Third Generation Sequencing

Size: px
Start display at page:

Download "Third Generation Sequencing"

Transcription

1 Third Generation Sequencing By Mohammad Hasan Samiee Aref Medical Genetics Laboratory of Dr. Zeinali

2 History of DNA sequencing 1953 : Discovery of DNA structure by Watson and Crick 1973 : First sequence of 24 bp published 1977 : Sanger sequencing method published 1980 : Nobel Prize Wally Gilbert and Fred Sanger 1982 : Genbank started 1983 : Development of PCR 1987 : 1 st automated sequencer : Applied Biosystems Prism 373

3 History of DNA sequencing 1996 : Capillary sequencer: ABI : Genome of Caenorhabditis elegans sequenced 2000 : Human genome sequenced 2005 : 1 st 454 Life Sciences Next Generation Sequencing system: GS 20 System 2006 : 1 st Solexa Next Generation Sequencer: Genome Analyzer 2007 : 1 st Applied Biosystems Next Generation Sequencer: SOLiD 2009 : 1 st Helicos single molecule sequencer: Helicos Genetic Analyser System 2011 : 1 st Ion Torrent Next Generation Sequencer: PGM 2011 : 1 st Pacific Biosciences single molecule sequencer: PacBio RS Systems 2012 : Oxford Nanopore Technologies demonstrates ultra long single molecule reads

4 Different platforms 454 Sequencing / Roche GS Junior System GS FLX+ System illumina (Solexa) HiSeq System Genome analyzer IIx MiSeq Applied Biosystems - Life Technologies SOLiD 5500 System SOLiD 5500xl System Ion Torrent - Life Technologies Personal Genome Machine (PGM) Proton Next Generation Sequencing Amplified Single Molecule Sequencing

5 Different platforms Helicos Helicos Genetic Analysis System Pacific Biosciences PacBio RS Oxford Nanopore Technologies GridION System Third Generation Sequencing Next Next Generation Sequencing Single Molecule Sequencing

6

7

8

9 Workflow Library preparation Emulsion PCR Polony PCR on a slide Semiconductor sequencing (Ion Torrent) Pyrosequencing (454) Sequencing by ligation (SOLiD) Sequencing by ligation (SOLiD) Reversible terminator sequencing (Illumina)

10 Workflow (Library preparation) Good fragments:

11 Workflow Library preparation Emulsion PCR Polony PCR on a slide Semiconductor sequencing (Ion Torrent) Pyrosequencing (454) Sequencing by ligation (SOLiD) Sequencing by ligation (SOLiD) Reversible terminator sequencing (Illumina)

12 Workflow (Emulsion PCR)

13 Workflow Library preparation Emulsion PCR Polony PCR on a slide Semiconductor sequencing (Ion Torrent) Pyrosequencing (454) Sequencing by ligation (SOLiD) Sequencing by ligation (SOLiD) Reversible terminator sequencing (Illumina)

14 Workflow ( Polony PCR Bridge amplification: illumina)

15 Workflow ( Polony PCR Bridge amplification: illumina)

16 Workflow ( Polony PCR Bridge amplification: illumina)

17 Different platforms (illumina)

18 Different platforms (illumina) HiSeq HiScanSQ Genome Analyzer llx MiSeq Read Length 100 bp 100 bp 150 bp 250 bp Throughput 600 Gb 150 Gb 95 Gb 6 Gb Reads per run 3,000,000, ,000, ,000,000 12,000,000 Accuracy 99,9 % 99,9 % 99,9 % 99,9 % Run Time 11 days 8 days 14 days hours Workflow: Library preparation Bridge amplification Reversible termination sequencing

19 Different platforms (Ion Torrent) PGM (Personal Genome Machine) Proton

20 Different platforms (Ion Torrent) PGM Proton Read Length 200 bp 200 bp Throughput 20 Mb 1 Gb Gb Reads per run 11,000, ,000,000 Accuracy 99 % 99 % Run Time 4.5 hours 4.5 hours Workflow: Library preparation Emulsion PCR Semiconductor sequencing

21 Analysis (Sanger Sequencing)

22 Analysis (Sanger Sequencing)

23 Analysis (Next Generation Sequencing)

24 Analysis (Next Generation Sequencing)

25 Analysis (Next Generation Sequencing) Same dataset, different parameters

26 Different platforms (Third generation) Helicos Genetic Analysis System (Helicos BioSciences Corporation) Helicos Read Length 35 bp Throughput 35 Gb Reads per run 600,000,000 1,000,000,000 Accuracy 97% Run Time 8 days Workflow: Library preparation Sequencing

27 Different platforms (Third generation) Advantages of Single molecule sequencing: Less sample preparation (no PCR) No amplification -no PCR errors -fewer contamination issues -no GC-bias -analyze every sample (unpcrable / unclonable) -analyze low quality DNA (museum, archeological, forensics samples) Absolute quantification Sequence RNA directly

