Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to:

Size: px
Start display at page:

Download "Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to:"

Transcription

1 Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to: explain how crime scene evidence is collected and processed to obtain DNA describe how radioactive probes are used in DNA fingerprinting explain how DNA evidence is compared for matching explain how to use DNA fingerprinting to identify DNA from a parent, child, other relative, or a nonrelated individual 1 All Rights Reserved South-Western / Cengage Learning 2009

2 Introduction and History of Biological Evidence in Forensics 2 DNA fingerprinting, also known as DNA profiling, is used in criminal or legal cases with a high degree of accuracy. Biological evidence such as blood, saliva, urine, semen, and hair is examined for the presence of inherited traits. What examples can you give of how laboratory techniques used in forensics were originally developed for other purposes?

3 The Function and Structure of DNA DNA molecules make up chromosome structures and are found in the nucleus of cells in the human body. How would you describe and explain the double helix, twisted-ladder structure of a chromosome? Can you explain the terms allele, genome, and junk DNA? 3

4 DNA Identification 4 Junk DNA contains many of the unique patterns of repeated base sequences that identify individuals. In a human population, these are called polymorphisms. In 1984 a technique was developed for isolating and analyzing these variable areas. This DNA Fingerprinting appears as a pattern of bands on X-ray film. These patterns can be used for identification of individuals.

5 DNA Identification 5 The number of copies of the same repeated base sequence in DNA varies among individuals. Variable Number of Tandem Repeats (VNTR) Within junk DNA, sequences of DNA are repeated multiple times. Some can be 9-80 bases in length. Short Tandem Repeats (STR) Within junk DNA, other sequences of DNA also are repeated multiple times. These usually are only 2-5 bases in length and are becoming the preferred sequences for analysis.

6 DNA Profiling and DNA Population Databases 6 VNTR and STR data are analyzed for (a) tissue matching and (b) inheritance matching. Population genetics is the study of variation in genes among groups of individuals. Calculations can be made based on these groups to determine the probability a random person would have the same alternative form of a gene (an allele) as (a) a suspect in a crime or (b) an alleged father in a paternity case.

7 Sources of DNA A perpetrator may leave biological evidence, such as saliva or blood, at a crime scene. This individual evidence is capable of identifying a specific person. But a small amount of biological evidence might be considered only trace evidence, and it may be consumed during forensic testing. In 1993, however, the polymerase chain reaction (PCR) technique was invented. A method used to rapidly make multiple copies of a specific segment of DNA. 7

8 Avoiding contamination in the collection and preservation of DNA 8 1. Use disposable gloves and collection instruments. 2. Avoid physical contact, talking, sneezing, and coughing in the evidence area. 3. Air-dry evidence and put it into new paper bags or envelopes. 4. If evidence cannot be dried, freeze it. 5. Keep evidence cool and dry during transportation and storage.

9 Preparing DNA Samples for Fingerprinting 9 1. DNA is mixed with special enzymes. 1. Restriction enzymes are the molecular scissors that cut DNA at specific base sequences. 2. The enzymes cut apart the DNA in specific places forming different sized fragments. 3. The DNA is loaded into the chambers found on an agarose gel. 4. An electric current is passed through the gel separating the fragments by size. 1. The smallest fragments travel farthest from the well.

10 Preparing DNA Samples for Fingerprinting--Extraction 1. Cells are isolated from biological evidence such as blood, saliva, urine, semen, and hair. 2. The cells then are disrupted to release the DNA from proteins and other cell components. 3. Once released, the DNA can be extracted from the cell nucleus. 10

11 Preparing DNA Samples for Fingerprinting Amplification With some VNTR analysis, polymerase chain reaction (PCR) can be used to amplify the DNA that contains the VNTRs. In STR profiles, restriction enzymes are unnecessary; PCR allows the amplification of the strands with STR sequences. Electrophoresis DNA samples are placed in gels through which electronic currents are passed. DNA fragments line up in bands along the length of each gel. 11

12 Probes A molecule labeled with a radioactive isotope, dye, or enzyme that is used to locate a particular sequence or gene on a DNA Molecule. DNA probes are used to identify the unique sequences in a person s DNA. Different DNA probes are made up of different synthetic sequences of DNA bases compli-mentary to the DNA strand. The probe binds to complimentary bases in the strand (see the fragmentary DNA bands above). In most criminal cases, 6-8 probes are used. 12

13 Analysis of DNA Fingerprints and Applications Bands and widths are significant in matching samples of DNA. DNA fingerprinting can (a) match crime scene DNA with a suspect, (b) determine maternity, paternity, or match to another relative, (c) eliminate a suspect, (d) free a falsely imprisoned individual, and (e) identify human remains. 13

14 Important People Dr. Alec Jeffreys p. 158, 162, & developed DNA Fingerprinting Technique Dr. Kary Banks Mullis p. 164 & developed the PCR Technique 14

