Just one nucleotide! Exploring the effects of random single nucleotide mutations

Size: px
Start display at page:

Download "Just one nucleotide! Exploring the effects of random single nucleotide mutations"

Transcription

1 Dr. Beatriz Gonzalez In-Class Worksheet Name: Learning Objectives: Just one nucleotide! Exploring the effects of random single nucleotide mutations Given a coding DNA sequence, determine the mrna Based on the transcribed mrna, predict the resulting protein sequence Become proficient in using the codon chart to determine which codons code for which amino acids Recognize the importance of the START and the STOP codons Predict the effect that different types of mutations will have on the protein expressed Introduction The Central Dogma of molecular biology is the concept that cells are ruled by a cellular chain of command that flow from DNA to RNA to protein. The information is housed in the DNA, transcribed into a RNA molecule and translated into a protein. Therefore, protein synthesis occurs by means of transcription and translation. Transcription occurs in the nucleus and produces RNA pairing complementary bases to the coding DNA strand. This RNA is modified and processed in eukaryotes and then goes to the cytoplasm where translation takes place (either in polyribosomes or in ribosomes attached to the rough endoplasmic reticulum). Here the mrna code is converted into a protein, a chain of amino acids. Activity 1: Review of base-pair rules 1. Fill out the following table to review the complementary base-pair rules during the processes of DNA replication vs. transcription: DNA Replication If DNA template has Newly made DNA this base: will have: A C G T Transcription If DNA template has mrna will this base: have: A C G T

2 Activity 2: Transcription: Making mrna In this simple exercise, you will transcribe the coding DNA sequence into an mrna. This particular region does not contain introns. 1. Using the following coding DNA sequence, determine the resulting mrna. DNA sequence: (provided sequence shown 3 5 ) nt = nucleotide # nt T T C A T A C G A C G T C T A C G T A A C T G C T mrna sequence: (5 3 ) Activity 3: Translation: mrna Universal Codon Chart Translation is the process that takes the information that was passed from DNA into the messenger RNA and turns it into a linear sequence of amino acids covalently joined by peptide bonds. It really is a translation from one code, nucleotide sequence, to another code, amino acid sequence. 1. Name the three different types of RNA. Mention their functions. 2. Where are ribosomes made and what are they made of? How do they get to their final destination?

3 3. Refer to the universal codon chart below. The AUG codon, codes both for methionine and serves as an initiation site; the first AUG in an mrna's coding region will be the site where translation (not transcription) into protein begins. Universal Codon Chart Table 1 : Codon table. This table illustrates the 64 possible codon triplets. 2nd base U C A G UUU Phenylalanine UCU Serine UUC Phenylalanine UCC Serine U UUA Leucine UCA Serine UUG Leucine UCG Serine UAU Tyrosine UAC Tyrosine UAA Stop UAG Stop UGU Cysteine UGC Cysteine UGA Stop UGG Tryptophan CUU Leucine CUC Leucine C CUA Leucine 1st base CUG Leucine AUU Isoleucine AUC Isoleucine A AUA Isoleucine 1 AUG Methionine GUU Valine GUC Valine G GUA Valine GUG Valine CCU Proline CCC Proline CCA Proline CCG Proline CAU Histidine CAC Histidine CAA Glutamine CAG Glutamine ACU Threonine AAU Asparagine ACC Threonine AAC Asparagine ACA Threonine AAA Lysine ACG Threonine AAG Lysine GCU Alanine GCC Alanine GCA Alanine GCG Alanine GAU Aspartic acid GAC Aspartic acid GAA Glutamic acid GAG Glutamic acid CGU Arginine CGC Arginine CGA Arginine CGG Arginine AGU Serine AGC Serine AGA Arginine AGG Arginine GGU Glycine GGC Glycine GGA Glycine GGG Glycine a) What is a start codon? How many are there? Name the codon and amino acid: b) Name all the amino acids that have only one codon: c) Name all the amino acids that have multiple codons: d) What does it mean when a codon translates into STOP? Name the three STOP codons.

4 Activity 4: Translation: Determining the Protein Sequence Using the following coding DNA sequence, determine the mrna and the polypeptide chain coded by this region of the DNA. (You determined this sequence earlier in activity 2) DNA sequence: (provided sequence shown 3 5 ) nt = nucleotide # nt T T C A T A C G A C G T C T A C G T A A C T G C T mrna sequence: (5 3 ) (the same as in activity 2) Amino acid sequence (polypeptide): Activity 5: Exploring Point Mutations Procedure: 1. Mutate nucleotide #10 in the DNA sequence provided according to the rules in table Your instructor will provide you with rubber dice so you can simulate what happens when the DNA sequence is mutated if the number you roll does not result in a change, keep rolling until it changes. 3. Every student in your group should roll the die to mutate their own DNA. In this way, there will be more outcomes to compare. 4. Write down your newly mutated DNA sequence. 5. Determine and record the mrna and the protein sequence coded by the mutated DNA sequence. Table 1: Rules for determining which kind of mutation will take place If you toss a Then you must 1 Substitute your nucleotide with an A 2 Substitute your nucleotide with a C 3 Substitute your nucleotide with a G 4 Substitute your nucleotide with a T 5 Delete the nucleotide 6 Insert a nucleotide right after (toss again until you get 1 4 to determine which letter nucleotide to insert)