28 Different platforms (Third generation) Pacbio RS (Pacific Biosciences) Pacbio RS Read Length ,000 bp Throughput 1 Gb Reads per run 70,000 Accuracy 95% Run Time 30 minutes Workflow: Library preparation Sequencing

29 Different platforms (Oxford Nanopore) MinION PromethION GridION

30 MinION

31 MinION Nanopore Array of Microscaffolds Array Chip ASIC (Application Specific Integrated Circuit)

32 MinION The MinION MkI flow cell

33 MinION

34 PromethION

35 Specification MinION PromethION Number of channels available for sequencing Sample input Requirement PCR Free Flow cell input volume Mk 1 MinION Single PromethION Flow Cell PromethION (48 Flow Cells) Up to 512 Up to 3,000 Up to 144,000 10pg - 1μg 10pg - 1μg 10pg - 1μg μl 35μl per sample well (4 wells in a flow cell) 35µl per sample well (192 wells in a PromethION)

36 Specification MinION PromethION Sample preparation time 1D Sample preparation time 2D Mk 1 MinION Single PromethION Flow Cell PromethION (48 Flow Cells) 10 minutes 10 minutes 10 minutes 90 minutes 90 minutes 90 minutes Run time 1 minute - 48 hours 1 minute - 48 hours 1 minute - 48 hours Flow cell lifetime ~72hrs >= 72hrs >= 72hrs

37 Specification MinION PromethION Number of reads at 10Kb at standard speed (250bps) Number of reads at 10kb in Fast Mode (500bps) Read Length Mk 1 MinION Single PromethION Flow Cell PromethION (48 Flow Cells) Up to 2.2M Up to 13M Up to 625M Up to 4.4M Up to 26M Up to 1250M Longest reported between Kilobases (1D) Longest reported between Kilobases (1D) Longest reported between Kilobases (1D)

38 Specification MinION PromethION 1D Yield at 250 bps in 48 hours 1D Yield at 500 bps in 48 hours Mk 1 MinION Single PromethION Flow Cell PromethION (48 Flow Cells) Up to 21 Gb Up to 128 Gb Up to 6 Tb Up to 42 Gb Up to 256 Gb Up to 12 Tb Base calling accuracy Up to 99% Up to 99% Up to 99% Modified Base Detection Yes Yes Yes

39 Specification MinION PromethION Mk 1 MinION Single PromethION Flow Cell PromethION (48 Flow Cells) Data Analysis Local offline/online On Unit / On line On Unit / On line Power requirement USB 3 (1 watt) < 20 watts ~ 1kW Potential raw data requirements (Bytes per second) up to 5MBps up to 30MBps up to 1.44GBps Weight 87g 40 Kg 40 Kg

40 Specification MinION PromethION Mk 1 MinION Single PromethION Flow Cell PromethION (48 Flow Cells) Reagent cost per run $ 99 POA POA Flow Cell Cost (depending on order type and volume) $270 - $900 POA POA Instrument Access Fee Starter kit (includes MinION and all materials for 2 runs) $1000 No instrument cost - $75K deposit to be called off against consumable purchases No instrument cost - $75K deposit to be called off against consumable purchases

41 GridION

42 SmidgION

43 Fields of use Sensing of biological molecules

44 Fields of use For research or industrial purposes

45 Fields of use In a variety of areas

46 Fields of use On any sample of interest

47 Fields of use Protein analysis Direct, electronic analysis of proteins by combining nanopores with aptamers

48 Fields of use RNA

49 Fields of use MicroRNA

50 Fields of use MicroRNA

51 Fields of use MicroRNA

52 Publications 56 publications (from August 2014 until now)

53

54

55

56

57 Thank you for kind attention

Aaron Liston, Oregon State University Botany 2012 Intro to Next Generation Sequencing Workshop

Aaron Liston, Oregon State University Botany 2012 Intro to Next Generation Sequencing Workshop Output (bp) Aaron Liston, Oregon State University Growth in Next-Gen Sequencing Capacity 3.5E+11 2002 2004 2006 2008 2010 3.0E+11 2.5E+11 2.0E+11 1.5E+11 1.0E+11 Adapted from Mardis, 2011, Nature 5.0E+10

More information

Overview of Next Generation Sequencing technologies. Céline Keime

Overview of Next Generation Sequencing technologies. Céline Keime Overview of Next Generation Sequencing technologies Céline Keime keime@igbmc.fr Next Generation Sequencing < Second generation sequencing < General principle < Sequencing by synthesis - Illumina < Sequencing

More information

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun The Journey of DNA Sequencing H. Sunny Sun What is a genome? Genome is the total genetic complement of a living organism. The nuclear genome comprises approximately 3.2 * 10 9 nucleotides of DNA, divided