15 Case Studies p. 170 & 171 Colin Pitchfork (1983) Tommie Lee Andrews (1986) Ian Simms (1988) Kirk Bloodsworth (1984) ID of Human Remains: Hurricane Katrina 15

16 Summary DNA contains the information needed for replication in a sequence of nitrogenous bases. DNA analysis allows even a small sample of tissue to be identified with a single individual. DNA contains, in non-coding regions called junk DNA, many repeated sequences that vary in number between individuals. These differences between individuals can be used to produce a DNA fingerprint for an individual. 16

17 Summary Polymerase chain reaction (PCR) for DNA amplification has largely eliminated the problem resulting from the tiny samples usually available. DNA evidence must be collected carefully to avoid contamination with other DNA. DNA analysis involves extraction, electrophoresis, and visualization. DNA profiles are kept by police agencies in electronic databases. 17

DNA, or Deoxyribonucleic Acid, is the genetic material in our cells. No two people (except identical twins) have the

DNA, or Deoxyribonucleic Acid, is the genetic material in our cells. No two people (except identical twins) have the DNA, or Deoxyribonucleic Acid, is the genetic material in our cells. No two people (except identical twins) have the exact same DNA. DNA patterns from four sets of twins which are identical? DNA fingerprinting

More information

Application of Biotechnology in DNA Fingerprinting and Forensic Analysis. Copyright 2009 Pearson Education, Inc.

Application of Biotechnology in DNA Fingerprinting and Forensic Analysis. Copyright 2009 Pearson Education, Inc. Application of Biotechnology in DNA Fingerprinting and Forensic Analysis Introduction to DNA Fingerprinting and Forensics Forensic science intersection of law and science Historic examples Early 1900s

More information

DNA: THE INDISPENSIBLE FORENSIC SCIENCE TOOL

DNA: THE INDISPENSIBLE FORENSIC SCIENCE TOOL Chapter 9 DNA: THE INDISPENSIBLE TOOL By Richard Saferstein Upper Saddle River, NJ 07458 1 Chapter 9 DNA Fingerprinting By the end of this chapter you will be able to: explain how crime scene evidence

More information

DNA. Evidence. How is DNA be used to solve crimes?

DNA. Evidence. How is DNA be used to solve crimes? DNA Evidence How is DNA be used to solve crimes? How is DNA used as evidence? Each person s DNA is different from other people (except identical twins). DNA collected from a crime scene can either link

More information

Allele: Chromosome DNA fingerprint: Electrophoresis: Gene:

Allele: Chromosome DNA fingerprint: Electrophoresis: Gene: Essential Vocabulary Allele: an alternate form of a gene; for example, a gene for human hair color may have alleles that cause red or brown hair Chromosome: a cell structure that contains genetic information

More information

RFLP s with VNTR analysis

RFLP s with VNTR analysis RFLP s with VNTR analysis The most powerful and awesome tool acquired by humans since the splitting of atoms The Time Magazine (U.S.A) INTRODUCTION DNA profiling (also called DNA testing, DNA typing, or

More information

DNA Analysis Students will learn:

DNA Analysis Students will learn: DNA Analysis Students will learn: That DNA is a long-chain polymer found in nucleated cells, which contain genetic information. That DNA can be used to identify or clear potential suspects in crimes. How

More information

Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to:

Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to: Chapter 7 DNA Fingerprinting By the end f this chapter yu will be able t: Explain hw crime scene evidence is cllected and prcessed t btain DNA Describe hw radiactive prbes are used in DNA fingerprinting

More information

Overview. Background ~30 min. Lab activity ~50 min. DNA profiling Polymerase Chain Reaction (PCR) Gel Electrophoresis PCR

Overview. Background ~30 min. Lab activity ~50 min. DNA profiling Polymerase Chain Reaction (PCR) Gel Electrophoresis PCR Overview Day 1: Tuesday Introduction to DNA profiling How do we use DNA to solve crimes? Background Polymerase Chain Reaction (PCR) Gel Electrophoresis Set up PCR Day 2: Wednesday Make and Run Agarose

More information

DNA FINGERPRINTING.

