

Videos. Lesson Overview. Fermentation Lesson Overview Fermentation Videos Bozeman Transcription and Translation: https://youtu.be/h3b9arupxzg Drawing transcription and translation: https://youtu.be/6yqplgnjr4q Objectives 29a) I can contrast

More information

Section 14.1 Structure of ribonucleic acid

Section 14.1 Structure of ribonucleic acid Section 14.1 Structure of ribonucleic acid The genetic code Sections of DNA are transcribed onto a single stranded molecule called RNA There are two types of RNA One type copies the genetic code and transfers

More information

Gene expression. What is gene expression?

Gene expression. What is gene expression? Gene expression What is gene expression? Methods for measuring a single gene. Northern Blots Reporter genes Quantitative RT-PCR Operons, regulons, and stimulons. DNA microarrays. Expression profiling Identifying

More information

Gene and DNA structure. Dr Saeb Aliwaini

Gene and DNA structure. Dr Saeb Aliwaini Gene and DNA structure Dr Saeb Aliwaini 2016 DNA during cell cycle Cell cycle for different cell types Molecular Biology - "Study of the synthesis, structure, and function of macromolecules (DNA, RNA,

More information

Student name ID # Second Mid Term Exam, Biology 2020, Spring 2002 Scores Total

Student name ID # Second Mid Term Exam, Biology 2020, Spring 2002 Scores Total Second Mid Term Exam, Biology 2020, Spring 2002 Scores 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Total 1 1. Matching (7 pts). Each answer is used exactly once Helicase

More information

Problem Set 8. Answer Key

Problem Set 8. Answer Key MCB 102 University of California, Berkeley August 11, 2009 Isabelle Philipp Online Document Problem Set 8 Answer Key 1. The Genetic Code (a) Are all amino acids encoded by the same number of codons? no

More information

1. DNA replication. (a) Why is DNA replication an essential process?

1. DNA replication. (a) Why is DNA replication an essential process? ame Section 7.014 Problem Set 3 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68120 by 5:00pm on Friday

More information

Structural Bioinformatics (C3210) DNA and RNA Structure

Structural Bioinformatics (C3210) DNA and RNA Structure Structural Bioinformatics (C3210) DNA and RNA Structure Importance of DNA/RNA 3D Structure Nucleic acids are essential materials found in all living organisms. Their main function is to maintain and transmit

More information

Module 3. Lecture 5. Regulation of Gene Expression in Prokaryotes

Module 3. Lecture 5. Regulation of Gene Expression in Prokaryotes Module 3 Lecture 5 Regulation of Gene Expression in Prokaryotes Recap So far, we have looked at prokaryotic gene regulation using 3 operon models. lac: a catabolic operon which displays induction via negative

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany RNA ligands that distinguish metabolite-induced conformations in the TPP riboswitch Günter Mayer, Marie-Sophie L. Raddatz, Julia D. Grunwald,

More information

Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway

Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway Pelin Yaşar, Gamze Ayaz and Mesut Muyan SUPPLEMENTARY INFORMATION

More information

Nucleic acids. How DNA works. DNA RNA Protein. DNA (deoxyribonucleic acid) RNA (ribonucleic acid) Central Dogma of Molecular Biology

Nucleic acids. How DNA works. DNA RNA Protein. DNA (deoxyribonucleic acid) RNA (ribonucleic acid) Central Dogma of Molecular Biology Nucleic acid chemistry and basic molecular theory Nucleic acids DNA (deoxyribonucleic acid) RNA (ribonucleic acid) Central Dogma of Molecular Biology Cell cycle DNA RNA Protein Transcription Translation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION A human XRCC4-XLF complex bridges DNA ends. Sara N. Andres 1, Alexandra Vergnes 2, Dejan Ristic 3, Claire Wyman 3, Mauro Modesti 2,4, and Murray Junop 2,4 1 Department of Biochemistry

More information

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos Daily Agenda Warm Up: Review Translation Notes Protein Synthesis Practice Redos 1. What is DNA Replication? 2. Where does DNA Replication take place? 3. Replicate this strand of DNA into complimentary

