Sequencing Theory. Brett E. Pickett, Ph.D. J. Craig Venter Institute

Size: px
Start display at page:

Download "Sequencing Theory. Brett E. Pickett, Ph.D. J. Craig Venter Institute"

Transcription

1 Sequencing Theory Brett E. Pickett, Ph.D. J. Craig Venter Institute Applications of Genomics and Bioinformatics to Infectious Diseases GABRIEL Network

2 Agenda Sequencing Instruments Sanger Illumina Ion Torrent Oxford Nanopore PacBio

3 Virus (or Pathogen) Sequencing Application of NGS to study of Virus Evolution and Molecular Epidemiology Track the evolution of viruses over time Better understand the selective pressures that drive virus evolution Identify the origins (reservoir) of outbreak strains Investigate transmission dynamics Identify molecular determinants of host range Identification of evolutionarily conserved regions for targeted vaccines

4 Some Trivia What year was the first whole genome sequence reported? a) 1969 b) 1977 c) 1981 d) 1985 For which organism? Bacteriophage ΦX174 (5,375 bp) What method was used? dideoxy chain termination with 32 P (aka Sanger sequencing) What year was the first whole genome sequence for a free living organism reported? a) 1979 b) 1984 c) 1989 d) 1995 For which organism? Haemophilus influenza (1.8 x 10 6 bp) What method was used?

5 Some Trivia What year was the first whole genome sequence reported? a) 1969 b) 1977 c) 1981 d) 1985 For which organism? Bacteriophage ΦX174 (5,375 bp) What method was used? dideoxy chain termination with 32 P (aka Sanger sequencing) What year was the first whole genome sequence for a free living organism reported? a) 1979 b) 1984 c) 1989 d) 1995 For which organism? Haemophilus influenza (1.8 x 10 6 bp) What method was used? Sanger sequencing with fluorescence

6 JCVI Joint Technology Core ABI 3730xl Capacity: 240,000 sequences/day or 80 million lanes/year at 24 runs per day

7 New JCVI Joint Technology Core Illumina NextSeq/MiSeq 800 million reads/runs Oxford Nanopore MinION

8 Sanger vs NGS

9 Change in Cost 1st Generation Next Generation Next Generation w/broad adoption Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: Accessed 23AUG2017.

10 Sanger

11 Sanger 1 => Sanger 2

12 A chromatogram

13 Illumina

14 Illumina Instruments

15 Illumina Sequencing (Optics-Based)

16 ION Torrent

17 ION Torrent Sequencing (H+ Based) High-throughput

18 PacBio

19 Single molecule detection Sequencing by synthesis Single base incorporation Sequences same molecule multiple times Random error detection Easy to generate consensus

20 Oxford Nanopore

21 Oxford Nanopore sequencing DNA pushed through a nanopore in a lipid membrane Speed control provided by a Phi29 DNA polymerase Measure changes in the ionic current of an applied electric field Combined w/ other platform to improve quality of assembly

22 Read Lengt 2e+05 Oxford 5 produces high quality reads >50 Read kb; GC Content longest 1e+05 >800 Read GC Content kb 1e+05 C Read Read Lengt D 2e+05 Read 5 0e+00 0e+00 E e Read Length Read GC Content 1e+05 Oxford F Read Length 2e+05 1e Read GC Content PacBio 0e+00 0e Read GC Content Read GC Content Read Length 2e+05 1e+05 0e+00 E Read Length 2e+05 1e+05 Read Length F Read Length 2e+05 1e+05 2e+05 1e+05 0e+00 0e Read Quality Score Read Quality Score 0e Read Quality Score Read Quality Score 4k 8k 12k 4k 8k 12k 20k 40k 60k 20k 40k 60k Read Count Read Count Read Count Read Count

23 Long Read Technology Comparison Advantages Full length transcriptomes, including splice variants Resolution of long repeat regions in genomes Genomic structural variants Haplotype phasing Disadvantages High error rates Higher cost Lower throughput

24 Instrument Comparison Platform Advantages Disadvantages HiSeq PE run (2x75) MiSeq PE run (2x300) Ion Torrent (200bp, 318 chip) high throughput, lowest per base cost high throughput, low per base cost, fast turnaround? fast turn-around short reads, long run time data quality, homopolymers Oxford Nanopore PacBio Sanger run (96 wells) Fast turn-around, various use cases, long reads, low-cost instrument base-calling various use cases, long reads, high quality data, long read length intense library prep, instrument cost high cost, low throughput