DNA FINGERPRINTING. DNA FINGERPRINTING http://news.bbc.co.uk/media/images/38250000/gif/_38250230_dna_generic300.gif DNA: Deoxyribonucleic Acid - biological equivalent of fingerprints - < 1% of nonviolent crimes yield DNA

More information

DNA Profiling. (DNA fingerprinting)

DNA Profiling. (DNA fingerprinting) DNA Profiling (DNA fingerprinting) Background Information: Restriction Enzymes Restriction Enzymes Evolved by bacteria to protect against viral DNA infection. Also called Endonucleases. They cleave DNA

More information

Molecular Probes. Mitesh Shrestha

Molecular Probes. Mitesh Shrestha Molecular Probes Mitesh Shrestha Molecular Probes Small DNA segments (genomic DNA, cdna or synthetic oligonucleotides) or RNA segments (often synthesized on DNA template) that recognize complementary sequences

More information

DNA. Shape = Double Helix (twisted ladder) The purpose of each cell having DNA is to have directions for the cell to make proteins

DNA. Shape = Double Helix (twisted ladder) The purpose of each cell having DNA is to have directions for the cell to make proteins DNA DNA Deoxyribo- Nucleic Acid Shape = Double Helix (twisted ladder) The purpose of each cell having DNA is to have directions for the cell to make proteins Parts = nucleotide 1. Sugar (deoxyribose) 2.

More information

Restriction Fragment Length Polymorphism (RFLP)

Restriction Fragment Length Polymorphism (RFLP) Restriction Fragment Length Polymorphism (RFLP) Polymorphism is any difference in the DNA sequence between individuals. Since we are all genetically different from each other, we are all polymorphic. This

More information

DNA Profiling with PCR

DNA Profiling with PCR Name: DNA Profiling with PCR OBJECTIVES To review the structure and function of DNA. Understand and perform the polymerase chain reaction (PCR) To gain experience using the micropipettes, thermocycler,

More information

Southern hybridization technique

Southern hybridization technique Southern hybridization technique DNA fingerprint analysis is based on the "Southern" hybridization technique. In this method: DNA fingerprinting, also termed DNA profile analysis is based on the use of

More information

Name Date Class CHAPTER 13. DNA Fingerprinting

Name Date Class CHAPTER 13. DNA Fingerprinting Real-World Biology: Analysis DNA Fingerprinting Genetic Prints Help Solve Mystery of Girls Switched at Birth. Murder Conviction Overturned by DNA Testing: Prisoner Released. Headlines such as these have

More information

Genetic Identity. Steve Harris SPASH - Biotechnology

Genetic Identity. Steve Harris SPASH - Biotechnology Genetic Identity Steve Harris SPASH - Biotechnology Comparison of Organisms ORGANISM GENES BASE PAIRS Lambda Phage 40 50,000 E.coli 400 5,000,000 Yeast 13,000 15,000,000 Human 20,000 3,000,000,000 (3 billion)

More information

DNA Fingerprinting CHAPTER DNA FINGERPRINTING AND FAMILY RELATIONSHIPS CHAPTER

DNA Fingerprinting CHAPTER DNA FINGERPRINTING AND FAMILY RELATIONSHIPS CHAPTER CHAPTER DNA FINGERPRINTING AND FAMILY RELATIONSHIPS Andrew was a teenage boy living in England with his mother Christiana and her other three children. The family had originally come from Ghana. On his

More information

..C C C T C A T T C A T T C A T T C A T T C A..

..C C C T C A T T C A T T C A T T C A T T C A.. Polymerase Chain Reaction Lab: a Forensic Application INTRODUCTION PCR (polymerase chain reaction) is a technique that scientists use to amplify particular segments of DNA. This process can produce large

More information

Restriction Enzymes (endonucleases)

Restriction Enzymes (endonucleases) In order to understand and eventually manipulate DNA (human or otherwise) an array of DNA technologies have been developed. Here are some of the tools: Restriction Enzymes (endonucleases) In order to manipulate

More information

Further Reading - DNA

Further Reading - DNA Further Reading - DNA DNA BACKGROUND What is DNA? DNA (short for deoxyribonucleic acid ) is a complex molecule found in the cells of all living things. The blueprint for life, DNA contains all the information

More information

Biology Chapter 9 & Honors Biology Chapter 13. Frontiers Of Biotechnology

Biology Chapter 9 & Honors Biology Chapter 13. Frontiers Of Biotechnology Biology Chapter 9 & Honors Biology Chapter 13 Frontiers Of Biotechnology DNA TECHNOLOGY IS ABOUT: Manipulating DNA for man s purposes. It includes: cutting DNA, Gel Electrophoresis and Polymerase Chain

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Define the terms population, species, allelic and genotypic frequencies, gene pool, and fixed allele, genetic drift, bottle-neck effect, founder effect. Explain

More information

Unit 2- DNA Analysis

Unit 2- DNA Analysis Unit 2- DNA Analysis Discovery of DNA structure 1950 s Rosalind Franklin & Maurice Wilkins photograph DNA using x-ray diffraction 1 Discovery of DNA structure 1953 James Watson & Francis Crick develop

More information

More often heard about on television dramas than on the news, DNA is the key to solving crimes the scientific way. Although it has only been

More often heard about on television dramas than on the news, DNA is the key to solving crimes the scientific way. Although it has only been DNA Matching More often heard about on television dramas than on the news, DNA is the key to solving crimes the scientific way. Although it has only been relatively recent (compared the course of forensic

More information

How is DNA used to solve crimes? 8 th Grade Forensic Science T. Trimpe

How is DNA used to solve crimes? 8 th Grade Forensic Science T. Trimpe How is DNA used to solve crimes? 8 th Grade Forensic Science T. Trimpe http://sciencespot.net/ #1. How is DNA used as evidence? Each person s DNA is different from other people (except identical twins).