More information

Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system

Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system SUPPLEMENTARY DATA Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system Daniel Gleditzsch 1, Hanna Müller-Esparza 1, Patrick Pausch 2,3, Kundan Sharma 4, Srivatsa Dwarakanath 1,

More information

Supplementary Fig. 1. Characteristics of transcription elongation by YonO. a. YonO forms a saltstable EC. Immobilized ECs were washed with

Supplementary Fig. 1. Characteristics of transcription elongation by YonO. a. YonO forms a saltstable EC. Immobilized ECs were washed with Supplementary Fig. 1. Characteristics of transcription elongation by YonO. a. YonO forms a saltstable EC. Immobilized ECs were washed with transcription buffer with or without a high salt concentration

More information

BIO 101 : The genetic code and the central dogma

BIO 101 : The genetic code and the central dogma BIO 101 : The genetic code and the central dogma NAME Objectives The purpose of this exploration is to... 1. design experiments to decipher the genetic code; 2. visualize the process of protein synthesis;

More information

LABS 9 AND 10 DNA STRUCTURE AND REPLICATION; RNA AND PROTEIN SYNTHESIS

LABS 9 AND 10 DNA STRUCTURE AND REPLICATION; RNA AND PROTEIN SYNTHESIS LABS 9 AND 10 DNA STRUCTURE AND REPLICATION; RNA AND PROTEIN SYNTHESIS OBJECTIVE 1. OBJECTIVE 2. OBJECTIVE 3. OBJECTIVE 4. Describe the structure of DNA. Explain how DNA replicates. Understand the structure

More information

From Gene to Protein

From Gene to Protein 8.2 Structure of DNA From Gene to Protein deoxyribonucleic acid - (DNA) - the ultimate source of all information in a cell This information is used by the cell to produce the protein molecules which are

More information

The Structure of Proteins The Structure of Proteins. How Proteins are Made: Genetic Transcription, Translation, and Regulation

The Structure of Proteins The Structure of Proteins. How Proteins are Made: Genetic Transcription, Translation, and Regulation How Proteins are Made: Genetic, Translation, and Regulation PLAY The Structure of Proteins 14.1 The Structure of Proteins Proteins - polymer amino acids - monomers Linked together with peptide bonds A

More information

Molecular design principles underlying β-strand swapping. in the adhesive dimerization of cadherins

Molecular design principles underlying β-strand swapping. in the adhesive dimerization of cadherins Supplementary information for: Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins Jeremie Vendome 1,2,3,5, Shoshana Posy 1,2,3,5,6, Xiangshu Jin, 1,3 Fabiana

More information

Solutions to 7.02 Quiz II 10/27/05

Solutions to 7.02 Quiz II 10/27/05 Solutions to 7.02 Quiz II 10/27/05 Class Average = 83 Standard Deviation = 9 Range Grade % 87-100 A 43 74-86 B 39 55-73 C 17 > 54 D 1 Question 1 (56 points) While studying deep sea bacteria, you discover

More information

MBMB451A Section1 Fall 2008 KEY These questions may have more than one correct answer

MBMB451A Section1 Fall 2008 KEY These questions may have more than one correct answer MBMB451A Section1 Fall 2008 KEY These questions may have more than one correct answer 1. In a double stranded molecule of DNA, the ratio of purines : pyrimidines is (a) variable (b) determined by the base

More information

Molecular Biology (1)

Molecular Biology (1) Molecular Biology (1) DNA structure and basic applications Mamoun Ahram, PhD Second semester, 2018-2019 Resources This lecture Cooper, pp. 49-52, 118-119, 130 Nucleic acids 2 types: Deoxyribonucleic acid

More information

7.014 Problem Set 4 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions will be posted on the web.

7.014 Problem Set 4 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions will be posted on the web. MIT Department of Biology 7.014 Introductory Biology, Spring 2005 Name: Section : 7.014 Problem Set 4 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions

More information

Molecular Biology. IMBB 2017 RAB, Kigali - Rwanda May 02 13, Francesca Stomeo

Molecular Biology. IMBB 2017 RAB, Kigali - Rwanda May 02 13, Francesca Stomeo Molecular Biology IMBB 2017 RAB, Kigali - Rwanda May 02 13, 2017 Francesca Stomeo Molecular biology is the study of biology at a molecular level, especially DNA and RNA - replication, transcription, translation,