5 DNA sequence: (provided sequence shown 3 5 ) nt = nucleotide # nt T T C A T A C G A C G T C T A C G T A A C T G C T Write complete new DNA sequence with mutation at nucleotide 10 position: (Depending on the mutation, you will end up with a 24-nt, 25-nt, or 26-nt DNA sequence.) mrna sequence from mutated DNA: Amino acid sequence (polypeptide): Circle any differences from original protein Activity 6: More Mutations! Keeping the mutated nucleotide, mutate nucleotide #16 following the procedure outlined in activity 5. Write the resulting DNA, mrna, and protein sequences Write complete DNA sequence (now with two mutations: one at nt 10 position, and the second at the nt 16 position): mrna sequence with both mutations: Amino acid sequence (polypeptide): Circle any differences from original protein

6 Activity 7: Thought Questions 1. Write the definition of the term mutation. 2. If a mistake is made during transcription, will that mistake be permanent? During translation? Why or why not? Will it be passed on to the next generation of cells? Explain your answers. 3. Why do you think you used a die to determine the mutations? Why did you keep the first mutation when mutating the sequence a second time? In other words, why didn t you fix it? 4. Did everyone in your group get the same mutation(s)? Explain. What are the odds of two people rolling the same number? Of rolling the same mutation? 5. Deletions and insertions are also called - mutations. 6. What is a point mutation? Differentiate between the following types of point mutations: a) Substitution b) Deletion c) Insertion d) Missense e) Nonsense 7. Explain the statement: "A mutation causes a change in the genotype, but that change does not always cause a change in the phenotype". Reference: Gonzalez, B.Y. and J. H. van Oostrom Using Dice to Explore the Consequences of DNA Mutations, Journal of College Science Teaching 38 (5): 56-59

Protein Synthesis: Transcription and Translation

Protein Synthesis: Transcription and Translation Review Protein Synthesis: Transcription and Translation Central Dogma of Molecular Biology Protein synthesis requires two steps: transcription and translation. DNA contains codes Three bases in DNA code

More information

UNIT I RNA AND TYPES R.KAVITHA,M.PHARM LECTURER DEPARTMENT OF PHARMACEUTICS SRM COLLEGE OF PHARMACY KATTANKULATUR

UNIT I RNA AND TYPES R.KAVITHA,M.PHARM LECTURER DEPARTMENT OF PHARMACEUTICS SRM COLLEGE OF PHARMACY KATTANKULATUR UNIT I RNA AND TYPES R.KAVITHA,M.PHARM LECTURER DEPARTMENT OF PHARMACEUTICS SRM COLLEGE OF PHARMACY KATTANKULATUR RNA, as previously mentioned, is an acronym for ribonucleic acid. There are many forms

More information

Protein Synthesis. Application Based Questions

Protein Synthesis. Application Based Questions Protein Synthesis Application Based Questions MRNA Triplet Codons Note: Logic behind the single letter abbreviations can be found at: http://www.biology.arizona.edu/biochemistry/problem_sets/aa/dayhoff.html

More information

Deoxyribonucleic Acid DNA. Structure of DNA. Structure of DNA. Nucleotide. Nucleotides 5/13/2013

Deoxyribonucleic Acid DNA. Structure of DNA. Structure of DNA. Nucleotide. Nucleotides 5/13/2013 Deoxyribonucleic Acid DNA The Secret of Life DNA is the molecule responsible for controlling the activities of the cell It is the hereditary molecule DNA directs the production of protein In 1953, Watson

More information

The combination of a phosphate, sugar and a base forms a compound called a nucleotide.

The combination of a phosphate, sugar and a base forms a compound called a nucleotide. History Rosalin Franklin: Female scientist (x-ray crystallographer) who took the picture of DNA James Watson and Francis Crick: Solved the structure of DNA from information obtained by other scientist.

More information

How life. constructs itself.