More information

Analysis in Forensic Science

Analysis in Forensic Science Chapter 16 Gene Cloning & DNA Analysis in Forensic Science 1. DNA analysis in identification of crime suspects 2. Studying kinship by DNA profiling 3. Sex identification by DNA analysis Forensic science

More information

Part I: Predicting Genetic Outcomes

Part I: Predicting Genetic Outcomes Part I: Predicting Genetic Outcomes Deoxyribonucleic acid (DNA) is found in every cell of living organisms, and all of the cells in each organism contain the exact same copy of that organism s DNA. Because

More information

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling Name: 2.5 Genetics Objectives At the end of this sub section students should be able to: 2.5.1 Heredity and Variation 1. Discuss the diversity of organisms 2. Define the term species 3. Distinguish between

More information

KEY CONCEPTS AND PROCESS SKILLS. 1. Blood types can be used as evidence about identity and about family relationships.

KEY CONCEPTS AND PROCESS SKILLS. 1. Blood types can be used as evidence about identity and about family relationships. Evidence from DNA 40- to 1 2 50-minute sessions 69 M O D E L I N G ACTIVITY OVERVIEW SUMMARY Students learn how DNA fingerprinting is done by performing a simulation of the process used to generate different

More information

Allele: Chromosome DNA fingerprint: Electrophoresis: Gene:

Allele: Chromosome DNA fingerprint: Electrophoresis: Gene: Essen%al Vocabulary Allele: an alternate form of a gene; for example, a gene for human hair color may have alleles that cause red or brown hair Chromosome: a cell structure that contains gene%c informa%on

More information

Unit 4-DNA Analysis Review Guide

Unit 4-DNA Analysis Review Guide Name: KEY Match the term on the right with the definition on the left. Unit 4-DNA Analysis Review Guide 1. A procedure used to determine the order of the base pairs that make up a DNA molecule E 2. These

More information

Basic Steps of the DNA process

Basic Steps of the DNA process As time pasted technology has improve the methods of analyzing DNA. One of the first methods for the analysis of DNA is known as Restriction Fragment Length Polymorphism (RFLP). This technique analyzed

More information

DNA stands for deoxyribose nucleic acid DNA is a very large molecule made up of a long chain of sub-units The sub-units are called nucleotides Each

DNA stands for deoxyribose nucleic acid DNA is a very large molecule made up of a long chain of sub-units The sub-units are called nucleotides Each 1 DNA stands for deoxyribose nucleic acid DNA is a very large molecule made up of a long chain of sub-units The sub-units are called nucleotides Each nucleotide is made up of a sugar called deoxyribose

More information

HOW MANY CATs? A DNA Profiling Simulation

HOW MANY CATs? A DNA Profiling Simulation HOW MANY CATs? A DNA Profiling Simulation Background Information 1. Structure of DNA Double helix Anti-parallel strands 4 Bases (A, C, G, and T) Complementary bases Template Strand 5 3 A T T G A C 3 T

More information

Polymerase Chain Reaction PCR

Polymerase Chain Reaction PCR Polymerase Chain Reaction PCR What is PCR? An in vitro process that detects, identifies, and copies (amplifies) a specific piece of DNA in a biological sample. Discovered by Dr. Kary Mullis in 1983. A

More information

January 07, (adenine, guanine, cytosine, thymine)

January 07, (adenine, guanine, cytosine, thymine) (adenine, guanine, cytosine, thymine) DNA at Work - DNA is used to make proteins - proteins are made by linking amino acids (there are 20 possible amino acids) - sequence of amino acids determines shape/function

More information

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

The Techniques of Molecular Biology: Forensic DNA Fingerprinting Revised Fall 2016 The Techniques of Molecular Biology: Forensic DNA Fingerprinting **Lab coat, eye goggles and gloves (nitrile or latex) are required for this lab. You will not be allowed to participate

More information

Genetic Fingerprinting

Genetic Fingerprinting Genetic Fingerprinting Introduction DA fingerprinting In the R & D sector: -involved mostly in helping to identify inherited disorders. In forensics: -identification of possible suspects involved in offences.