More information

What is DNA??? DNA = Deoxyribonucleic acid IT is a molecule that contains the code for an organism s growth and function

What is DNA??? DNA = Deoxyribonucleic acid IT is a molecule that contains the code for an organism s growth and function Review DNA and RNA 1) DNA and RNA are important organic compounds found in cells, called nucleic acids 2) Both DNA and RNA molecules contain the following chemical elements: carbon, hydrogen, oxygen, nitrogen

More information

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below.

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below. Problem Set Unit 3 Name 1. Which molecule is found in both DNA and RNA? A. Ribose B. Uracil C. Phosphate D. Amino acid 2. Which molecules form the nucleotide marked in the diagram? A. phosphate, deoxyribose

More information

BS 50 Genetics and Genomics Week of Oct 24

BS 50 Genetics and Genomics Week of Oct 24 BS 50 Genetics and Genomics Week of Oct 24 Additional Practice Problems for Section Question 1: The following table contains a list of statements that apply to replication, transcription, both, or neither.

More information

Chromatin Structure. a basic discussion of protein-nucleic acid binding

Chromatin Structure. a basic discussion of protein-nucleic acid binding Chromatin Structure 1 Chromatin DNA packaging g First a basic discussion of protein-nucleic acid binding Questions to answer: How do proteins bind DNA / RNA? How do proteins recognize a specific nucleic

More information

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 10 Nucleic Acids

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 10 Nucleic Acids BIOCHEMISTRY REVIEW Overview of Biomolecules Chapter 10 Nucleic Acids 2 3 DNA vs RNA DNA RNA deoxyribose ribose A, C, G, T A, C, G, U 10 3 10 8 nucleotides 10 2 10 4 nucleotides nucleus cytoplasm double-stranded

More information

DNA. ncrna. Non-coding RNA analysis for gene expression regulation using bioinformatics tools

DNA. ncrna. Non-coding RNA analysis for gene expression regulation using bioinformatics tools non-coding RNA 1 2 2 DNA RNA RNA non-coding RNA ncrna ncrna ncrna ncrna ncrna ncrna ncrna ncrna ncrna non-coding RNA Non-coding RNA analysis for gene expression regulation using bioinformatics tools Hayashi

More information

DNA, Replication and RNA

DNA, Replication and RNA DNA, Replication and RNA The structure of DNA DNA, or Deoxyribonucleic Acid, is the blue prints for building all of life. DNA is a long molecule made up of units called NUCLEOTIDES. Each nucleotide is

More information

1/4/18 NUCLEIC ACIDS. Nucleic Acids. Nucleic Acids. ECS129 Instructor: Patrice Koehl

1/4/18 NUCLEIC ACIDS. Nucleic Acids. Nucleic Acids. ECS129 Instructor: Patrice Koehl NUCLEIC ACIDS ECS129 Instructor: Patrice Koehl Nucleic Acids Nucleotides DNA Structure RNA Synthesis Function Secondary structure Tertiary interactions Wobble hypothesis DNA RNA Replication Transcription

More information

NUCLEIC ACIDS. ECS129 Instructor: Patrice Koehl

NUCLEIC ACIDS. ECS129 Instructor: Patrice Koehl NUCLEIC ACIDS ECS129 Instructor: Patrice Koehl Nucleic Acids Nucleotides DNA Structure RNA Synthesis Function Secondary structure Tertiary interactions Wobble hypothesis DNA RNA Replication Transcription

More information

MOLECULAR GENETICS PROTEIN SYNTHESIS. Molecular Genetics Activity #2 page 1

MOLECULAR GENETICS PROTEIN SYNTHESIS. Molecular Genetics Activity #2 page 1 AP BIOLOGY MOLECULAR GENETICS ACTIVITY #2 NAME DATE HOUR PROTEIN SYNTHESIS Molecular Genetics Activity #2 page 1 GENETIC CODE PROTEIN SYNTHESIS OVERVIEW Molecular Genetics Activity #2 page 2 PROTEIN SYNTHESIS