25 FastQ NCACAGACACACACGAACACACAAAGACATGCCCATATGAAGAT + NCTGGCACCTTGATTTTGGACTTCCCAGCCTCCAGAACTGTGAG + % NCTGCTTGCACCCCTGAAGTCACTGATCACATTTCAGGGTCACC + NGATTGACATTGGCAAAGAGGACAACTGATTGCAAACTTCACAC + NAGGCTCAGGCGCACGGCCTACATCGTCGCTGTCGGCCAAGGGG + Read (sequence) Quality scores (phred-33)

26 Assessing Quality: Phred scores Phred quality scores were originally produced by the Phred base calling program using a statistical analysis of Sanger chromatogram trace files in support of the Human Genome Project. Subsequently adapted to NGS technologies for judging qualities of sequences. Q = -10 log 10 P e P e = error probability of a given base call

27 Acknowledgements JCVI Vinita Puri William Nierman, Ph.D. Karen Nelson, Ph.D. Alan Durbin Torrey Williams Kari A. Dilley, Ph.D. Lauren Oldfield, Ph.D. Susmita Shrivastava Nadia Fedorova Mark Novotny U19AI Paolo Amedeo, Ph.D. Reed S. Shabman, Ph.D. Gene Tan, Ph.D.

28 Questions?

Aaron Liston, Oregon State University Botany 2012 Intro to Next Generation Sequencing Workshop

Aaron Liston, Oregon State University Botany 2012 Intro to Next Generation Sequencing Workshop Output (bp) Aaron Liston, Oregon State University Growth in Next-Gen Sequencing Capacity 3.5E+11 2002 2004 2006 2008 2010 3.0E+11 2.5E+11 2.0E+11 1.5E+11 1.0E+11 Adapted from Mardis, 2011, Nature 5.0E+10

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Sequencing techniques

Sequencing techniques Sequencing techniques Workshop on Whole Genome Sequencing and Analysis, 2-4 Oct. 2017 Learning objective: After this lecture, you should be able to account for different techniques for whole genome sequencing

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Next-generation sequencing Technology Overview

Next-generation sequencing Technology Overview Next-generation sequencing Technology Overview UQ Winter School 2018 Christopher Noune, PhD AGRF Melbourne christopher.noune@agrf.org.au What is NGS? Ion Torrent PGM (Thermo-Fisher) MiSeq (Illumina) High-Throughput

More information

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie Sander van Boheemen Medical Microbiology Next-generation sequencing Next-generation sequencing (NGS), also known as

More information

Using New ThiNGS on Small Things. Shane Byrne

Using New ThiNGS on Small Things. Shane Byrne Using New ThiNGS on Small Things Shane Byrne Next Generation Sequencing New Things Small Things NGS Next Generation Sequencing = 2 nd generation of sequencing 454 GS FLX, SOLiD, GAIIx, HiSeq, MiSeq, Ion

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Understanding the science and technology of whole genome sequencing

Understanding the science and technology of whole genome sequencing Understanding the science and technology of whole genome sequencing Dag Undlien Department of Medical Genetics Oslo University Hospital University of Oslo and The Norwegian Sequencing Centre d.e.undlien@medisin.uio.no

More information

Outline General NGS background and terms 11/14/2016 CONFLICT OF INTEREST. HLA region targeted enrichment. NGS library preparation methodologies

Outline General NGS background and terms 11/14/2016 CONFLICT OF INTEREST. HLA region targeted enrichment. NGS library preparation methodologies Eric T. Weimer, PhD, D(ABMLI) Assistant Professor, Pathology & Laboratory Medicine, UNC School of Medicine Director, Molecular Immunology Associate Director, Clinical Flow Cytometry, HLA, and Immunology

More information

Next-Generation Sequencing. Technologies

Next-Generation Sequencing. Technologies Next-Generation Next-Generation Sequencing Technologies Sequencing Technologies Nicholas E. Navin, Ph.D. MD Anderson Cancer Center Dept. Genetics Dept. Bioinformatics Introduction to Bioinformatics GS011062

More information

Deep Sequencing technologies

Deep Sequencing technologies Deep Sequencing technologies Gabriela Salinas 30 October 2017 Transcriptome and Genome Analysis Laboratory http://www.uni-bc.gwdg.de/index.php?id=709 Microarray and Deep-Sequencing Core Facility University

More information

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017 Next Generation Sequencing Jeroen Van Houdt - Leuven 13/10/2017 Landmarks in DNA sequencing 1953 Discovery of DNA double helix structure 1977 A Maxam and W Gilbert "DNA seq by chemical degradation" F Sanger"DNA

More information

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015 High Throughput Sequencing Technologies UCD Genome Center Bioinformatics Core Monday 15 June 2015 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion 2011 PacBio

More information

Data Basics. Josef K Vogt Slides by: Simon Rasmussen Next Generation Sequencing Analysis