More information

More Basic Biotechnology Tools. Sorting & Copying DNA

More Basic Biotechnology Tools. Sorting & Copying DNA More Basic Biotechnology Tools Sorting & Copying DNA 2007-2008 Many uses of restriction enzymes Now that we can cut DNA with restriction enzymes we can cut up DNA from different people or different organisms

More information

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

The Techniques of Molecular Biology: Forensic DNA Fingerprinting The Techniques of Molecular Biology: Forensic DNA Fingerprinting Revised Fall 2017 Laboratory Safety: Lab coat, long pants, closed-toe shoes, safety goggles, and nitrile or latex gloves are required. Learning

More information

CSI TEST. Ref. PCR detectives (4 practices) 1. EXPERIMENT OBJETIVE 2. BACKGROUND INFORMATION

CSI TEST. Ref. PCR detectives (4 practices) 1. EXPERIMENT OBJETIVE 2. BACKGROUND INFORMATION CSI TEST Ref. PCR detectives (4 practices) 1. EXPERIMENT OBJETIVE This practice introduces students to using DNA and PCR to simulate how DNA obtained from a hair or saliva sample from a crime scene can

More information

I. Gene Cloning & Recombinant DNA. Biotechnology: Figure 1: Restriction Enzyme Activity. Restriction Enzyme:

I. Gene Cloning & Recombinant DNA. Biotechnology: Figure 1: Restriction Enzyme Activity. Restriction Enzyme: I. Gene Cloning & Recombinant DNA Biotechnology: Figure 1: Restriction Enzyme Activity Restriction Enzyme: Most restriction enzymes recognize a single short base sequence, or Restriction Site. Restriction

More information

Human Genomics. 1 P a g e

Human Genomics. 1 P a g e Human Genomics What were the aims of the human genome project? To identify all the approximately 20,000-25,000 genes in Human DNA. To find where each gene is located To determine the sequences of the 3

More information

DNA analysis. Anja Bye Post doktor. K.G. Jebsen Senter for Hjertetrening. Institutt for Sirkulasjon og Bildediagnostikk Det Medisinske Fakultet NTNU

DNA analysis. Anja Bye Post doktor. K.G. Jebsen Senter for Hjertetrening. Institutt for Sirkulasjon og Bildediagnostikk Det Medisinske Fakultet NTNU DNA analysis Anja Bye Post doktor K.G. Jebsen Senter for Hjertetrening Institutt for Sirkulasjon og Bildediagnostikk Det Medisinske Fakultet NTNU Focus of this lecture What is DNA? Comparing DNA from different

More information

FORENSIC GENETICS. DNA in the cell FORENSIC GENETICS PERSONAL IDENTIFICATION KINSHIP ANALYSIS FORENSIC GENETICS. Sources of biological evidence

FORENSIC GENETICS. DNA in the cell FORENSIC GENETICS PERSONAL IDENTIFICATION KINSHIP ANALYSIS FORENSIC GENETICS. Sources of biological evidence FORENSIC GENETICS FORENSIC GENETICS PERSONAL IDENTIFICATION KINSHIP ANALYSIS FORENSIC GENETICS Establishing human corpse identity Crime cases matching suspect with evidence Paternity testing, even after

More information

Genetic Technologies

Genetic Technologies Genetic Technologies Distinguish the terms biotechnology, recombinant DNA technology, transgenic organisms, genetic engineering Understand the two basic techniques to obtain selective fragments of DNA

More information

Mohammed Sanaullah Qaseem, Syed Abdul Wahab Asif, Zeeshan Fatima Armeen, Israr Ahmed Qureshi

Mohammed Sanaullah Qaseem, Syed Abdul Wahab Asif, Zeeshan Fatima Armeen, Israr Ahmed Qureshi .Advancement In DNA As Source Of Biometric Authentication Mohammed Sanaullah Qaseem, Syed Abdul Wahab Asif, Zeeshan Fatima Armeen, Israr Ahmed Qureshi Associate Professor, Nizam Institute of Engineering

More information

Biotechnology Chapter 20

Biotechnology Chapter 20 Biotechnology Chapter 20 DNA Cloning DNA Cloning AKA Plasmid-based transformation or molecular cloning First off-let s sum up what happens. A plasmid is taken from a bacteria A gene is inserted into the

More information

The Polymerase Chain Reaction. Chapter 6: Background

The Polymerase Chain Reaction. Chapter 6: Background The Polymerase Chain Reaction Chapter 6: Background Invention of PCR Kary Mullis Mile marker 46.58 in April of 1983 Pulled off the road and outlined a way to conduct DNA replication in a tube Worked for

More information

DNA Fingerprinting. Teacher s Guidebook. (Cat. # BE-104) think proteins! think G-Biosciences

DNA Fingerprinting. Teacher s Guidebook. (Cat. # BE-104) think proteins! think G-Biosciences PR011-03 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name DNA Fingerprinting Teacher s Guidebook (Cat. # BE-104) think proteins! think G-Biosciences

More information

What does DNA stand for?