More information

Matthew Tinning Australian Genome Research Facility. July 2012

Matthew Tinning Australian Genome Research Facility. July 2012 Next-Generation Sequencing: an overview of technologies and applications Matthew Tinning Australian Genome Research Facility July 2012 History of Sequencing Where have we been? 1869 Discovery of DNA 1909

More information

NGS technologies: a user s guide. Karim Gharbi & Mark Blaxter

NGS technologies: a user s guide. Karim Gharbi & Mark Blaxter NGS technologies: a user s guide Karim Gharbi & Mark Blaxter genepool-manager@ed.ac.uk Natural history of sequencing 2 Brief history of sequencing 100s bp throughput 100 Gb 1977 1986 1995 1999 2005 2007

More information

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017 Next Generation Sequencing Jeroen Van Houdt - Leuven 13/10/2017 Landmarks in DNA sequencing 1953 Discovery of DNA double helix structure 1977 A Maxam and W Gilbert "DNA seq by chemical degradation" F Sanger"DNA

More information

Next Generation Sequencing (NGS)

Next Generation Sequencing (NGS) Next Generation Sequencing (NGS) Fernando Alvarez Sección Biomatemática, Facultad de Ciencias, UdelaR 1 Uruguay Montevide o 3 TANGO World Champ 1930 1950 (Maraca 4 Next Generation Sequencing module Next

More information

Next-generation sequencing Technology Overview

Next-generation sequencing Technology Overview Next-generation sequencing Technology Overview UQ Winter School 2018 Christopher Noune, PhD AGRF Melbourne christopher.noune@agrf.org.au What is NGS? Ion Torrent PGM (Thermo-Fisher) MiSeq (Illumina) High-Throughput

More information

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) DNA-Sequencing Technologies & Devices Matthias Platzer Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day,

More information

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) DNA-Sequencing Technologies & Devices Matthias Platzer Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day,

More information

Human genome sequence

Human genome sequence NGS: the basics Human genome sequence June 26th 2000: official announcement of the completion of the draft of the human genome sequence (truly finished in 2004) Francis Collins Craig Venter HGP: 3 billion

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Next generation sequencing techniques" Toma Tebaldi Centre for Integrative Biology University of Trento

Next generation sequencing techniques Toma Tebaldi Centre for Integrative Biology University of Trento Next generation sequencing techniques" Toma Tebaldi Centre for Integrative Biology University of Trento Mattarello September 28, 2009 Sequencing Fundamental task in modern biology read the information

More information

Research school methods seminar Genomics and Transcriptomics

Research school methods seminar Genomics and Transcriptomics Research school methods seminar Genomics and Transcriptomics Stephan Klee 19.11.2014 2 3 4 5 Genetics, Genomics what are we talking about? Genetics and Genomics Study of genes Role of genes in inheritence

More information

Introduction to Next Generation Sequencing (NGS)

Introduction to Next Generation Sequencing (NGS) Introduction to Next eneration Sequencing (NS) Simon Rasmussen Assistant Professor enter for Biological Sequence analysis Technical University of Denmark 2012 Today 9.00-9.45: Introduction to NS, How it

More information

DNA-Sequencing. Technologies & Devices

DNA-Sequencing. Technologies & Devices DNA-Sequencing Technologies & Devices Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day, 850 nt reads 2 Mb/day, 550 nt reads Roche/454 GS FLX 12/2006 800 Mb/23h, 800 nt reads

More information

DNA-Sequencing. Technologies & Devices

DNA-Sequencing. Technologies & Devices DNA-Sequencing Technologies & Devices Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day, 850 nt reads 2 Mb/day, 550 nt reads Roche/454 GS FLX 12/2006 800 Mb/23h, 800 nt reads

More information

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture The use of new sequencing technologies for genome analysis Chris Mattocks National Genetics Reference Laboratory (Wessex) NGRL (Wessex) 2008 Outline General principles of clonal sequencing Analysis principles

More information

Next-Generation Sequencing. Technologies

Next-Generation Sequencing. Technologies Next-Generation Next-Generation Sequencing Technologies Sequencing Technologies Nicholas E. Navin, Ph.D. MD Anderson Cancer Center Dept. Genetics Dept. Bioinformatics Introduction to Bioinformatics GS011062

More information

Sequencing techniques and applications

Sequencing techniques and applications I519 Introduction to Bioinformatics Sequencing techniques and applications Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Contents Sequencing techniques Sanger sequencing Next generation

More information

INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING'

INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING' INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING' Bioinformàtica per a la Recerca Biomèdica Ricardo Gonzalo Sanz ricardo.gonzalo@vhir.org 14/12/2016 1. Introduction to NGS 2. First Generation

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Nanopore sequencing How it works

Nanopore sequencing How it works 1 Nanopore sequencing How it works Nanopore Reader DNA or RNA passes through a nano-scale hole. The fluctuations in current as it passes through are used to understand the DNA or RNA sequence. An electrically