How life. constructs itself. How life constructs itself Life constructs itself using few simple rules of information processing. On the one hand, there is a set of rules determining how such basic chemical reactions as transcription,

More information

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation 1. DNA, RNA structure 2. DNA replication 3. Transcription, translation DNA and RNA are polymers of nucleotides DNA is a nucleic acid, made of long chains of nucleotides Nucleotide Phosphate group Nitrogenous

More information

A Zero-Knowledge Based Introduction to Biology

A Zero-Knowledge Based Introduction to Biology A Zero-Knowledge Based Introduction to Biology Konstantinos (Gus) Katsiapis 25 Sep 2009 Thanks to Cory McLean and George Asimenos Cells: Building Blocks of Life cell, membrane, cytoplasm, nucleus, mitochondrion

More information

Human Gene,cs 06: Gene Expression. Diversity of cell types. How do cells become different? 9/19/11. neuron

Human Gene,cs 06: Gene Expression. Diversity of cell types. How do cells become different? 9/19/11. neuron Human Gene,cs 06: Gene Expression 20110920 Diversity of cell types neuron How do cells become different? A. Each type of cell has different DNA in its nucleus B. Each cell has different genes C. Each type

More information

Chemistry 121 Winter 17

Chemistry 121 Winter 17 Chemistry 121 Winter 17 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State) E-mail: upali@latech.edu Office: 311 Carson Taylor Hall ; Phone: 318-257-4941;

More information

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko Chapter 10 The Structure and Function of DNA PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey,

More information

Biomolecules: lecture 6

Biomolecules: lecture 6 Biomolecules: lecture 6 - to learn the basics on how DNA serves to make RNA = transcription - to learn how the genetic code instructs protein synthesis - to learn the basics on how proteins are synthesized

More information

Molecular Level of Genetics

Molecular Level of Genetics Molecular Level of Genetics Most of the molecules found in humans and other living organisms fall into one of four categories: 1. carbohydrates (sugars and starches) 2. lipids (fats, oils, and waxes) 3.

More information

Level 2 Biology, 2017

Level 2 Biology, 2017 91159 911590 2SUPERVISOR S Level 2 Biology, 2017 91159 Demonstrate understanding of gene expression 2.00 p.m. Wednesday 22 November 2017 Credits: Four Achievement Achievement with Merit Achievement with

More information

Biomolecules: lecture 6

Biomolecules: lecture 6 Biomolecules: lecture 6 - to learn the basics on how DNA serves to make RNA = transcription - to learn how the genetic code instructs protein synthesis - to learn the basics on how proteins are synthesized

More information

Degenerate Code. Translation. trna. The Code is Degenerate trna / Proofreading Ribosomes Translation Mechanism

Degenerate Code. Translation. trna. The Code is Degenerate trna / Proofreading Ribosomes Translation Mechanism Translation The Code is Degenerate trna / Proofreading Ribosomes Translation Mechanism Degenerate Code There are 64 possible codon triplets There are 20 naturally-encoding amino acids Several codons specify

More information

(a) Which enzyme(s) make 5' - 3' phosphodiester bonds? (c) Which enzyme(s) make single-strand breaks in DNA backbones?

(a) Which enzyme(s) make 5' - 3' phosphodiester bonds? (c) Which enzyme(s) make single-strand breaks in DNA backbones? EXAMPLE QUESTIONS AND ANSWERS 1. Topoisomerase does which one of the following? (a) Makes new DNA strands. (b) Unties knots in DNA molecules. (c) Joins the ends of double-stranded DNA molecules. (d) Is

More information

iclicker Question #28B - after lecture Shown below is a diagram of a typical eukaryotic gene which encodes a protein: start codon stop codon 2 3

iclicker Question #28B - after lecture Shown below is a diagram of a typical eukaryotic gene which encodes a protein: start codon stop codon 2 3 Bio 111 Handout for Molecular Biology 4 This handout contains: Today s iclicker Questions Information on Exam 3 Solutions Fall 2008 Exam 3 iclicker Question #28A - before lecture Which of the following

More information

ANCIENT BACTERIA? 250 million years later, scientists revive life forms

ANCIENT BACTERIA? 250 million years later, scientists revive life forms ANCIENT BACTERIA? 250 million years later, scientists revive life forms Thursday, October 19, 2000 U.S. researchers say they have revived bacteria that have been dormant for more then 250 million years,

More information

7.016 Problem Set 3. 1 st Pedigree

7.016 Problem Set 3. 1 st Pedigree 7.016 Problem Set 3 Question 1 The following human pedigree shows the inheritance pattern of a specific disease within a family. Assume that the individuals marrying into the family for all generations

More information

Chapter 3: Information Storage and Transfer in Life

Chapter 3: Information Storage and Transfer in Life Chapter 3: Information Storage and Transfer in Life The trapped scientist examples are great for conceptual purposes, but they do not accurately model how information in life changes because they do not

More information

CONVERGENT EVOLUTION. Def n acquisition of some biological trait but different lineages

CONVERGENT EVOLUTION. Def n acquisition of some biological trait but different lineages CONVERGENT EVOLUTION Def n acquisition of some biological trait but different lineages Living Rock cactus Baseball plant THE QUESTION From common ancestor or independent acquisition? By Lineage By Convergence