Data Basics. Josef K Vogt Slides by: Simon Rasmussen Next Generation Sequencing Analysis Data Basics Josef K Vogt Slides by: Simon Rasmussen 2017 Generalized NGS analysis Sample prep & Sequencing Data size Main data reductive steps SNPs, genes, regions Application Assembly: Compare Raw Pre-

More information

Next Gen Sequencing. Expansion of sequencing technology. Contents

Next Gen Sequencing. Expansion of sequencing technology. Contents Next Gen Sequencing Contents 1 Expansion of sequencing technology 2 The Next Generation of Sequencing: High-Throughput Technologies 3 High Throughput Sequencing Applied to Genome Sequencing (TEDed CC BY-NC-ND

More information

Third Generation Sequencing

Third Generation Sequencing Third Generation Sequencing By Mohammad Hasan Samiee Aref Medical Genetics Laboratory of Dr. Zeinali History of DNA sequencing 1953 : Discovery of DNA structure by Watson and Crick 1973 : First sequence

More information

Next- gen sequencing. STAMPS 2015 Hilary G. Morrison Joe Vineis, Nora Downey, Be>e Hecox- Lea, Kim Finnegan

Next- gen sequencing. STAMPS 2015 Hilary G. Morrison Joe Vineis, Nora Downey, Be>e Hecox- Lea, Kim Finnegan Next- gen sequencing STAMPS 2015 Hilary G. Morrison Joe Vineis, Nora Downey, Be>e Hecox- Lea, Kim Finnegan QuesIons What is the difference between standard and next- gen sequencing? How is next- gen sequencing

More information

BIOINFORMATICS 1 SEQUENCING TECHNOLOGY. DNA story. DNA story. Sequencing: infancy. Sequencing: beginnings 26/10/16. bioinformatic challenges

BIOINFORMATICS 1 SEQUENCING TECHNOLOGY. DNA story. DNA story. Sequencing: infancy. Sequencing: beginnings 26/10/16. bioinformatic challenges BIOINFORMATICS 1 or why biologists need computers SEQUENCING TECHNOLOGY bioinformatic challenges http://www.bioinformatics.uni-muenster.de/teaching/courses-2012/bioinf1/index.hbi Prof. Dr. Wojciech Makałowski"

More information

NGS technologies: a user s guide. Karim Gharbi & Mark Blaxter

NGS technologies: a user s guide. Karim Gharbi & Mark Blaxter NGS technologies: a user s guide Karim Gharbi & Mark Blaxter genepool-manager@ed.ac.uk Natural history of sequencing 2 Brief history of sequencing 100s bp throughput 100 Gb 1977 1986 1995 1999 2005 2007

More information

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun The Journey of DNA Sequencing H. Sunny Sun What is a genome? Genome is the total genetic complement of a living organism. The nuclear genome comprises approximately 3.2 * 10 9 nucleotides of DNA, divided

More information

Sequencing techniques and applications

Sequencing techniques and applications I519 Introduction to Bioinformatics Sequencing techniques and applications Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Contents Sequencing techniques Sanger sequencing Next generation

More information

Introduction to Next Generation Sequencing (NGS)

Introduction to Next Generation Sequencing (NGS) Introduction to Next eneration Sequencing (NS) Simon Rasmussen Assistant Professor enter for Biological Sequence analysis Technical University of Denmark 2012 Today 9.00-9.45: Introduction to NS, How it

More information

DNA Sequencing by Ion Torrent. Marc Lavergne CHEM 4590

DNA Sequencing by Ion Torrent. Marc Lavergne CHEM 4590 DNA Sequencing by Ion Torrent Marc Lavergne CHEM 4590 OVERVIEW History DNA Synthesis and First-Gen Sequencing Technology Sequencing Signal Detection Advantages/Disadvantages Applications Current Research

More information

Next Generation Sequencing Lecture Saarbrücken, 19. March Sequencing Platforms

Next Generation Sequencing Lecture Saarbrücken, 19. March Sequencing Platforms Next Generation Sequencing Lecture Saarbrücken, 19. March 2012 Sequencing Platforms Contents Introduction Sequencing Workflow Platforms Roche 454 ABI SOLiD Illumina Genome Anlayzer / HiSeq Problems Quality

More information

Next Generation Sequencing. Tobias Österlund

Next Generation Sequencing. Tobias Österlund Next Generation Sequencing Tobias Österlund tobiaso@chalmers.se NGS part of the course Week 4 Friday 13/2 15.15-17.00 NGS lecture 1: Introduction to NGS, alignment, assembly Week 6 Thursday 26/2 08.00-09.45