More information

DNA-Sequenzierung. Technologien & Geräte

DNA-Sequenzierung. Technologien & Geräte DNA-Sequenzierung Technologien & Geräte Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day, 850 nt reads 2 Mb/day, 550 nt reads Roche/454 GS FLX 12/2006 400 Mb/7h, 350 nt reads

More information

Sequencing techniques

Sequencing techniques Sequencing techniques Workshop on Whole Genome Sequencing and Analysis, 2-4 Oct. 2017 Learning objective: After this lecture, you should be able to account for different techniques for whole genome sequencing

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Next Generation Sequencing Lecture Saarbrücken, 19. March Sequencing Platforms

Next Generation Sequencing Lecture Saarbrücken, 19. March Sequencing Platforms Next Generation Sequencing Lecture Saarbrücken, 19. March 2012 Sequencing Platforms Contents Introduction Sequencing Workflow Platforms Roche 454 ABI SOLiD Illumina Genome Anlayzer / HiSeq Problems Quality

More information

Using New ThiNGS on Small Things. Shane Byrne

Using New ThiNGS on Small Things. Shane Byrne Using New ThiNGS on Small Things Shane Byrne Next Generation Sequencing New Things Small Things NGS Next Generation Sequencing = 2 nd generation of sequencing 454 GS FLX, SOLiD, GAIIx, HiSeq, MiSeq, Ion

More information

Bio(tech) Interlude. 3 Nobel Prizes: PCR: Kary Mullis, 1993 Electrophoresis: A.W.K. Tiselius, 1948 DNA Sequencing: Frederick Sanger, 1980

Bio(tech) Interlude. 3 Nobel Prizes: PCR: Kary Mullis, 1993 Electrophoresis: A.W.K. Tiselius, 1948 DNA Sequencing: Frederick Sanger, 1980 Bio(tech) Interlude 3 Nobel Prizes: PCR: Kary Mullis, 1993 Electrophoresis: A.W.K. Tiselius, 1948 DNA Sequencing: Frederick Sanger, 1980 PCR 1: 25ºC G 2: 95ºC A 3: 60ºC T 5 3 A A G 3 G T C 5 T T T 6: 72ºC

More information

Introduction to NGS. Josef K Vogt Slides by: Simon Rasmussen Next Generation Sequencing Analysis

Introduction to NGS. Josef K Vogt Slides by: Simon Rasmussen Next Generation Sequencing Analysis Introduction to NGS Josef K Vogt Slides by: Simon Rasmussen 2017 Life science data deluge Massive unstructured data from several areas DNA, patient journals, proteomics, imaging,... Impacts Industry, Environment,

More information

Ultrasequencing: methods and applications of the new generation sequencing platforms

Ultrasequencing: methods and applications of the new generation sequencing platforms Ultrasequencing: methods and applications of the new generation sequencing platforms Nuria Tubío Santamaría Course: Genomics Universitat Autònoma de Barcelona 1 Introduction Clasical methods of sequencing:

More information

Opportunities offered by new sequencing technologies

Opportunities offered by new sequencing technologies Opportunities offered by new sequencing technologies Pierre Taberlet Laboratoire d'ecologie Alpine CNRS UMR 5553 Université Joseph Fourier, Grenoble, France Nature Biotechnology, October 2008: special

More information

Next Gen Sequencing. Expansion of sequencing technology. Contents

Next Gen Sequencing. Expansion of sequencing technology. Contents Next Gen Sequencing Contents 1 Expansion of sequencing technology 2 The Next Generation of Sequencing: High-Throughput Technologies 3 High Throughput Sequencing Applied to Genome Sequencing (TEDed CC BY-NC-ND

More information

Joint RuminOmics/Rumen Microbial Genomics Network Workshop

Joint RuminOmics/Rumen Microbial Genomics Network Workshop Joint RuminOmics/Rumen Microbial Genomics Network Workshop Microbiome analysis - Amplicon sequencing Dr. Sinéad Waters Animal and Bioscience Research Department, Teagasc Grange, Ireland Prof. Leluo Guan

More information

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015 High Throughput Sequencing Technologies UCD Genome Center Bioinformatics Core Monday 15 June 2015 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion 2011 PacBio

More information

Genome Sequencing. I: Methods. MMG 835, SPRING 2016 Eukaryotic Molecular Genetics. George I. Mias

Genome Sequencing. I: Methods. MMG 835, SPRING 2016 Eukaryotic Molecular Genetics. George I. Mias Genome Sequencing I: Methods MMG 835, SPRING 2016 Eukaryotic Molecular Genetics George I. Mias Department of Biochemistry and Molecular Biology gmias@msu.edu Sequencing Methods Cost of Sequencing Wetterstrand

More information

Terabases of long-read sequence data, analysed in real time. Available now

Terabases of long-read sequence data, analysed in real time. Available now Terabases of long-read sequence data, analysed in real time Available now The PromethION is a real game changer. Combining ultra-long reads with high sequence output for the production of contiguous, highquality