More information

Bioinformatics CSM17 Week 6: DNA, RNA and Proteins

Bioinformatics CSM17 Week 6: DNA, RNA and Proteins Bioinformatics CSM17 Week 6: DNA, RNA and Proteins Transcription (reading the DNA template) Translation (RNA -> protein) Protein Structure Transcription - reading the data enzyme - transcriptase gene opens

More information

Today in Astronomy 106: polymers to life

Today in Astronomy 106: polymers to life Today in Astronomy 106: polymers to life Translation: the current fashion in protein manufacture. The chicken-egg problem Protein-based primitive life? RNA World Emergence of the genetic code. How long

More information

Honors packet Instructions

Honors packet Instructions Honors packet Instructions The following are guidelines in order for you to receive FULL credit for this bio packet: 1. Read and take notes on the packet in full 2. Answer the multiple choice questions

More information

It has not escaped our notice that the specific paring we have postulated immediately suggest a possible copying mechanism for the genetic material

It has not escaped our notice that the specific paring we have postulated immediately suggest a possible copying mechanism for the genetic material 5-carbon sugar hosphate functional group Nitrogenous base 2 types urines = 2 rings 5 & 6 member N containing ring yrimidines = 1 ring 6 member N containing ring Geometry and space requires complimentary

More information

CHAPTER 12- RISE OF GENETICS I. DISCOVERY OF DNA A. GRIFFITH (1928) 11/15/2016

CHAPTER 12- RISE OF GENETICS I. DISCOVERY OF DNA A. GRIFFITH (1928) 11/15/2016 CHAPTER 12- RISE OF GENETICS KENNEDY BIOL. 1AB I. DISCOVERY OF DNA DNA WAS FIRST DISCOVERED IN 1898 BY MIESHNER. HE USED PROTEASE TO DIGEST THE PROTEIN AWAY FROM WHITE BLOOD CELLS. HE DESCRIBED WHAT HE

More information

Fishy Amino Acid Codon. UUU Phe UCU Ser UAU Tyr UGU Cys. UUC Phe UCC Ser UAC Tyr UGC Cys. UUA Leu UCA Ser UAA Stop UGA Stop

Fishy Amino Acid Codon. UUU Phe UCU Ser UAU Tyr UGU Cys. UUC Phe UCC Ser UAC Tyr UGC Cys. UUA Leu UCA Ser UAA Stop UGA Stop Fishy Code Slips Fish 1 GGTTATAGAGGTACTACC Fish 2 GGCTTCAGAGGTACTACC Fish 3 CATAGCAGAGGTACTACC Fish 4 GGTTATTCTGTCTTATTG Fish 5 GGCTTCTCTGTCTTATTG Fish 6 CATAGCGCTGCAACTACC Fishy Amino Acid Codon UUU Phe

More information

Describe the features of a gene which enable it to code for a particular protein.

Describe the features of a gene which enable it to code for a particular protein. 1. Answers should be written in continuous prose. Credit will be given for biological accuracy, the organisation and presentation of the information and the way in which the answer is expressed. Cancer

More information

Today in Astronomy 106: the important polymers and from polymers to life

Today in Astronomy 106: the important polymers and from polymers to life Today in Astronomy 106: the important polymers and from polymers to life Replication or mass production of nucleic acids and proteins Interdependence: which came first, protein mass production or nucleic-acid

More information

UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS

UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS Nucleic acids are extremely large molecules that were first isolated from the nuclei of cells. Two kinds of nucleic acids are found in cells: RNA (ribonucleic

More information

PROTEIN SYNTHESIS Study Guide

PROTEIN SYNTHESIS Study Guide PART A. Read the following: PROTEIN SYNTHESIS Study Guide Protein synthesis is the process used by the body to make proteins. The first step of protein synthesis is called Transcription. It occurs in the

More information

Mechanisms of Genetics

Mechanisms of Genetics 2.B.6.A of nucleic acids and the principles of Mendelian Genetics. The student is expected to (A) identify components of DNA, and describe how information for specifying the traits of an organism is carried

More information

Folding simulation: self-organization of 4-helix bundle protein. yellow = helical turns

Folding simulation: self-organization of 4-helix bundle protein. yellow = helical turns Folding simulation: self-organization of 4-helix bundle protein yellow = helical turns Protein structure Protein: heteropolymer chain made of amino acid residues R + H 3 N - C - COO - H φ ψ Chain of amino

More information

PRINCIPLES OF BIOINFORMATICS

PRINCIPLES OF BIOINFORMATICS PRINCIPLES OF BIOINFORMATICS BIO540/STA569/CSI660, Fall 2010 Lecture 3 (Sep-13-2010) Primer on Molecular Biology/Genomics Igor Kuznetsov Department of Epidemiology & Biostatistics Cancer Research Center

More information

Important points from last time

Important points from last time Important points from last time Subst. rates differ site by site Fit a Γ dist. to variation in rates Γ generally has two parameters but in biology we fix one to ensure a mean equal to 1 and the other parameter