More information

Overview of Next Generation Sequencing technologies. Céline Keime

Overview of Next Generation Sequencing technologies. Céline Keime Overview of Next Generation Sequencing technologies Céline Keime keime@igbmc.fr Next Generation Sequencing < Second generation sequencing < General principle < Sequencing by synthesis - Illumina < Sequencing

More information

Galaxy Workshop

Galaxy Workshop Galaxy Workshop 1-8-13 Intros: Tom Bair thomas-bair@uiowa.edu Ann Black-Ziegelbein annblack@eng.uiowa.edu Srinivas Maddhi srinivas-maddhi@uiowa.edu What is galaxy good for Access to resources Documentation

More information

NEXT GENERATION SEQUENCING. Farhat Habib

NEXT GENERATION SEQUENCING. Farhat Habib NEXT GENERATION SEQUENCING HISTORY HISTORY Sanger Dominant for last ~30 years 1000bp longest read Based on primers so not good for repetitive or SNPs sites HISTORY Sanger Dominant for last ~30 years 1000bp

More information

TREE CODE PRODUCT BROCHURE

TREE CODE PRODUCT BROCHURE TREE CODE PRODUCT BROCHURE Single Molecule, Real-Time (SMRT) Sequencing technology offers: Long read sequencing ~10 Gb with 20 kb average read lengths for WGS ~20 Gb with 40 kb average read length for

More information

FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS

FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu

More information

Matthew Tinning Australian Genome Research Facility. July 2012

Matthew Tinning Australian Genome Research Facility. July 2012 Next-Generation Sequencing: an overview of technologies and applications Matthew Tinning Australian Genome Research Facility July 2012 History of Sequencing Where have we been? 1869 Discovery of DNA 1909

More information

Principles of Sequencing and Pla3orms

Principles of Sequencing and Pla3orms Principles of Sequencing and Pla3orms 6/4/2018 RCPA Workshop Ms Leah Roberts PhD candidate University of Queensland TradiMonal diagnosmcs Standardised, established methods and infrastructure, reasonably

More information

Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms

Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms Laura Moya Andérico Master in Advanced Genetics Genomics Class December 16 th, 2015 Brief Overview First-generation

More information

Next generation sequencing in diagnostic laboratories: opportunities and challenges

Next generation sequencing in diagnostic laboratories: opportunities and challenges Next generation sequencing in diagnostic laboratories: opportunities and challenges Vitali Sintchenko Marie Bashir Institute for Emerging Infectious Diseases & Biosecurity Declaration No conflict of interest

More information

AUDREY FARBOS JEREMIE POSCHMANN PAUL O NEILL KONRAD PASZKIEWICZ KAREN MOORE

AUDREY FARBOS JEREMIE POSCHMANN PAUL O NEILL KONRAD PASZKIEWICZ KAREN MOORE We provide: AUDREY FARBOS JEREMIE POSCHMANN PAUL O NEILL KONRAD PASZKIEWICZ KAREN MOORE State of the art genomics and bioinformatics analysis Training in experimental techniques, analysis and modelling

More information

Next Generation Sequencing (NGS)

Next Generation Sequencing (NGS) Next Generation Sequencing (NGS) Fernando Alvarez Sección Biomatemática, Facultad de Ciencias, UdelaR 1 Uruguay Montevide o 3 TANGO World Champ 1930 1950 (Maraca 4 Next Generation Sequencing module Next

More information

Targeted Sequencing in the NBS Laboratory

Targeted Sequencing in the NBS Laboratory Targeted Sequencing in the NBS Laboratory Christopher Greene, PhD Newborn Screening and Molecular Biology Branch Division of Laboratory Sciences Gene Sequencing in Public Health Newborn Screening February

More information

Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics

Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics Workshop on Whole Genome Sequencing and Analysis, 19-21 Mar. 2018 Whole genome sequencing is currently revolutionising

More information

INTRODUCTION TO GENOMICS & SEQUENCING

INTRODUCTION TO GENOMICS & SEQUENCING With thanks to: Mark Pallen Lex Nederbragt NICK LOMAN UNIVERSITY OF BIRMINGHAM INTRODUCTION TO GENOMICS & SEQUENCING PICTURE QUIZ http://en.wikipedia.org/wiki/charles_darwin 1859 http://www2.hn.psu.edu/faculty/jmanis/darwin/originspecies.pdf

More information

EURL WORKING GROUP ON WHOLE GENOME SEQUENCING AND PULSENET INTERNATIONAL

EURL WORKING GROUP ON WHOLE GENOME SEQUENCING AND PULSENET INTERNATIONAL EURL WORKING GROUP ON WHOLE GENOME SEQUENCING AND PULSENET INTERNATIONAL EURL-Campylobacter workshop, 9/10-2018 Joakim Skarin, SVA Objectives of the WG-NGS To promote the use of NGS across the EURL networks