What does DNA stand for? DNA and RNA What does DNA stand for? DNA = deoxribonucleic acid NOTE: the DNA from one cell would stretch 3 metre DNA are coiled and folded. DNA has two strands. What four bases are used in DNA? The four

More information

Exploring Genetic Variation in a Caffeine Metabolism gene LAB TWO: POLYMERASE CHAIN REACTION

Exploring Genetic Variation in a Caffeine Metabolism gene LAB TWO: POLYMERASE CHAIN REACTION Exploring Genetic Variation in a Caffeine Metabolism gene LAB TWO: POLYMERASE CHAIN REACTION Purpose: In this laboratory, we will set up a polymerase chain reaction to amplify the region of the caffeine

More information

STUDY OF VNTR HUMAN POLYMORPHISMS BY PCR

STUDY OF VNTR HUMAN POLYMORPHISMS BY PCR STUDY OF VNTR HUMAN POLYMORPHISMS BY PCR Ref. PCR1 1. OBJECTIVE OF THE EXPERIMENT The objective of this experiment is to introduce students to the principles and practice of Polymerase Chain Reaction (PCR)

More information

Genetic Fingerprinting

Genetic Fingerprinting Genetic Fingerprinting Introduction DA fingerprinting In the R & D sector: -involved mostly in helping to identify inherited disorders. In forensics: -identification of possible suspects involved in offences.

More information

DNA Technology. Dr. Saleh Alaifan

DNA Technology. Dr. Saleh Alaifan DNA Technology Dr. Saleh Alaifan Watson and Crick discovered the double helix In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical model for the structure

More information

General DNA Information

General DNA Information 1 Use of this PPT This PPT has lots of information. I may or may not discuss each slide. Use the information to answer questions in your Question Packets. The packets are the study guide for the tests

More information

-Is the process of manipulating genes and genomes

-Is the process of manipulating genes and genomes Genetic Engineering -Is the process of manipulating genes and genomes Biotechnology -Is the process of manipulating organisms or their components for the purpose of making useful products Restriction Enzymes

More information

13-2 Manipulating DNA Slide 1 of 32

13-2 Manipulating DNA Slide 1 of 32 1 of 32 The Tools of Molecular Biology The Tools of Molecular Biology How do scientists make changes to DNA? Scientists use their knowledge of the structure of DNA and its chemical properties to study

More information

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau 7.1 Techniques for Producing and Analyzing DNA SBI4U Ms. Ho-Lau What is Biotechnology? From Merriam-Webster: the manipulation of living organisms or their components to produce useful usually commercial

More information

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this DNA 1. Evidence for DNA as the genetic material. a. Until the 1940s, proteins were believed to be the genetic material. b. In 1944, Oswald Avery, Maclyn McCarty, and Colin MacLeod announced that the transforming

More information

The Polymerase Chain Reaction. Chapter 6: Background

The Polymerase Chain Reaction. Chapter 6: Background The Polymerase Chain Reaction Chapter 6: Background PCR Amplify= Polymerase Chain Reaction (PCR) Invented in 1984 Applications Invention of PCR Kary Mullis Mile marker 46.58 in April of 1983 Pulled off

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Define the terms population, species, allelic and genotypic frequencies, gene pool, and fixed allele, genetic drift, bottle-neck effect, founder effect. Explain

More information

BIOLOGY Dr.Locke Lecture# 27 An Introduction to Polymerase Chain Reaction (PCR)

BIOLOGY Dr.Locke Lecture# 27 An Introduction to Polymerase Chain Reaction (PCR) BIOLOGY 207 - Dr.Locke Lecture# 27 An Introduction to Polymerase Chain Reaction (PCR) Required readings and problems: Reading: Open Genetics, Chapter 8.1 Problems: Chapter 8 Optional Griffiths (2008) 9

More information

AP Biology: Unit 5: Development. Forensic DNA Fingerprinting: Using Restriction Enzymes Bio-Rad DNA Fingerprinting Kit

AP Biology: Unit 5: Development. Forensic DNA Fingerprinting: Using Restriction Enzymes Bio-Rad DNA Fingerprinting Kit Forensic DNA Fingerprinting: Using Restriction Enzymes Bio-Rad DNA Fingerprinting Kit Background: Scientists working in forensic labs are often asked to perform DNA profiling or fingerprinting to analyze

More information

4/26/2015. Cut DNA either: Cut DNA either:

4/26/2015. Cut DNA either: Cut DNA either: Ch.20 Enzymes that cut DNA at specific sequences (restriction sites) resulting in segments of DNA (restriction fragments) Typically 4-8 bp in length & often palindromic Isolated from bacteria (Hundreds

More information

BIOTECHNOLOGY. Biotechnology is the process by which living organisms are used to create new products THE ORGANISMS

BIOTECHNOLOGY. Biotechnology is the process by which living organisms are used to create new products THE ORGANISMS BIOTECHNOLOGY Biotechnology is the process by which living organisms are used to create new products THE ORGANISMS Bacteria: are prokaryotic organisms that contain circular DNA and no organelles. They

More information

This is a typical chromatogram generated by automated sequencing.

