Light dosimetry for Low-Level Laser therapy: Accounting for differences in tissue and depth

Size: px
Start display at page:

Download "Light dosimetry for Low-Level Laser therapy: Accounting for differences in tissue and depth"

Transcription

1 Light dosimetry for Low-Level Laser therapy: Accounting for differences in tissue and depth Robert Weersink a, Roger White b, Lothar Lilge c a Laboratory for Applied Biophotonics, University Health Network, 61 University Ave, Toronto; b Theralase Inc. Markham Ont. c Ontario Cancer Institute, 61 University Ave, Toronto ABSTRACT While Low-level Light Therapy (LLLT) has demonstrated efficacy for certain indications, some aspects of the technology are still controversial. Clinical studies on LLLT range from low quality anecdotal studies to blinded, randomied, control clinical studies. These have used a variety of wavelengths, optical powers and variations in other laser parameters. While these studies show a large range in treatment outcome, comparison of treatment efficacy between these studies with respect to light dose is all but impossible since the light dose characteriation in the LLLT field has not been properly defined and is not standardied. Surface irradiance is typically used in the LLLT field as the light dose parameter, ignoring factors such as tissue optical properties, beam divergence, pulsing of the source and tissue thickness to the organ or joint of interest. Drawing on experience with light dosimetry for photodynamic and photothermal therapy, we will provide an overview of light transport and dosimetry in tissue and its implications for LLLT dosimetry. In particular, we suggest that the proper measure of dose is the light fluence rate delivered to the organ or tissue of interest, usually several millimeters below the tissue surface. We have developed a technique that provides an estimate of the subsurface fluence rate based on the diffuse reflectance measured at the tissue surface. Using Monte Carlo simulations and measurements on tissue simulating phantoms, we demonstrate that this technique can be used to predict the subsurface fluence rate to within 3% of the actual value at 3 1 mm below the tissue surface. Keywords: Low level laser therapy, dosimetry 1. INTRODUCTION Low-level Light Therapy (LLLT) has long been known to have curative effects and aid in the healing of numerous ailments in varying species of both humans and animals. 1, 2 The market for therapeutic laser systems is rapidly growing as the understanding and acceptance of this technology is positively supported by clinical evidence of its efficacy in common indications such as carpal tunnel syndrome and arthritis. LLLT generally requires the injured tissue to be exposed directly to the light for predetermined intervals of time, leading to pain reduction and faster healing of the treated tissue. Each disorder or ailment has its own unique treatment protocol, including the light exposure or dose requirements. These dose requirements are determined by the wavelength, intensity and exposure time of the light. The wavelength of the laser light affects its ability to penetrate through overlaying tissues, such as skin, to reach the tissues and molecules of interest. Red light has a higher attenuation than near-infrared (NIR) light in tissue, with a penetration depth (1/e attenuation) less than 1 mm into such tissues, whereas near-infrared (NIR) light can penetrate several millimeters into such tissues. With sufficient incident intensity, effective levels of light can be safely delivered over 1 cm into the tissue. The wavelength of the laser light also affects it ability to promote biological pathways for healing injured tissues. The quantum energy of near-infrared photons is small, and thus near-infrared photons have a relatively low potential to electronically excite biomolecules but may generate thermal gradients across cells. On the other hand, the quantum energy of red wavelength photons is sufficient to achieve electronic excitation of most biomolecules, potentially promoting direct photochemical and photobiological effects in target tissues. 3 Mechanisms for Low-Light Therapy II, edited by Michael R. Hamblin, Ronald W. Waynant, Juanita Anders, Proc. of SPIE Vol. 6428, 64283, (27) /7/$18 doi: / Proc. of SPIE Vol