More information

A Crash Course in NGS for GI Pathologists. Sandra O Toole

A Crash Course in NGS for GI Pathologists. Sandra O Toole A Crash Course in NGS for GI Pathologists Sandra O Toole The Sanger Technique First generation sequencing Uses dideoxynucleotides (dideoxyadenine, dideoxyguanine, etc) These are molecules that resemble

More information

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) DNA-Sequencing Technologies & Devices Matthias Platzer Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day,

More information

Plant Breeding and Agri Genomics. Team Genotypic 24 November 2012

Plant Breeding and Agri Genomics. Team Genotypic 24 November 2012 Plant Breeding and Agri Genomics Team Genotypic 24 November 2012 Genotypic Family: The Best Genomics Experts Under One Roof 10 PhDs and 78 MSc MTech BTech ABOUT US! Genotypic is a Genomics company, which

More information

Wheat CAP Gene Expression with RNA-Seq

Wheat CAP Gene Expression with RNA-Seq Wheat CAP Gene Expression with RNA-Seq July 9 th -13 th, 2018 Overview of the workshop, Alina Akhunova http://www.ksre.k-state.edu/igenomics/workshops/ RNA-Seq Workshop Activities Lectures Laboratory Molecular

More information

2014 APHL Next Generation Sequencing (NGS) Survey

2014 APHL Next Generation Sequencing (NGS) Survey APHL would like you to complete the Next Generation Sequencing (NGS) in Public Health Laboratories Survey. The purpose of this survey is to collect information on current capacities for NGS testing and

More information

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) DNA-Sequencing Technologies & Devices Matthias Platzer Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day,

More information

1. Introduction Gene regulation Genomics and genome analyses

1. Introduction Gene regulation Genomics and genome analyses 1. Introduction Gene regulation Genomics and genome analyses 2. Gene regulation tools and methods Regulatory sequences and motif discovery TF binding sites Databases 3. Technologies Microarrays Deep sequencing

More information

The Genome Analysis Centre. Building Excellence in Genomics and Computa5onal Bioscience

The Genome Analysis Centre. Building Excellence in Genomics and Computa5onal Bioscience Building Excellence in Genomics and Computa5onal Bioscience Resequencing approaches Sarah Ayling Crop Genomics and Diversity sarah.ayling@tgac.ac.uk Why re- sequence plants? To iden

More information

2nd (Next) Generation Sequencing 2/2/2018

2nd (Next) Generation Sequencing 2/2/2018 2nd (Next) Generation Sequencing 2/2/2018 Why do we want to sequence a genome? - To see the sequence (assembly) To validate an experiment (insert or knockout) To compare to another genome and find variations

More information

Human genome sequence

Human genome sequence NGS: the basics Human genome sequence June 26th 2000: official announcement of the completion of the draft of the human genome sequence (truly finished in 2004) Francis Collins Craig Venter HGP: 3 billion

More information

Research school methods seminar Genomics and Transcriptomics

Research school methods seminar Genomics and Transcriptomics Research school methods seminar Genomics and Transcriptomics Stephan Klee 19.11.2014 2 3 4 5 Genetics, Genomics what are we talking about? Genetics and Genomics Study of genes Role of genes in inheritence

More information

Illumina (Solexa) Throughput: 4 Tbp in one run (5 days) Cheapest sequencing technology. Mismatch errors dominate. Cost: ~$1000 per human genme

Illumina (Solexa) Throughput: 4 Tbp in one run (5 days) Cheapest sequencing technology. Mismatch errors dominate. Cost: ~$1000 per human genme Illumina (Solexa) Current market leader Based on sequencing by synthesis Current read length 100-150bp Paired-end easy, longer matepairs harder Error ~0.1% Mismatch errors dominate Throughput: 4 Tbp in

More information

Faramarz Valafar.

Faramarz Valafar. Faramarz Valafar faramarz@sciences.sdsu.edu http://informatics.sdsu.edu/ Biomedical Informatics Research Center (BMIRC) Office: GMCS 625 San Diego State University Molecular Diagnostics for Drug Resistant

More information

Next Generation Sequencing (NGS) Market Size, Growth and Trends ( )

Next Generation Sequencing (NGS) Market Size, Growth and Trends ( ) Next Generation Sequencing (NGS) Market Size, Growth and Trends (2014-2020) July, 2017 4 th edition Information contained in this market report is believed to be reliable at the time of publication. DeciBio

More information

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits Incorporating Molecular ID Technology Accel-NGS 2S MID Indexing Kits Molecular Identifiers (MIDs) MIDs are indices used to label unique library molecules MIDs can assess duplicate molecules in sequencing