More information

Functional Genomics Research Stream. Research Meetings: November 2 & 3, 2009 Next Generation Sequencing

Functional Genomics Research Stream. Research Meetings: November 2 & 3, 2009 Next Generation Sequencing Functional Genomics Research Stream Research Meetings: November 2 & 3, 2009 Next Generation Sequencing Current Issues Research Meetings: Meet with me this Thursday or Friday. (bring laboratory notebook

More information

BIOINFORMATICS 1 SEQUENCING TECHNOLOGY. DNA story. DNA story. Sequencing: infancy. Sequencing: beginnings 26/10/16. bioinformatic challenges

BIOINFORMATICS 1 SEQUENCING TECHNOLOGY. DNA story. DNA story. Sequencing: infancy. Sequencing: beginnings 26/10/16. bioinformatic challenges BIOINFORMATICS 1 or why biologists need computers SEQUENCING TECHNOLOGY bioinformatic challenges http://www.bioinformatics.uni-muenster.de/teaching/courses-2012/bioinf1/index.hbi Prof. Dr. Wojciech Makałowski"

More information

MHC Region. MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells

MHC Region. MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells DNA based HLA typing methods By: Yadollah Shakiba, MD, PhD MHC Region MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells Nomenclature of HLA Alleles Assigned

More information

NGS technologies approaches, applications and challenges!

NGS technologies approaches, applications and challenges! www.supagro.fr NGS technologies approaches, applications and challenges! Jean-François Martin Centre de Biologie pour la Gestion des Populations Centre international d études supérieures en sciences agronomiques

More information

Understanding the science and technology of whole genome sequencing

Understanding the science and technology of whole genome sequencing Understanding the science and technology of whole genome sequencing Dag Undlien Department of Medical Genetics Oslo University Hospital University of Oslo and The Norwegian Sequencing Centre d.e.undlien@medisin.uio.no

More information

RNA Sequencing. Next gen insight into transcriptomes , Elio Schijlen

RNA Sequencing. Next gen insight into transcriptomes , Elio Schijlen RNA Sequencing Next gen insight into transcriptomes 05-06-2013, Elio Schijlen Transcriptome complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological

More information

Galaxy Workshop

Galaxy Workshop Galaxy Workshop 1-8-13 Intros: Tom Bair thomas-bair@uiowa.edu Ann Black-Ziegelbein annblack@eng.uiowa.edu Srinivas Maddhi srinivas-maddhi@uiowa.edu What is galaxy good for Access to resources Documentation

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Introduction to NGS. Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018

Introduction to NGS. Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018 Introduction to NGS Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018 Life science data deluge Massive unstructured data from several areas DNA, patient journals,

More information

Outline General NGS background and terms 11/14/2016 CONFLICT OF INTEREST. HLA region targeted enrichment. NGS library preparation methodologies

Outline General NGS background and terms 11/14/2016 CONFLICT OF INTEREST. HLA region targeted enrichment. NGS library preparation methodologies Eric T. Weimer, PhD, D(ABMLI) Assistant Professor, Pathology & Laboratory Medicine, UNC School of Medicine Director, Molecular Immunology Associate Director, Clinical Flow Cytometry, HLA, and Immunology

More information

Bioinformatics: A perspective

Bioinformatics: A perspective Bioinformatics: A perspective Dr. Matthew L. Settles Genome Center University of California, Davis settles@ucdavis.edu Outline Advances in DNA Sequencing The World we are presented with Bioinformatics

More information

DNA Sequencing by Ion Torrent. Marc Lavergne CHEM 4590

DNA Sequencing by Ion Torrent. Marc Lavergne CHEM 4590 DNA Sequencing by Ion Torrent Marc Lavergne CHEM 4590 OVERVIEW History DNA Synthesis and First-Gen Sequencing Technology Sequencing Signal Detection Advantages/Disadvantages Applications Current Research

More information

A Crash Course in NGS for GI Pathologists. Sandra O Toole

A Crash Course in NGS for GI Pathologists. Sandra O Toole A Crash Course in NGS for GI Pathologists Sandra O Toole The Sanger Technique First generation sequencing Uses dideoxynucleotides (dideoxyadenine, dideoxyguanine, etc) These are molecules that resemble

More information

Wheat CAP Gene Expression with RNA-Seq

Wheat CAP Gene Expression with RNA-Seq Wheat CAP Gene Expression with RNA-Seq July 9 th -13 th, 2018 Overview of the workshop, Alina Akhunova http://www.ksre.k-state.edu/igenomics/workshops/ RNA-Seq Workshop Activities Lectures Laboratory Molecular

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Bioinformatics: A perspective

Bioinformatics: A perspective Bioinformatics: A perspective Dr. Matthew L. Settles Genome Center University of California, Davis settles@ucdavis.edu Outline The World we are presented with Advances in DNA Sequencing Bioinformatics

More information

Nanopore sequencing How it works

Nanopore sequencing How it works Product 1 Nanopore sequencing How it works The nanopore processes the length of DNA or RNA presented to it. The user can control fragment length through the library preparation protocol utilised. (e.g.