2 While LLLT has demonstrated efficacy, some aspects of the technology are still controversial. Clinical studies on LLLT range from low quality anecdotal studies to blinded, randomied, control clinical studies. These studies have used a variety of wavelengths, optical powers and variations in other laser parameters. The bulk of these clinical studies show a positive outcome using laser and non-laser light (such as LEDs) to aid in the healing of tissue ailments. Other studies showed poor to no benefit, in many cases probably due to the use of laser systems incapable of supplying a sufficient dose of photons at the desired wavelength to the tissues of interest at depths below the skin surface. Clinical studies show a large range in treatment outcome, but comparison of treatment efficacy between these studies with respect to light dose is all but impossible since the characteriation of light dose in this field has not been properly defined and is not standardied. It is also apparent to those practicing LLLT that response to light therapy varies widely across the patient population. Factors that appear to affect the tissue response include the age of the patient, weight, metabolism, and cardi-vascular health. While the clinician can assess these patient attributes, he/she can only adjust the light dose delivered to the injured tissue. Again, however, a systematic assessment of the effects these attributes have on LLLT response is hindered by poor characteriation of the delivered light dose. Light dose delivered to the tissue surface is typically used in the LLLT field as the light dose parameter, since it is noninvasive and is the simplest measurement that can be made. However, such a measurement ignores properties of the light source (such as wavelength, beam divergence, pulsing characteristics) and tissue properties (such as optical properties, thickness of tissue to the organ or joint of interest) that affect the light delivery to the injury site. In other therapeutic fields that use radiative fields, dose is assessed by what is delivered to the injured site, (or the clinical treatment volume in the terminology of radiation therapy). By analogy, the proper measure of light dose for LLLT should be the fluence (J/cm 2 ) of light delivered to the organ or tissue of interest, typically located at several millimeters below the tissue surface. In fields such as radiation 4, 5 and photodynamic therapy 6, developing accurate measurements of the delivered dose at the clinically relevant target site is a subject of intense research. Accurately measuring the delivered dose to the clinical target volume enables an assessment of the biological response to the treatment that is independent of the method of light delivery, such as wavelength, beam divergence, etc. These dose response curves are then used to develop standard protocols and plan future treatments. For PDT and photocoagulation therapies, a clear threshold effect is observed, with highly demarcated boundaries between responding and non-responding tissue. In radiation therapy, response can be assessed via biopsies after treatment to confirm that cancer has been eliminated. For these therapies, dose response curves can therefore be created from physical observations of the tissue response. Different tissues and indications will have different dose responses, but with standardied dosimetry, these responses can be accurately measured, and clinicians can implement effective dose delivery prescriptions for each indication and tissue type. For LLLT to gain further clinical acceptance, similar approaches towards treatment delivery will need to be incorporated. As a first step, this will require methods of measuring the light dose at the target site, and not at the tissue surface. Since LLLT is a non-invasive technique, clinically acceptable measurements of the subsurface light dose must also be non-invasive. We have developed a concept for subsurface light dosimetry based on spatially resolved diffuse reflectance measurements of the delivered light. The primary aim of this project is to validate and test this concept using Monte Carlo simulations and tissue-simulating phantom measurements. 2. ONLINE DOSIMETRY: THE CONCEPT We have devised a method of estimating the fluence rate, (W/cm 2 ), at a depth, o, below the tissue or ( o ). The energy density or fluence (J/cm 2 ) delivered to the tissue is ( o ) = ( o )*t, where t is the treatment time. The dosimetry concept requires the monitoring of the diffuse reflectance, R, of the treatment light emitting from the surface as a function of distance from the source light entering the tissue, and then relating this information to the intensity as a function of tissue depth. (Figure 1). Such spatially resolved diffuse reflectance measurements 7 have been used to estimate the optical absorption and scattering properties of tissue with reasonable success for homogeneous tissues incorporating ~1 source-collector separations,, ranging from 1 1 mm, i.e. R(). The original analytical model used to analye this data broke down when used to estimate optical properties of heterogeneous tissue 8, 9, but more complex models that also incorporate frequency domain measurements have since been devised that account for layered tissue. 1 Hence the LLLT dosimetry concept relates the measurement of spatially-resolved diffuse reflectance, R() to the depthdependent fluence rate, (). Since accurate estimates of the optical properties is not required, we anticipate that a reasonable estimate of () will require reflectance measurements at fewer source-collector separations than in calculating the tissue optical properties, despite the complex tissue structures of typical treatment sites. Proc. of SPIE Vol