More information

CM581A2: NEXT GENERATION SEQUENCING PLATFORMS AND LIBRARY GENERATION

CM581A2: NEXT GENERATION SEQUENCING PLATFORMS AND LIBRARY GENERATION CM581A2: NEXT GENERATION SEQUENCING PLATFORMS AND LIBRARY GENERATION Fall 2015 Instructors: Coordinator: Carol Wilusz, Associate Professor MIP, CMB Instructor: Dan Sloan, Assistant Professor, Biology,

More information

Next-generation sequencing and quality control: An introduction 2016

Next-generation sequencing and quality control: An introduction 2016 Next-generation sequencing and quality control: An introduction 2016 s.schmeier@massey.ac.nz http://sschmeier.com/bioinf-workshop/ Overview Typical workflow of a genomics experiment Genome versus transcriptome

More information

choose MBL-REGISTER user: dm00834 password: dm00834 http://register.mbl.edu/ stamps.mbl.edu this uses the username and password on your STAMPS name badge Strategies for Analysis of Microbial Population

More information

BST 226 Statistical Methods for Bioinformatics David M. Rocke. March 10, 2014 BST 226 Statistical Methods for Bioinformatics 1

BST 226 Statistical Methods for Bioinformatics David M. Rocke. March 10, 2014 BST 226 Statistical Methods for Bioinformatics 1 BST 226 Statistical Methods for Bioinformatics David M. Rocke March 10, 2014 BST 226 Statistical Methods for Bioinformatics 1 NGS Technologies Illumina Sequencing HiSeq 2500 & MiSeq PacBio Sequencing PacBio

More information

High Throughput Sequencing the Multi-Tool of Life Sciences. Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center

High Throughput Sequencing the Multi-Tool of Life Sciences. Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center High Throughput Sequencing the Multi-Tool of Life Sciences Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center Complementary Approaches Illumina Still-imaging of clusters (~1000

More information

CBC Data Therapy. Metagenomics Discussion

CBC Data Therapy. Metagenomics Discussion CBC Data Therapy Metagenomics Discussion General Workflow Microbial sample Generate Metaomic data Process data (QC, etc.) Analysis Marker Genes Extract DNA Amplify with targeted primers Filter errors,

More information

Introduction to NGS. Josef K Vogt Slides by: Simon Rasmussen Next Generation Sequencing Analysis

Introduction to NGS. Josef K Vogt Slides by: Simon Rasmussen Next Generation Sequencing Analysis Introduction to NGS Josef K Vogt Slides by: Simon Rasmussen 2017 Life science data deluge Massive unstructured data from several areas DNA, patient journals, proteomics, imaging,... Impacts Industry, Environment,

More information

NGS technologies approaches, applications and challenges!

NGS technologies approaches, applications and challenges! www.supagro.fr NGS technologies approaches, applications and challenges! Jean-François Martin Centre de Biologie pour la Gestion des Populations Centre international d études supérieures en sciences agronomiques

More information

Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA. March 2, Steven R. Kain, Ph.D. ABRF 2013

Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA. March 2, Steven R. Kain, Ph.D. ABRF 2013 Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA March 2, 2013 Steven R. Kain, Ph.D. ABRF 2013 NuGEN s Core Technologies Selective Sequence Priming Nucleic Acid Amplification

More information

RNA Sequencing. Next gen insight into transcriptomes , Elio Schijlen

RNA Sequencing. Next gen insight into transcriptomes , Elio Schijlen RNA Sequencing Next gen insight into transcriptomes 05-06-2013, Elio Schijlen Transcriptome complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological

More information

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture The use of new sequencing technologies for genome analysis Chris Mattocks National Genetics Reference Laboratory (Wessex) NGRL (Wessex) 2008 Outline General principles of clonal sequencing Analysis principles

More information

Welcome to the NGS webinar series

Welcome to the NGS webinar series Welcome to the NGS webinar series Webinar 1 NGS: Introduction to technology, and applications NGS Technology Webinar 2 Targeted NGS for Cancer Research NGS in cancer Webinar 3 NGS: Data analysis for genetic

More information

Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics

Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics Workshop on Whole Genome Sequencing and Analysis, 2-4 Oct. 2017 Whole genome sequencing is currently revolutionising

More information

Introduction to Microbial Sequencing

Introduction to Microbial Sequencing Introduction to Microbial Sequencing Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu General rules for preparing

More information

Sanger vs Next-Gen Sequencing

Sanger vs Next-Gen Sequencing Tools and Algorithms in Bioinformatics GCBA815/MCGB815/BMI815, Fall 2017 Week-8: Next-Gen Sequencing RNA-seq Data Analysis Babu Guda, Ph.D. Professor, Genetics, Cell Biology & Anatomy Director, Bioinformatics