More information

Library construc.on (overviews and challenges)

Library construc.on (overviews and challenges) Computa(onal Biology and Genomics Workshop April 18-22, 2016 Colorado State University Todos Santos Center Library construc.on (overviews and challenges) Aines Castro Prieto ainescastrop@gmail.com Content

More information

Next Generation Sequencing. Simon Rasmussen Assistant Professor Center for Biological Sequence analysis Technical University of Denmark

Next Generation Sequencing. Simon Rasmussen Assistant Professor Center for Biological Sequence analysis Technical University of Denmark Next eneration Sequencing Simon Rasmussen Assistant Professor enter for Biological Sequence analysis Technical University of Denmark DNA Sequencing DNA sequencing Reading the order of bases in DNA fragments

More information

Deep Sequencing technologies

Deep Sequencing technologies Deep Sequencing technologies Gabriela Salinas 30 October 2017 Transcriptome and Genome Analysis Laboratory http://www.uni-bc.gwdg.de/index.php?id=709 Microarray and Deep-Sequencing Core Facility University

More information

Targeted Sequencing in the NBS Laboratory

Targeted Sequencing in the NBS Laboratory Targeted Sequencing in the NBS Laboratory Christopher Greene, PhD Newborn Screening and Molecular Biology Branch Division of Laboratory Sciences Gene Sequencing in Public Health Newborn Screening February

More information

Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms

Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms Laura Moya Andérico Master in Advanced Genetics Genomics Class December 16 th, 2015 Brief Overview First-generation

More information

Contact us for more information and a quotation

Contact us for more information and a quotation GenePool Information Sheet #1 Installed Sequencing Technologies in the GenePool The GenePool offers sequencing service on three platforms: Sanger (dideoxy) sequencing on ABI 3730 instruments Illumina SOLEXA

More information

Principles of Sequencing and Pla3orms

Principles of Sequencing and Pla3orms Principles of Sequencing and Pla3orms 6/4/2018 RCPA Workshop Ms Leah Roberts PhD candidate University of Queensland TradiMonal diagnosmcs Standardised, established methods and infrastructure, reasonably

More information

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie Sander van Boheemen Medical Microbiology Next-generation sequencing Next-generation sequencing (NGS), also known as

More information

Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis

Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis 1 Genetic Analysis Phenotype analysis: biological-biochemical analysis Behaviour under specific environmental conditions Behaviour of specific genetic configurations Behaviour of progeny in crosses - Genotype

More information

Thema Gentechnologie. Erwin R. Schmidt Institut für Molekulargenetik Vorlesung #

Thema Gentechnologie. Erwin R. Schmidt Institut für Molekulargenetik Vorlesung # Thema Gentechnologie Erwin R. Schmidt Institut für Molekulargenetik Vorlesung #10 01. 07. 2014 Pyrosequenzierung The Pyrosequencing technology is a relatively new DNA sequencing method originally

More information

Bioinformatics: A perspective

Bioinformatics: A perspective Bioinformatics: A perspective Dr. Matthew L. Settles Genome Center University of California, Davis settles@ucdavis.edu Outline The World we are presented with Advances in DNA Sequencing Bioinformatics

More information

1. Introduction Gene regulation Genomics and genome analyses

1. Introduction Gene regulation Genomics and genome analyses 1. Introduction Gene regulation Genomics and genome analyses 2. Gene regulation tools and methods Regulatory sequences and motif discovery TF binding sites Databases 3. Technologies Microarrays Deep sequencing

More information

Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis

Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis 1 Genetic Analysis Phenotype analysis: biological-biochemical analysis Behaviour under specific environmental conditions Behaviour of specific genetic configurations Behaviour of progeny in crosses - Genotype

More information

Next Generation Sequencing. Josef K Vogt Slides by: Simon Rasmussen

Next Generation Sequencing. Josef K Vogt Slides by: Simon Rasmussen Next eneration Sequencing Josef K Vogt Slides by: Simon Rasmussen 2017 Second generation sequencing 454 Illumina 10 6-10 9 90% market share SOLiD Ion Torrent (PM) Library preparation 1.reate library molecules

More information

Welcome to the NGS webinar series

Welcome to the NGS webinar series Welcome to the NGS webinar series Webinar 1 NGS: Introduction to technology, and applications NGS Technology Webinar 2 Targeted NGS for Cancer Research NGS in cancer Webinar 3 NGS: Data analysis for genetic