More information

7.014 Solution Set 4

7.014 Solution Set 4 7.014 Solution Set 4 Question 1 Shown below is a fragment of the sequence of a hypothetical bacterial gene. This gene encodes production of HWDWN, protein essential for metabolizing sugar yummose. The

More information

University of Groningen

University of Groningen University of Groningen Coupling dttp Hydrolysis with DNA Unwinding by the DNA Helicase of Bacteriophage T7 Satapathy, Ajit K.; Kulczyk, Arkadiusz W.; Ghosh, Sharmistha; van Oijen, Antonius; Richardson,

More information

Nucleic acid and protein Flow of genetic information

Nucleic acid and protein Flow of genetic information Nucleic acid and protein Flow of genetic information References: Glick, BR and JJ Pasternak, 2003, Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press, Washington DC, pages.

More information

i-stop codon positions in the mcherry gene

i-stop codon positions in the mcherry gene Supplementary Figure 1 i-stop codon positions in the mcherry gene The grnas (green) that can potentially generate stop codons from Trp (63 th and 98 th aa, upper panel) and Gln (47 th and 114 th aa, bottom

More information

When times are good and when times are bad: Stringent response Stationary phase

When times are good and when times are bad: Stringent response Stationary phase When times are good and when times are bad: Stringent response Stationary phase Reading Chapter 13 p,571-572, 573-579, 580-581, 582-584, 554-556,, 598-602 Example of catabolite control Cells shifted from

More information

Lecture for Wednesday. Dr. Prince BIOL 1408

Lecture for Wednesday. Dr. Prince BIOL 1408 Lecture for Wednesday Dr. Prince BIOL 1408 THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN Copyright 2009 Pearson Education, Inc. Genes are expressed as proteins A gene is a segment of DNA that

More information

S156AT168AY175A (AAA) were purified as GST-fusion proteins and incubated with GSTfused

S156AT168AY175A (AAA) were purified as GST-fusion proteins and incubated with GSTfused 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Supplemental Materials Supplemental Figure S1 (a) Phenotype of the wild type and grik1-2 grik2-1 plants after 8 days in darkness.

More information

Unit 3c. Microbial Gene0cs

Unit 3c. Microbial Gene0cs Unit 3c Microbial Gene0cs Microbial Genetics! Gene0cs: the science of heredity Genome: the gene0c informa0on in the cell Genomics: the sequencing and molecular characteriza0on of genomes Gregor Mendel

More information

DNA & DNA : Protein Interactions BIBC 100

DNA & DNA : Protein Interactions BIBC 100 DNA & DNA : Protein Interactions BIBC 100 Sequence = Information Alphabet = language L,I,F,E LIFE DNA = DNA code A, T, C, G CAC=Histidine CAG=Glutamine GGG=Glycine Protein = Protein code 20 a.a. LIVE EVIL

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Conserved arginines on the rim of Hfq catalyze base pair formation and exchange Subrata Panja and Sarah A. Woodson T.C. Jenkins Department of Biophysics, Johns Hopkins University,

More information

STRUCTURE, DYNAMICS AND INTERACTIONS OF PROTEINS BY NMR SPECTROSCOPY

STRUCTURE, DYNAMICS AND INTERACTIONS OF PROTEINS BY NMR SPECTROSCOPY STRUCTURE, DYNAMICS AND INTERACTIONS OF PROTEINS BY NMR SPECTROSCOPY Constantin T. Craescu INSERM & Institut Curie - Recherche Orsay, France A SHORT INTRODUCTION TO PROTEIN STRUCTURE Chemical composition

More information

Molecular Biology (1)

Molecular Biology (1) Molecular Biology (1) DNA structure and basic applications Mamoun Ahram, PhD Second semester, 2017-2018 Resources This lecture Cooper, pp. 49-52, 118-119, 130 What is molecular biology? Central dogma

More information

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA RNA PROTEIN Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA Molecule of heredity Contains all the genetic info our cells inherit Determines