More information

HLA-Typing Strategies

HLA-Typing Strategies HLA-Typing Strategies Cologne, 13.5.2017 Joannis Mytilineos MD, PhD Department of Transplantation Immunology Institute for Clinical Transfusion Medicine and Immunogenetics German Red Cross Blood Transfusion

More information

DNBseq TM SERVICE OVERVIEW Plant and Animal Whole Genome Re-Sequencing

DNBseq TM SERVICE OVERVIEW Plant and Animal Whole Genome Re-Sequencing TM SERVICE OVERVIEW Plant and Animal Whole Genome Re-Sequencing Plant and animal whole genome re-sequencing (WGRS) involves sequencing the entire genome of a plant or animal and comparing the sequence

More information

Next Generation Sequencing Technologies

Next Generation Sequencing Technologies Next Generation Sequencing Technologies What is first generation? Sanger Sequencing DNA Polymerase Base-adding reaction +H + http://chemwiki.ucdavis.edu/organic_chemistry/organic_chemistry_with_a_biological_emphasis/chapter_10%3a_phosphoryl_transfer_reactions/section_10.4%3a_phosphate_diesters

More information

Analytics Behind Genomic Testing

Analytics Behind Genomic Testing A Quick Guide to the Analytics Behind Genomic Testing Elaine Gee, PhD Director, Bioinformatics ARUP Laboratories 1 Learning Objectives Catalogue various types of bioinformatics analyses that support clinical

More information

Genome Sequencing. I: Methods. MMG 835, SPRING 2016 Eukaryotic Molecular Genetics. George I. Mias

Genome Sequencing. I: Methods. MMG 835, SPRING 2016 Eukaryotic Molecular Genetics. George I. Mias Genome Sequencing I: Methods MMG 835, SPRING 2016 Eukaryotic Molecular Genetics George I. Mias Department of Biochemistry and Molecular Biology gmias@msu.edu Sequencing Methods Cost of Sequencing Wetterstrand

More information

Experimental Design. Sequencing. Data Quality Control. Read mapping. Differential Expression analysis

Experimental Design. Sequencing. Data Quality Control. Read mapping. Differential Expression analysis -Seq Analysis Quality Control checks Reproducibility Reliability -seq vs Microarray Higher sensitivity and dynamic range Lower technical variation Available for all species Novel transcript identification

More information

High Throughput Sequencing the Multi-Tool of Life Sciences. Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center

High Throughput Sequencing the Multi-Tool of Life Sciences. Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center High Throughput Sequencing the Multi-Tool of Life Sciences Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center DNA Technologies & Expression Analysis Cores HT Sequencing (Illumina

More information

Lecture 7. Next-generation sequencing technologies

Lecture 7. Next-generation sequencing technologies Lecture 7 Next-generation sequencing technologies Next-generation sequencing technologies General principles of short-read NGS Construct a library of fragments Generate clonal template populations Massively

More information

DE NOVO WHOLE GENOME ASSEMBLY AND SEQUENCING OF THE SUPERB FAIRYWREN. (Malurus cyaneus) JOSHUA PEÑALBA LEO JOSEPH CRAIG MORITZ ANDREW COCKBURN

DE NOVO WHOLE GENOME ASSEMBLY AND SEQUENCING OF THE SUPERB FAIRYWREN. (Malurus cyaneus) JOSHUA PEÑALBA LEO JOSEPH CRAIG MORITZ ANDREW COCKBURN DE NOVO WHOLE GENOME ASSEMBLY AND SEQUENCING OF THE SUPERB FAIRYWREN (Malurus cyaneus) JOSHUA PEÑALBA LEO JOSEPH CRAIG MORITZ ANDREW COCKBURN ... 2014 2015 2016 2017 ... 2014 2015 2016 2017 Synthetic

More information

Next generation sequencing techniques" Toma Tebaldi Centre for Integrative Biology University of Trento

Next generation sequencing techniques Toma Tebaldi Centre for Integrative Biology University of Trento Next generation sequencing techniques" Toma Tebaldi Centre for Integrative Biology University of Trento Mattarello September 28, 2009 Sequencing Fundamental task in modern biology read the information

More information

DNA Sequencing. Happiness Kumburu BSU- workshop Nov, 2016

DNA Sequencing. Happiness Kumburu BSU- workshop Nov, 2016 DNA Sequencing Happiness Kumburu BSU- workshop Nov, 2016 OUT LINE History of DNA sequencing Purpose of DNA sequencing DNA Sequencing Methods Advantages and Disadvantages References DNA SEQUENCING DNA sequencing-the

More information

MinION, GridION, how does Nanopore technology meet the needs of our users?