More information

DNA Sequencing. Happiness Kumburu BSU- workshop Nov, 2016

DNA Sequencing. Happiness Kumburu BSU- workshop Nov, 2016 DNA Sequencing Happiness Kumburu BSU- workshop Nov, 2016 OUT LINE History of DNA sequencing Purpose of DNA sequencing DNA Sequencing Methods Advantages and Disadvantages References DNA SEQUENCING DNA sequencing-the

More information

SMARTer for NGS. SMARTer Solutions 다카라코리아바이오메디칼

SMARTer for NGS. SMARTer Solutions 다카라코리아바이오메디칼 SMARTer for NGS SMARTer Solutions 다카라코리아바이오메디칼 Contents Next Generation Sequencing SMARTer Sequencing Kits Single Cell RNA-Seq & mrna-seq SMARTer Ultra Low Input RNA Kit for Sequencing -v3 SMARTer Ultra

More information

Sequence Assembly and Next Generation Sequencing Informatics CBPS7711

Sequence Assembly and Next Generation Sequencing Informatics CBPS7711 Sequence Assembly and Next Generation Sequencing Informatics CBPS7711 Oct 5, 2010 Sonia Leach, PhD Assistant Professor National Jewish Health sonia.leach@gmail.com Next Generation Sequencing Increasing

More information

Forensic genetics: New frontiers

Forensic genetics: New frontiers Forensic genetics: New frontiers Dennis McNevin (CRICOS) #00212K DNA profiles First application of DNA profiling : The Enderby murder case A single locus minisatellite probe was used to analyze the following

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics IMBB 2017 RAB, Kigali - Rwanda May 02 13, 2017 Joyce Nzioki Plan for the Week Introduction to Bioinformatics Raw sanger sequence data Introduction to CLC Bio Quality Control

More information

Illumina (Solexa) Throughput: 4 Tbp in one run (5 days) Cheapest sequencing technology. Mismatch errors dominate. Cost: ~$1000 per human genme

Illumina (Solexa) Throughput: 4 Tbp in one run (5 days) Cheapest sequencing technology. Mismatch errors dominate. Cost: ~$1000 per human genme Illumina (Solexa) Current market leader Based on sequencing by synthesis Current read length 100-150bp Paired-end easy, longer matepairs harder Error ~0.1% Mismatch errors dominate Throughput: 4 Tbp in

More information

High throughput DNA Sequencing. An Equal Opportunity University!

High throughput DNA Sequencing. An Equal Opportunity University! High throughput DNA Sequencing An Equal Opportunity University! irst Generation DNA sequencing utilize chain terminator technologies (adaptation of Sanger sequencing) Adapt fluorescence chemistry, high-resolution

More information

Application of NGS (next-generation sequencing) for studying RNA regulation

Application of NGS (next-generation sequencing) for studying RNA regulation Application of NGS (next-generation sequencing) for studying RNA regulation SAIHST, SKKU Sung Wook Chi In this lecturre Intro: Sequencing Technology NGS (Next-Generation Sequencing) Sequencing of RNAs

More information

Sequencing Theory. Brett E. Pickett, Ph.D. J. Craig Venter Institute

Sequencing Theory. Brett E. Pickett, Ph.D. J. Craig Venter Institute Sequencing Theory Brett E. Pickett, Ph.D. J. Craig Venter Institute Applications of Genomics and Bioinformatics to Infectious Diseases GABRIEL Network Agenda Sequencing Instruments Sanger Illumina Ion

More information

The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow

The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow Marcus Hausch, Ph.D. 2010 Illumina, Inc. All rights reserved. Illumina, illuminadx, Solexa, Making Sense Out of Life, Oligator,

More information

HLA-Typing Strategies

HLA-Typing Strategies HLA-Typing Strategies Cologne, 13.5.2017 Joannis Mytilineos MD, PhD Department of Transplantation Immunology Institute for Clinical Transfusion Medicine and Immunogenetics German Red Cross Blood Transfusion

More information

KAPA hgdna QUANTIFICATION AND QC KIT:

KAPA hgdna QUANTIFICATION AND QC KIT: Poster Note As presented at AGBT 2015, Marco Island, FL KAPA hgdna QUANTIFICATION AND QC KIT: The KAPA Human Genomic DNA Quantification and QC Kit Enables Prediction of Sequencing Performance through User-Defined

More information

Next Generation Sequencing at the. Marja Jakobs Core Facility Genomics

Next Generation Sequencing at the. Marja Jakobs Core Facility Genomics Next Generation Sequencing at the Marja Jakobs Core Facility Genomics Timeline DNA sequencing 1953 Discovery of DNA structure 1961 Sequentional oligosynthesis possible 1977 Sanger sequencing method published

More information

Get to Know Your DNA. Every Single Fragment.