More information

DNA sentences. How are proteins coded for by DNA? Materials. Teacher instructions. Student instructions. Reflection

DNA sentences. How are proteins coded for by DNA? Materials. Teacher instructions. Student instructions. Reflection DNA sentences How are proteins coded for by DNA? Deoxyribonucleic acid (DNA) is the molecule of life. DNA is one of the most recognizable nucleic acids, a double-stranded helix. The process by which DNA

More information

CISC 1115 (Science Section) Brooklyn College Professor Langsam. Assignment #6. The Genetic Code 1

CISC 1115 (Science Section) Brooklyn College Professor Langsam. Assignment #6. The Genetic Code 1 CISC 1115 (Science Section) Brooklyn College Professor Langsam Assignment #6 The Genetic Code 1 Deoxyribonucleic acid, or DNA, is a molecule that contains the instructions used in the development and functioning

More information

Forensic Science: DNA Evidence Unit

Forensic Science: DNA Evidence Unit Day 2 : Cooperative Lesson Topic: Protein Synthesis Duration: 55 minutes Grade Level: 10 th Grade Forensic Science: DNA Evidence Unit Purpose: The purpose of this lesson is to review and build upon prior

More information

The Monster Mash A lesson about transcription and translation By Michelle Kelly, Donald Huesing, & Heather Miller

The Monster Mash A lesson about transcription and translation By Michelle Kelly, Donald Huesing, & Heather Miller The Monster Mash A lesson about transcription and translation By Michelle Kelly, Donald Huesing, & Heather Miller Focus on Inquiry The students will model the process of protein synthesis and then model

More information

Enduring Understanding

Enduring Understanding Enduring Understanding The processing of genetic information is imperfect and is a source of genetic variation. Objective: You will be able to create a visual representation to illustrate how changes in

More information

p-adic GENETIC CODE AND ULTRAMETRIC BIOINFORMATION

p-adic GENETIC CODE AND ULTRAMETRIC BIOINFORMATION p-adic GENETIC CODE AND ULTRAMETRIC BIOINFORMATION Branko Dragovich http://www.phy.bg.ac.yu/ dragovich dragovich@ipb.ac.rs Institute of Physics, Mathematical Institute SASA, Belgrade 6th International

More information

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below).

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below). Protein Synthesis Instructions The purpose of today s lab is to: Understand how a cell manufactures proteins from amino acids, using information stored in the genetic code. Assemble models of four very

More information

Lecture 19A. DNA computing

Lecture 19A. DNA computing Lecture 19A. DNA computing What exactly is DNA (deoxyribonucleic acid)? DNA is the material that contains codes for the many physical characteristics of every living creature. Your cells use different

More information

Codon Bias with PRISM. 2IM24/25, Fall 2007

Codon Bias with PRISM. 2IM24/25, Fall 2007 Codon Bias with PRISM 2IM24/25, Fall 2007 from RNA to protein mrna vs. trna aminoacid trna anticodon mrna codon codon-anticodon matching Watson-Crick base pairing A U and C G binding first two nucleotide

More information

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko Chapter 10 The Structure and Function of DNA PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey,

More information

DNA Begins the Process

DNA Begins the Process Biology I D N A DNA contains genes, sequences of nucleotide bases These Genes code for polypeptides (proteins) Proteins are used to build cells and do much of the work inside cells DNA Begins the Process

More information

PGRP negatively regulates NOD-mediated cytokine production in rainbow trout liver cells

PGRP negatively regulates NOD-mediated cytokine production in rainbow trout liver cells Supplementary Information for: PGRP negatively regulates NOD-mediated cytokine production in rainbow trout liver cells Ju Hye Jang 1, Hyun Kim 2, Mi Jung Jang 2, Ju Hyun Cho 1,2,* 1 Research Institute

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION ARTICLE NUMBER: 16045 Highly heterogeneous mutation rates in the hepatitis C virus genome Ron Geller, Úrsula Estada, Joan B. Peris, Iván Andreu, Juan-Vicente Bou, Raquel Garijo, José M. Cuevas, Rosario

More information

Basic Biology. Gina Cannarozzi. 28th October Basic Biology. Gina. Introduction DNA. Proteins. Central Dogma.