This is a typical chromatogram generated by automated sequencing. DNA TECHNOLOGY AND FORENSICS Introduction: DNA (Deoxyribonucleic Acid) is a molecule that is the main part of your chromosomes, which carry your hereditary material. The molecule is shaped like a twisted

More information

Genetics Lecture 16 Forensics

Genetics Lecture 16 Forensics Genetics Lecture 16 Forensics DNA Forensics Genetics is arguably the most influential science today dramatically affecting technologies in fields as diverse as agriculture, archaeology, medical diagnosis,

More information

GENETICS 1 Classification, Heredity, DNA & RNA. Classification, Objectives At the end of this sub section you should be able to: Heredity, DNA and RNA

GENETICS 1 Classification, Heredity, DNA & RNA. Classification, Objectives At the end of this sub section you should be able to: Heredity, DNA and RNA Classification, Heredity, DNA and Objectives At the end of this sub section you should be able to: RNA Heredity and Variation Gene Expression DNA structure DNA Profiling Protein Synthesis 1. Discuss the

More information

Lab 5: Shark Attacks, Again! DNA Fingerprinting to the Rescue

Lab 5: Shark Attacks, Again! DNA Fingerprinting to the Rescue Lab 5: Shark Attacks, Again! DNA Fingerprinting to the Rescue Notebook Lab Objectives Develop an understanding of the basic techniques used to study genetic polymorphisms encoded in DNA Gain familiarity

More information

Left at the Scene of the Crime: An Introduction to Forensic Science

Left at the Scene of the Crime: An Introduction to Forensic Science Left at the Scene of the Crime: An Introduction to Forensic Science Thomas Cynkar Edvotek www.edvotek.com Follow @Edvotek EDVOTEK The Biotechnology Education Company Celebrating 30 years of science education!

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

BIOTECHNOLOGY. Understanding the Application

BIOTECHNOLOGY. Understanding the Application BELLRINGER-5/4/15 1. What method would you guess forensic scientists use to identify criminals at crime scenes? 2. What do you think we mean by the term biotechnology? BIOTECHNOLOGY Understanding the Application

More information

Name: Date: 10/26/17 Section:

Name: Date: 10/26/17 Section: Name: Date: 10/26/17 Section: Broughton High School 1 Chapter 4 Vocabulary Words DNA Fingerprinting Vocabulary for Chapter 4 1. Allele Term Definition 2 2. Chromosome 3. DNA Fingerprint 4. DNA Probe 5.

More information

Chapter 13. Genetic Engineering

Chapter 13. Genetic Engineering Chapter 13 Genetic Engineering Selective Breeding Passing on desired characteristics to the next generation. Examples: different breeds of domestic and farm animals, different varieties of plants (corn,

More information

PCR in the Classroom. UC Davis - PCR Workshop Friday, September 26, 2003

PCR in the Classroom. UC Davis - PCR Workshop Friday, September 26, 2003 PCR in the Classroom UC Davis - PCR Workshop Friday, September 26, 2003 A little history In 1983, Kary B. Mullis conceived the procedure. He went on to Cetus Corp in Emeryville, CA where it was developed

More information

Left at the Scene of the Crime: An Introduction to Forensic Science

Left at the Scene of the Crime: An Introduction to Forensic Science Left at the Scene of the Crime: An Introduction to Forensic Science Kelly Barford, Ph.D. Edvotek www.edvotek.com Follow @Edvotek EDVOTEK The Biotechnology Education Company Celebrating 30 years of science

More information

DNA Technology Outline

DNA Technology Outline I) Tools of DNA technology A. PCR (Polymerase Chain Reaction): method of copying DNA sequences 1. DNA is copied in a similar way to natural replication in our cells, but much faster. 2.PCR consists of

More information

UNIT 3: GENETICS Chapter 9: Frontiers of Biotechnology

UNIT 3: GENETICS Chapter 9: Frontiers of Biotechnology CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

What is DNA? Deoxyribonucleic Acid The inherited genetic material that makes us what we are

What is DNA? Deoxyribonucleic Acid The inherited genetic material that makes us what we are DNA Basic Genetics What is DNA? DNA is Deoxyribonucleic Acid The inherited genetic material that makes us what we are DNA in the Cell Human Genome ~3 billion base pairs of DNA 30,000-35,000 genes Population-each

More information

TECHNIQUES USED IN GENETIC ENGINEERING 1

TECHNIQUES USED IN GENETIC ENGINEERING 1 TECHNIQUES USED IN GENETIC ENGINEERING 1 ELECTROFORESIS BLOTTING Uses of DNA Profiling DNA profiling is used to solve crimes and medical problems Crime The DNA profile of each individual is highly specific.