Get to Know Your DNA. Every Single Fragment. HaloPlex HS NGS Target Enrichment System Get to Know Your DNA. Every Single Fragment. High sensitivity detection of rare variants using molecular barcodes How Does Molecular Barcoding Work? HaloPlex HS

More information

FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS

FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu

More information

Illumina s Suite of Targeted Resequencing Solutions

Illumina s Suite of Targeted Resequencing Solutions Illumina s Suite of Targeted Resequencing Solutions Colin Baron Sr. Product Manager Sequencing Applications 2011 Illumina, Inc. All rights reserved. Illumina, illuminadx, Solexa, Making Sense Out of Life,

More information

NEXT-GENERATION SEQUENCING AND BIOINFORMATICS

NEXT-GENERATION SEQUENCING AND BIOINFORMATICS NEXT-GENERATION SEQUENCING AND BIOINFORMATICS Moore's law: the number of transistors in a dense integrated circuit doubles every two years Moore's law calculates and predicts the pace of improvement of

More information

Next Generation Sequencing (NGS) Market Size, Growth and Trends ( )

Next Generation Sequencing (NGS) Market Size, Growth and Trends ( ) Next Generation Sequencing (NGS) Market Size, Growth and Trends (2014-2020) July, 2017 4 th edition Information contained in this market report is believed to be reliable at the time of publication. DeciBio

More information

2 nd Genera-on ( NextGen ) Sequencing Technologies

2 nd Genera-on ( NextGen ) Sequencing Technologies 2 nd Genera-on ( NextGen ) Sequencing Technologies Jay Shendure Read Length is Not As Important For Resequencing % of Paired K-mers with Uniquely Assignable Location 100% 90% 80% 70% 60% 50% 40% 30% 20%

More information

Chapter 7. DNA Microarrays

Chapter 7. DNA Microarrays Bioinformatics III Structural Bioinformatics and Genome Analysis Chapter 7. DNA Microarrays 7.9 Next Generation Sequencing 454 Sequencing Solexa Illumina Solid TM System Sequencing Process of determining

More information

Surely Better Target Enrichment from Sample to Sequencer

Surely Better Target Enrichment from Sample to Sequencer sureselect TARGET ENRICHMENT solutions Surely Better Target Enrichment from Sample to Sequencer Agilent s market leading SureSelect platform provides a complete portfolio of catalog to custom products,

More information

Executive Summary. Technologies

Executive Summary. Technologies First-generation DNA sequencing, dominated by the Sanger method, reached its peak with the introduction of automated capillary electrophoresis-based instruments, which facilitated the timely completion

More information

Sequencing technologies

Sequencing technologies Sequencing technologies part of High-Throughput Analyzes of Genome Sequenzes Computational EvoDevo University of Leipzig Leipzig, WS 2014/15 Sanger Sequencing (Chain Termination Method) Sequencing of one

More information

Fully Automated Library Quantification for Illumina Sequencing on the NGS STAR

Fully Automated Library Quantification for Illumina Sequencing on the NGS STAR Fully Automated Library Quantification for Illumina Sequencing on the NGS STAR Introduction Hamilton Robotics, an industry leader in liquid handling and laboratory automation equipment, has partnered with

More information

IMGM Laboratories GmbH. Sales Manager

IMGM Laboratories GmbH. Sales Manager IMGM Laboratories GmbH Dr. Jennifer K. Kuhn Sales Manager About IMGM Laboratories IMGM Laboratories was founded in 2001 IMGM operates as professional provider of advanced genomic services from research

More information

RNA sequencing with the MinION at Genoscope

RNA sequencing with the MinION at Genoscope RNA sequencing with the MinION at Genoscope Jean-Marc Aury jmaury@genoscope.cns.fr @J_M_Aury December 13, 2017 RNA workshop, Genoscope Overview Genoscope Overview MinION sequencing at Genoscope RNA-Seq

More information

High throughput sequencing technologies

High throughput sequencing technologies High throughput sequencing technologies and NGS applications Mei-yeh Lu 呂美曄 High Throughput Sequencing Core Manager g g p q g g Academia Sinica 6/30/2011 Outlines Evolution of sequencing technologies Sanger

More information

2nd (Next) Generation Sequencing 2/2/2018

2nd (Next) Generation Sequencing 2/2/2018 2nd (Next) Generation Sequencing 2/2/2018 Why do we want to sequence a genome? - To see the sequence (assembly) To validate an experiment (insert or knockout) To compare to another genome and find variations

More information

Introduction to Bioinformatics and Gene Expression Technologies

Introduction to Bioinformatics and Gene Expression Technologies Introduction to Bioinformatics and Gene Expression Technologies Utah State University Fall 2017 Statistical Bioinformatics (Biomedical Big Data) Notes 1 1 Vocabulary Gene: hereditary DNA sequence at a

More information

Introduction to Bioinformatics and Gene Expression Technologies

Introduction to Bioinformatics and Gene Expression Technologies Vocabulary Introduction to Bioinformatics and Gene Expression Technologies Utah State University Fall 2017 Statistical Bioinformatics (Biomedical Big Data) Notes 1 Gene: Genetics: Genome: Genomics: hereditary

More information