MinION, GridION, how does Nanopore technology meet the needs of our users? MinION, GridION, how does Nanopore technology meet the needs of our users? Journée Long Reads GeT 28 Novembre 2017 Catherine Zanchetta & Maxime Manno get@genotoul.fr @get_genotoul 1 Wet Lab Nanopore technology

More information

Introduction to NGS. Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018

Introduction to NGS. Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018 Introduction to NGS Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018 Life science data deluge Massive unstructured data from several areas DNA, patient journals,

More information

Introduction to metagenome assembly. Bas E. Dutilh Metagenomic Methods for Microbial Ecologists, NIOO September 18 th 2014

Introduction to metagenome assembly. Bas E. Dutilh Metagenomic Methods for Microbial Ecologists, NIOO September 18 th 2014 Introduction to metagenome assembly Bas E. Dutilh Metagenomic Methods for Microbial Ecologists, NIOO September 18 th 2014 Sequencing specs* Method Read length Accuracy Million reads Time Cost per M 454

More information

SEQUENCING. M Ataei, PhD. Feb 2016

SEQUENCING. M Ataei, PhD. Feb 2016 CLINICAL NEXT GENERATION SEQUENCING M Ataei, PhD Tehran Medical Genetics Laboratory Feb 2016 Overview 2 Background NGS in non-invasive prenatal diagnosis (NIPD) 3 Background Background 4 In the 1970s,

More information

Experimental Design Microbial Sequencing

Experimental Design Microbial Sequencing Experimental Design Microbial Sequencing Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu General rules for preparing

More information

Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics

Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics Introduction to Whole Genome Sequencing and its Applications in Microbial Diagnostics Workshop on Whole Genome Sequencing and Analysis, 27-29 Mar. 2017 Whole genome sequencing is currently revolutionising

More information

Molecular Biology and Functional Genomic Core Facility

Molecular Biology and Functional Genomic Core Facility Molecular Biology and Functional Genomic Core Facility General Presentation Dr Odile Neyret Core Manager Myriam Rondeau Research Assistant Agnès Dumont Research Assistant Institut de recherche clinique

More information

Next Generation Sequencing for Metagenomics

Next Generation Sequencing for Metagenomics Next Generation Sequencing for Metagenomics Genève, 13.10.2016 Patrick Wincker, Genoscope-CEA Human and model organisms sequencing were initially based on the Sanger method Sanger shotgun sequencing was

More information

NGS-based innovations within the Leiden Network

NGS-based innovations within the Leiden Network NGS-based innovations within the Leiden Network A strong bridge between two partners Dr. Mark de Jong 2017-09-29 Design accurate and robust NGS tests and generate data sets essential for Diagnostics &

More information

The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow

The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow Marcus Hausch, Ph.D. 2010 Illumina, Inc. All rights reserved. Illumina, illuminadx, Solexa, Making Sense Out of Life, Oligator,

More information

Looking Ahead: Improving Workflows for SMRT Sequencing

Looking Ahead: Improving Workflows for SMRT Sequencing Looking Ahead: Improving Workflows for SMRT Sequencing Jonas Korlach FIND MEANING IN COMPLEXITY Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, and SMRTbell are trademarks of Pacific Biosciences

More information

Announcements. Coffee! Evalua,on. Dr. Yoshiki Sasai, R.I.P.

Announcements. Coffee! Evalua,on. Dr. Yoshiki Sasai, R.I.P. Announcements Coffee! Evalua,on. Dr. Yoshiki Sasai, R.I.P. Sequencing considerations Three basic problems Resequencing, coun,ng, and assembly. A. B. C. 1. Resequencing analysis We know a reference genome,

More information

Measuring transcriptomes with RNA-Seq

Measuring transcriptomes with RNA-Seq Measuring transcriptomes with RNA-Seq BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2017 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC

More information

A Roadmap to the De-novo Assembly of the Banana Slug Genome

A Roadmap to the De-novo Assembly of the Banana Slug Genome A Roadmap to the De-novo Assembly of the Banana Slug Genome Stefan Prost 1 1 Department of Integrative Biology, University of California, Berkeley, United States of America April 6th-10th, 2015 Outline

More information

BST227 Introduction to Statistical Genetics. Lecture 8: Variant calling from high-throughput sequencing data

BST227 Introduction to Statistical Genetics. Lecture 8: Variant calling from high-throughput sequencing data BST227 Introduction to Statistical Genetics Lecture 8: Variant calling from high-throughput sequencing data 1 PC recap typical genome Differs from the reference genome at 4-5 million sites ~85% SNPs ~15%

More information