Basic Biology. Gina Cannarozzi. 28th October Basic Biology. Gina. Introduction DNA. Proteins. Central Dogma. Cannarozzi 28th October 2005 Class Overview RNA Protein Genomics Transcriptomics Proteomics Genome wide Genome Comparison Microarrays Orthology: Families comparison and Sequencing of Transcription factor

More information

THE GENETIC CODE Figure 1: The genetic code showing the codons and their respective amino acids

THE GENETIC CODE Figure 1: The genetic code showing the codons and their respective amino acids THE GENETIC CODE As DNA is a genetic material, it carries genetic information from cell to cell and from generation to generation. There are only four bases in DNA and twenty amino acids in protein, so

More information

GENETICS and the DNA code NOTES

GENETICS and the DNA code NOTES GENETICS and the DNA code NOTES BACKGROUND DNA is the hereditary material of most organisms. It is an organic compound made of two strands, twisted around one another to form a double helix. Each strand

More information

UNIT 7. DNA Structure, Replication, and Protein Synthesis

UNIT 7. DNA Structure, Replication, and Protein Synthesis UNIT 7 DNA Structure, Replication, and Protein Synthesis Section 3 Objectives Describe the difference between DNA and RNA. Define transcription. Define translation. Apply to rules of base pairing to replicate,

More information

INTRODUCTION TO THE MOLECULAR GENETICS OF THE COLOR MUTATIONS IN ROCK POCKET MICE

INTRODUCTION TO THE MOLECULAR GENETICS OF THE COLOR MUTATIONS IN ROCK POCKET MICE The Making of the The Fittest: Making of the Fittest Natural Selection Natural and Adaptation Selection and Adaptation Educator Materials TEACHER MATERIALS INTRODUCTION TO THE MOLECULAR GENETICS OF THE

More information

BIOSTAT516 Statistical Methods in Genetic Epidemiology Autumn 2005 Handout1, prepared by Kathleen Kerr and Stephanie Monks

BIOSTAT516 Statistical Methods in Genetic Epidemiology Autumn 2005 Handout1, prepared by Kathleen Kerr and Stephanie Monks Rationale of Genetic Studies Some goals of genetic studies include: to identify the genetic causes of phenotypic variation develop genetic tests o benefits to individuals and to society are still uncertain

More information

Gene Expression REVIEW Packet

Gene Expression REVIEW Packet Name Pd. # Gene Expression REVIEW Packet 1. Fill-in-the-blank General Summary Transcription & the Big picture Like, ribonucleic acid (RNA) is a acid a molecule made of nucleotides linked together. RNA

More information

Evolution of protein coding sequences

Evolution of protein coding sequences Evolution of protein coding sequences Kinds of nucleo-de subs-tu-ons Given 2 nucleo-de sequences, how their similari-es and differences arose from a common ancestor? We assume A the common ancestor: Single

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 17 Practice Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Garrod hypothesized that "inborn errors of metabolism" such as alkaptonuria

More information

Inheritance of Traits

Inheritance of Traits Cookbooks describe the ingredients and steps needed to make many kinds of dishes. Some cookbooks contain hundreds of recipes. However, someone needs to use the cookbook in order to create the dishes. Without

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Chapter 17 Genes to Proteins Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The following questions refer to Figure 17.1, a simple metabolic

More information

DNA REPLICATION REVIEW

DNA REPLICATION REVIEW Biology Ms. Ye DNA REPLICATION REVIEW 1. Number the steps of DNA replication the correct order (1, 2, 3): Name Date Block Daughter strands are formed using complementary base pairing DNA unwinds The DNA

More information

Protein Synthesis Review Bi 12 /25

Protein Synthesis Review Bi 12 /25 Name: Class: _ Date: _ Protein Synthesis Review Bi 12 /25 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A certain gene codes for a polypeptide that is

More information

ENZYMES AND METABOLIC PATHWAYS

ENZYMES AND METABOLIC PATHWAYS ENZYMES AND METABOLIC PATHWAYS This document is licensed under the Attribution-NonCommercial-ShareAlike 2.5 Italy license, available at http://creativecommons.org/licenses/by-nc-sa/2.5/it/ 1. Enzymes build

More information

Genetic diversity and polymorphism.

Genetic diversity and polymorphism. Genetic diversity and polymorphism http://genomed.dlearn.kmu.edu.tw Why is genetic diversity important? http://www.nps.gov/plants/restore/pubs/restgene/toc.htm Genotypes partly determine organisms physical

More information

Four different segments of a DNA molecule are represented below.

Four different segments of a DNA molecule are represented below. Four different segments of a DNA molecule are represented below. There is an error in the DNA in which molecule? A. segment 1 only B. segment 3 only C. segment 2 and 3 D. segment 2 and 4 Explain the basic

More information

6. Which nucleotide part(s) make up the rungs of the DNA ladder? Sugar Phosphate Base

6. Which nucleotide part(s) make up the rungs of the DNA ladder? Sugar Phosphate Base DNA Unit Review Worksheet KEY Directions: Correct your worksheet using a non blue or black pen so your corrections can be clearly seen. DNA Basics 1. Label EVERY sugar (S), phosphate (P), and nitrogen

More information

7.013 Problem Set

7.013 Problem Set 7.013 Problem Set 4-2013 Question 1 The following human pedigree shows the inheritance of a specific disease. Please note: The filled squares or circles represent the abnormal phenotype. The individuals

More information

Lecture #18 10/17/01 Dr. Wormington

Lecture #18 10/17/01 Dr. Wormington Lecture #18 10/17/01 Dr. Wormington DNA Replication The Story So Far Semiconservative Hydrolysis of 5' dntp 3' HO N 4 pn 3 pn 2 pn 1 p5'... + PP i 2P i Provides Energy for Phosphodiester Bond Formation

More information

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 1. Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 1. Bioinformatics 1: Biology, Sequences, Phylogenetics Bioinformatics 1 Biology, Sequences, Phylogenetics Part 1 Sepp Hochreiter 3 Credits (plus 3 Credits for exercises) Examination at the end of the class Master Bioinformatics and Computer Science Script

More information

Q1. Lysozyme is an enzyme consisting of a single polypeptide chain of 129 amino acids.