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

File name: Supplementary Information Description: Supplementary figures and supplementary tables. File name: Peer review file Description:

File name: Supplementary Information Description: Supplementary figures and supplementary tables. File name: Peer review file Description: File name: Supplementary Information Description: Supplementary figures and supplementary tables. File name: Peer review file Description: Supplementary Figure 1. dcas9-mq1 fusion protein induces de novo

More information

Site directed mutagenesis, Insertional and Deletion Mutagenesis. Mitesh Shrestha

Site directed mutagenesis, Insertional and Deletion Mutagenesis. Mitesh Shrestha Site directed mutagenesis, Insertional and Deletion Mutagenesis Mitesh Shrestha Mutagenesis Mutagenesis (the creation or formation of a mutation) can be used as a powerful genetic tool. By inducing mutations

More information

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari Introduction to Cellular Biology and Bioinformatics Farzaneh Salari Outline Bioinformatics Cellular Biology A Bioinformatics Problem What is bioinformatics? Computer Science Statistics Bioinformatics Mathematics...

More information

Videos. Bozeman Transcription and Translation: Drawing transcription and translation:

Videos. Bozeman Transcription and Translation:   Drawing transcription and translation: Videos Bozeman Transcription and Translation: https://youtu.be/h3b9arupxzg Drawing transcription and translation: https://youtu.be/6yqplgnjr4q Objectives 29a) I can contrast RNA and DNA. 29b) I can explain

More information

Gene Expression - Transcription

Gene Expression - Transcription DNA Gene Expression - Transcription Genes are expressed as encoded proteins in a 2 step process: transcription + translation Central dogma of biology: DNA RNA protein Transcription: copy DNA strand making

More information

The Expression of Recombinant Sheep Prion Protein (RecShPrPC) and its Detection Using Western Blot and Immuno-PCR

The Expression of Recombinant Sheep Prion Protein (RecShPrPC) and its Detection Using Western Blot and Immuno-PCR The Expression of Recombinant Sheep Prion Protein (RecShPrPC) and its Detection Using Western Blot and Immuno-PCR S. Thomas, C. S. Fernando, J. Roach, U. DeSilva and C. A. Mireles DeWitt The objective

More information

Nucleic Acid Structure:

Nucleic Acid Structure: Genetic Information In Microbes: The genetic material of bacteria and plasmids is DNA. Bacterial viruses (bacteriophages or phages) have DNA or RNA as genetic material. The two essential functions of genetic

More information

MOLECULAR STRUCTURE OF DNA

MOLECULAR STRUCTURE OF DNA MOLECULAR STRUCTURE OF DNA Characteristics of the Genetic Material 1. Replication Reproduced and transmitted faithfully from cell to cell (generation to generation) 2. Information Storage Biologically

More information

The GeneEditor TM in vitro Mutagenesis System: Site- Directed Mutagenesis Using Altered Beta-Lactamase Specificity

The GeneEditor TM in vitro Mutagenesis System: Site- Directed Mutagenesis Using Altered Beta-Lactamase Specificity Promega Notes Magazine Number 62, 1997, p. 02 The GeneEditor TM in vitro Mutagenesis System: Site- Directed Mutagenesis Using Altered Beta-Lactamase Specificity By Christine Andrews and Scott Lesley Promega

More information

Problem Set #2

Problem Set #2 20.320 Problem Set #2 Due on September 30rd, 2011 at 11:59am. No extensions will be granted. General Instructions: 1. You are expected to state all of your assumptions, and provide step-by-step solutions

More information

1 Fig. 5.1 shows part of a DNA strand. Fig (a) (i) Name the base represented by the letter T. ... [1]

1 Fig. 5.1 shows part of a DNA strand. Fig (a) (i) Name the base represented by the letter T. ... [1] 1 Fig. 5.1 shows part of a DNA strand. Fig. 5.1 (a) (i) Name the base represented by the letter T.... [1] On Fig. 5.1, draw a section of the mrna strand that is complementary to the section of the DNA

More information

Transcription and Translation. DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences

Transcription and Translation. DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences Transcription and Translation DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences Protein Structure Made up of amino acids Polypeptide- string of amino acids 20 amino acids are arranged in different