More information

CRIME SCENE INVESTIGATOR: DNA Profiling

CRIME SCENE INVESTIGATOR: DNA Profiling Bio101- LAB 8 Name: CRIME SCENE INVESTIGATOR: DNA Profiling OBJECTIVES: To review the structure and function of DNA Understand and perform DNA digests To gain experience using the micropipettes and gel

More information

Mutations, Genetic Testing and Engineering

Mutations, Genetic Testing and Engineering Mutations, Genetic Testing and Engineering Objectives Describe how techniques such as DNA fingerprinting, genetic modifications, and chromosomal analysis are used to study the genomes of organisms (TEKS

More information

DNA FINGERPRINTING MADE EASY FOR FORENSICS

DNA FINGERPRINTING MADE EASY FOR FORENSICS DNA FINGERPRINTING MADE EASY FOR FORENSICS Presented by Eilene Lyons The St. Louis Community College Florissant Valley Biotechnology Program Some slides are from a downloaded PPT presentation from The

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

DETERMINATION OF THE Rh FACTOR BY PCR

DETERMINATION OF THE Rh FACTOR BY PCR DETERMINATION OF THE Rh FACTOR BY PCR Ref.: PCR2 1. EXPERIMENT OBJECTIVE The aim of this experiment is to introduce students to the principles and practice of the Polymerase Chain Reaction (PCR) by studying

More information

Genetic Technologies.notebook March 05, Genetic Technologies

Genetic Technologies.notebook March 05, Genetic Technologies Genetic Testing Genetic Technologies Tests can be used to diagnose disorders and/or identify those individuals with an increased risk of inheriting a disorder. Prenatal Screening A fetus may be screened

More information

Fun with DNA polymerase

Fun with DNA polymerase Fun with DNA polymerase Why would we want to be able to make copies of DNA? Can you think of a situation where you have only a small amount and would like more? Enzymatic DNA synthesis To use DNA polymerase

More information

Moayyad Al-shafei. Mohammad Tarabeih. Dr Ma'mon Ahram. 1 P a g e

Moayyad Al-shafei. Mohammad Tarabeih. Dr Ma'mon Ahram. 1 P a g e 3 Moayyad Al-shafei Mohammad Tarabeih Dr Ma'mon Ahram 1 P a g e In this sheet, we are going to discuss 2 main topics: 1- The advantages of restriction endonucleases. 2- DNA replication. Before we start

More information

Bio 160: DNA Fingerprinting Name:

Bio 160: DNA Fingerprinting Name: Bio 160: DNA Fingerprinting DNA Fingerprinting Name: OBJECTIVES: To review the structure and function of DNA Understand and perform DNA digests To gain experience using the micropipettes and gel electrophoresis

More information

Recombinant DNA recombinant DNA DNA cloning gene cloning

Recombinant DNA recombinant DNA DNA cloning gene cloning DNA Technology Recombinant DNA In recombinant DNA, DNA from two different sources, often two species, are combined into the same DNA molecule. DNA cloning permits production of multiple copies of a specific

More information

Overview: The DNA Toolbox

Overview: The DNA Toolbox Overview: The DNA Toolbox Sequencing of the genomes of more than 7,000 species was under way in 2010 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant

More information

Overview. Introduction

Overview. Introduction Genetics 101: Introduction Overview Important terminology DNA extraction, gel electrophoresis, PCR Allozymes (Protein electrophoresis) RFLP AFLP Sequencing Microsatellites SNPs Costs, Sample Collection

More information

Review Instructions:

Review Instructions: How is DNA used to solve crimes? Review Instructions: Get out a separate sheet of notebook paper Put your name on it Write your partner s name under yours Title the paper- DNA Lecture Review Both people

More information

They may consist of millions of base pairs

They may consist of millions of base pairs Restriction enzymes 2 DNA molecules are very long They may consist of millions of base pairs In order to study the structure of DNA, the molecules are broken up into smaller fragments by enzymes called

More information

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Lesson Overview 14.3 Studying the Human Genome Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Nucleic acids are chemically different from other macromolecules

More information

How is DNA used to solve crimes?

How is DNA used to solve crimes? How is DNA used to solve crimes? 8 th Grade Forensic Science T. Trimpe http://sciencespot.net/ What is DNA? DNA stands for deoxyribonucleic acid and contains genetic information. It is found on chromosomes

More information

Introduction to some aspects of molecular genetics

Introduction to some aspects of molecular genetics Introduction to some aspects of molecular genetics Julius van der Werf (partly based on notes from Margaret Katz) University of New England, Armidale, Australia Genetic and Physical maps of the genome...

More information