Q1. Lysozyme is an enzyme consisting of a single polypeptide chain of 129 amino acids. Q1. Lysozyme is an enzyme consisting of a single polypeptide chain of 129 amino acids. (a) What is the minimum number of nucleotide bases needed to code for this enzyme? (b) The diagram shows the sequence

More information

Chapter 13 From Genes to Proteins

Chapter 13 From Genes to Proteins Chapter 13 From Genes to Proteins True/False Indicate whether the sentence or statement is true(a) or false(b). 1. RNA nucleotides contain the sugar ribose. 2. Only DNA molecules contain the nitrogen base

More information

Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein)

Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein) Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein) I. Review A. Cells copy their DNA (in S phase of Interphase)-Why? Prepare for Cell Division (Mitosis & Cytokinesis) Genes

More information

1. An alteration of genetic information is shown below. 5. Part of a molecule found in cells is represented below.

1. An alteration of genetic information is shown below. 5. Part of a molecule found in cells is represented below. 1. An alteration of genetic information is shown below. 5. Part of a molecule found in cells is represented below. A-G-T-A-C-C-G-A-T A-G-T-G-A-T This type of alteration of the genetic information is an

More information

BIOLOGY. Monday 14 Mar 2016

BIOLOGY. Monday 14 Mar 2016 BIOLOGY Monday 14 Mar 2016 Entry Task List the terms that were mentioned last week in the video. Translation, Transcription, Messenger RNA (mrna), codon, Ribosomal RNA (rrna), Polypeptide, etc. Agenda

More information

Student Exploration: RNA and Protein Synthesis Due Wednesday 11/27/13

Student Exploration: RNA and Protein Synthesis Due Wednesday 11/27/13 http://www.explorelearning.com Name: Period : Student Exploration: RNA and Protein Synthesis Due Wednesday 11/27/13 Vocabulary: Define these terms in complete sentences on a separate piece of paper: amino

More information

Bioinformatics of 18 Fungal Genomes

Bioinformatics of 18 Fungal Genomes Bioinformatics of 18 Fungal Genomes Dave Ussery Comparative Microbial Genomics Workshop Pathumthani, Thailand 9 March, 2005 Outline Comparison of 18 Fungal Genomes Introduction & disclaimer DNA (genome)

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Gene Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Gene Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Gene Prediction Now What? Suppose we want to annotate a genome according to genetic traits. Given a genome, where are the genes? Given

More information

Transcription & Translation Practice Examination

Transcription & Translation Practice Examination Name: Date: Students must provide an explanation for all problems. Students must have parent signature prior to submission. 1. A DNA molecule with the base sequence A-G-C-T-C-A was used as a template for

More information

Why are proteins important?

Why are proteins important? PROTEIN SYNTHESIS Why are proteins important? proteins help build cell structures some proteins are enzymes that promote biological reactions Proteins are found in muscles, blood, bones, etc.. RNA RNA

More information

Keywords: DNA methylation, deamination, codon usage, genome, genomics

Keywords: DNA methylation, deamination, codon usage, genome, genomics A PECULIAR CODON USAGE PATTERN REVEALED AFTER REMOVING THE EFFECT OF DNA METHYLATION Xuhua Xia Department of Biology, University of Ottawa E-mail: xxia@uottawa.ca Keywords: DNA methylation, deamination,

More information

Topic 2.7 Replication, Transcription & Translation

Topic 2.7 Replication, Transcription & Translation Topic 2.7 Replication, Transcription & Translation INTRO http://images.rapgenius.com/82b71adf0d8d1d8997ee95debc1fb8b5.1000x437x1.png The central dogma of biology describes how information from DNA is able

More information

MS.LS1.A, MS.LS3.A, MS.LS3.B

MS.LS1.A, MS.LS3.A, MS.LS3.B HASPI Medical Biology Lab 02 Description NGSS HS-LS1-1 Teacher Information a. Genes, Proteins, and Disease Students will use normal and mutated DNA sequences to simulate/model transcription, translation,

More information

Chapter 7 DNA Structure and Gene Function

Chapter 7 DNA Structure and Gene Function Chapter 7 DNA Structure and Gene Function DNA bursting from bacterial cell Dr. Gopal Murti/Science Source Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the