More information

Genetics: Analysis of Genes and Genomes, Ninth Edition. Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION

Genetics: Analysis of Genes and Genomes, Ninth Edition. Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION CHAPTER 1 STUDENT NOT STUDY FOR SALE GUIDE OR DISTRIBUTION TEST BANK Daniel Jones L. Hartl & Bartlett and Bruce Learning, J. Cochrane LLC Multiple Choice 1. NOT What FOR happens SALE if organisms OR DISTRIBUTION

More information

BIO303, Genetics Study Guide II for Spring 2007 Semester

BIO303, Genetics Study Guide II for Spring 2007 Semester BIO303, Genetics Study Guide II for Spring 2007 Semester 1 Questions from F05 1. Tryptophan (Trp) is encoded by the codon UGG. Suppose that a cell was treated with high levels of 5- Bromouracil such that

More information

A Repressor Complex Governs the Integration of

A Repressor Complex Governs the Integration of Developmental Cell 15 Supplemental Data A Repressor Complex Governs the Integration of Flowering Signals in Arabidopsis Dan Li, Chang Liu, Lisha Shen, Yang Wu, Hongyan Chen, Masumi Robertson, Chris A.

More information

Can have defects in any of the steps in the synthesis of arginine. With arginine in the medium, all arg mutants can grow on minimal medium.

Can have defects in any of the steps in the synthesis of arginine. With arginine in the medium, all arg mutants can grow on minimal medium. Molecular Biology I Biochemistry studying a single component in an organism Genetics studying an organism without that component Biochemical Genetics Look at the Arginine biosynthetic pathway: A B C Arginine

More information

Synthetic Biology for

Synthetic Biology for Synthetic Biology for Plasmids and DNA Digestion Plasmids Plasmids are small DNA molecules that are separate from chromosomal DNA They are most commonly found as double stranded, circular DNA Typical plasmids

More information

Bootcamp: Molecular Biology Techniques and Interpretation

Bootcamp: Molecular Biology Techniques and Interpretation Bootcamp: Molecular Biology Techniques and Interpretation Bi8 Winter 2016 Today s outline Detecting and quantifying nucleic acids and proteins: Basic nucleic acid properties Hybridization PCR and Designing

More information

A Discovery Laboratory Investigating Bacterial Gene Regulation

A Discovery Laboratory Investigating Bacterial Gene Regulation Chapter 8 A Discovery Laboratory Investigating Bacterial Gene Regulation Robert Moss Wofford College 429 N. Church Street Spartanburg, SC 29307 mosssre@wofford.edu Bob Moss is an Associate Professor of

More information

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions.

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions. Biochemistry - Problem Drill 23: RNA No. 1 of 10 1. Which of the following statements best describes the structural highlights of RNA? (A) RNA can be single or double stranded. (B) G-C pairs have 3 hydrogen

More information

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C.

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C. UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2013-2014 MOLECULAR BIOLOGY BIO-2B02 Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question

More information

A. Incorrect! This feature does help with it suitability as genetic material.

A. Incorrect! This feature does help with it suitability as genetic material. College Biology - Problem Drill 08: Gene Structures and Functions No. 1 of 10 1. Which of the statements below is NOT true in explaining why DNA is a suitable genetic material? #01 (A) Its double helix

More information

Lac Operon contains three structural genes and is controlled by the lac repressor: (1) LacY protein transports lactose into the cell.

Lac Operon contains three structural genes and is controlled by the lac repressor: (1) LacY protein transports lactose into the cell. Regulation of gene expression a. Expression of most genes can be turned off and on, usually by controlling the initiation of transcription. b. Lactose degradation in E. coli (Negative Control) Lac Operon

More information

Supplementary Figure 1 Sequence alignment of representative CbbQ sequences.

Supplementary Figure 1 Sequence alignment of representative CbbQ sequences. Walker A Pore loop 1 Walker B Supplementary Figure 1 Sequence alignment of representative CbbQ sequences. Amino acid sequences of CbbQ1 and CbbQ2 proteins from selected chemoautotrophic bacteria were aligned

More information