More information

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2. 1. Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.This subunit is composed of what 3 parts? 3.What molecules make

More information

Problem Set 3

Problem Set 3 Name: 1 Topic 1. 2007 7.013 Problem Set 3 Due before 5 PM on FRIDAY, March 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. You have been studying transcription

More information

Genes & Inheritance Series: Set 1. Copyright 2005 Version: 2.0

Genes & Inheritance Series: Set 1. Copyright 2005 Version: 2.0 Genes & Inheritance Series: Set 1 Copyright 2005 Version: 2.0 Genes in Eukaryote Cells Eukaryotes have genetic information stored in chromosomes in the nucleus of each cell: Cytoplasm: The nucleus controls

More information

Name Date Class. The Central Dogma of Biology

Name Date Class. The Central Dogma of Biology Concept Mapping The Central Dogma of Biology Complete the events chain showing the events that occur as DNA codes for RNA, which guides the synthesis of proteins, the central dogma of biology. These terms

More information

6.C: Students will explain the purpose and process of transcription and translation using models of DNA and RNA

6.C: Students will explain the purpose and process of transcription and translation using models of DNA and RNA 6.C: Students will explain the purpose and process of transcription and translation using models of DNA and RNA DNA mrna Protein DNA is found in the nucleus, but making a protein occurs at the ribosome

More information

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan Sec. 12-3 RNA and Protein Synthesis Roles of DNA and RNA DNA is the MASTER PLAN RNA is the BLUEPRINT of the Master Plan 1 RNA uses the information from DNA to make proteins Differs from DNA: 1. Ribose

More information

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Biology Multiple Choice 016074 BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Test Code: 016074 Directions: Each of the questions or incomplete statements below is followed by five suggested

More information

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it Life The main actors in the chemistry of life are molecules called proteins nucleic acids Proteins: many different

More information

Comparing RNA and DNA

Comparing RNA and DNA RNA The Role of RNA Genes contain coded DNA instructions that tell cells how to build proteins. 1 st step in decoding these genetic instructions = copy part of the base sequence from DNA into RNA. 2 nd

More information

Key Concepts. Ø DNA Replication Ø Protein Synthesis Ø Transcription: Ø Translation: Ø messenger RNA (mrna)

Key Concepts. Ø DNA Replication Ø Protein Synthesis Ø Transcription: Ø Translation: Ø messenger RNA (mrna) Heredity B-4.3 Explain how DNA functions as the code of life and the blueprint for proteins. (Focus on DNA replication) B-4.4: Summarize the basic process involved in protein synthesis (including transcription

More information

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos Daily Agenda Warm Up: Review Translation Notes Protein Synthesis Practice Redos 1. What is DNA Replication? 2. Where does DNA Replication take place? 3. Replicate this strand of DNA into complimentary

More information

3. Use the codon chart to translate the mrna sequence into an amino acid sequence.

3. Use the codon chart to translate the mrna sequence into an amino acid sequence. Honors Biology 317 The Beads of Translation: Using Beads to translate DNA into a Polypeptide Bracelet Objectives: 1. Using plastic beads, construct a representation of "standard" sequence of amino acids

More information

BIOLOGY. Gene Expression. Gene to Protein. Protein Synthesis Overview. The process in which the information coded in DNA is used to make proteins

BIOLOGY. Gene Expression. Gene to Protein. Protein Synthesis Overview. The process in which the information coded in DNA is used to make proteins 17 CAMPBLL BIOLOGY TNTH DITION Reece Urry Cain Wasserman Minorsky Jackson Gene to Protein Gene xpression The process in which the information coded in is used to make proteins A gene is the part of the

More information

From Gene to Protein Transcription and Translation

From Gene to Protein Transcription and Translation Name: Hour: From Gene to Protein Transcription and Translation Introduction: In this activity you will learn how the genes in our DNA influence our characteristics. For example, how can a gene cause albinism

More information

BIOL591: Introduction to Bioinformatics Comparative genomes to look for genes responsible for pathogenesis

BIOL591: Introduction to Bioinformatics Comparative genomes to look for genes responsible for pathogenesis BIOL591: Introduction to Bioinformatics Comparative genomes to look for genes responsible for pathogenesis Reading: (1) Scenario 2: (Course web site) Read this first! (2) Perna, N. T., G. Plunkett, 3rd,

More information

TRANSCRIPTION. Renáta Schipp

TRANSCRIPTION. Renáta Schipp TRANSCRIPTION Renáta Schipp Gene expression Gene expression: - is the process by which information from a gene is used for the synthesis of gene products. These products are proteins, but in the case of

More information

Emergence of the Canonical Genetic Code

Emergence of the Canonical Genetic Code Emergence of the Canonical Genetic Code Fall 2009 Emergent States of Matter Term Essay Samuel O. Skinner Abstract I will review literature that expands the theory that the canonical genetic code was not

More information