3 a) Source Detectors (Reflectance, R) Tissue b) Measure Reflectance Estimate Fluence Rate, =fn(r()) R R a R b Figure 1: The on-line dosimetry concept. a) Measurement arrangement, with surface detectors measuring diffuse reflectance of the treatment light. b) The measured reflectance is indicative of the attenuation of light in tissue, and hence an analytical model can be derived from the measured reflectance that provides an accurate estimate of the fluence rate at any depth below the tissue surface. 3. METHODS 3.1. Monte Carlo Simulations Forward simulations using Monte Carlo techniques have become standard tools in defining light propagation in complex tissues. 11 They are typically used to examine light propagation in the forward direction, i.e. given a light source, the average distribution of the light in the tissue can be calculated. For solving the inverse problem in a timely manner, i.e. estimating () based on measurements of R(), Monte Carlo simulations are computationally too slow. As a method of testing the dosimetry concept, we have run large numbers of MC simulations encompassing a large range of optical properties. For each simulation, R() and () are calculated. Based on this database of calculations, models were derived at each depth, = 2 15 mm at every millimeter, relating () to R(), i.e. () = function(r()). The Monte Carlo simulations were performed using a modified version of the program mcml originally from Wang and Jacques. The original program assumes a semi-infinite tissue with layers along the -dimension and cylindrical symmetry, i.e. results were given for depth and radial distance from a symmetric source. The beam profile and divergence of a Theralase 95 nm diode laser device (TLC1) was measured. These parameters were incorporated into the source term of the Monte Carlo software. The diffuse reflectance and depth resolved fluence information were collected every.5 mm out to 15 mm from source. Two types of tissue were simulated: homogeneous and layered tissue. For homogeneous tissue a large range of optical properties was used. Here the goal was to determine if a model could be built that encompassed a vast range of tissue optical properties: µ a =.2.5 mm -1, µ s = mm -1. Layered tissue simulations modeled 4 layers of tissue from the epidermis to muscle. Parameters for each layer are given in Table 1 and are taken from recent literature. In this analysis, we have varied those parameters that are likely to vary significantly between subjects, and that will have the most significant influence on the light propagation in tissue. These include: a b o Proc. of SPIE Vol

4 thickness of fat layer melanin content in epidermis based on typical skin types. For Type I (i.e. northern European), µ a =.2 mm -1 ), for Type IV (i.e. African), µ a = 2.5 mm -1. blood oxygenation in dermis layer from 1% (µ a =.18 mm -1 ) to 1% (µ a =.92 mm -1 ) Table 1: Parameters used for Monte Carlo simulations of layered tissue Layer Name Thickness (mm) µ a (mm -1 ) µ s (mm -1 ) 1 Epidermis Dermis 1..18,.46, Fat Muscle Once an analytical model was derived relating () to R(), the accuracy of the model was assessed by percentage error: ˆ p m (1) 2 N m where p is the predicted fluence rate (based on the analytical model), and m is the actual fluence rate (i.e. Monte Carlo simulations). N is the number of samples used in the calculation Phantom Measurements Phantoms Tissue simulating phantoms were made in 2 layers. The lower solid layer was made of agar gel, containing TiO 2 as the scattering agent and India ink as the absorber. The upper liquid layer consisted of Intralipid (for scattering) and Napthol green (for absorption). Optical properties of each layer are given in Table 2 below. There were nine possible combinations of optical properties for the lower layer, and four possible phantoms for the top layer. All possible combinations of top and lower layer optical properties were measured. Table 2: Optical properties of tissue simulating phantoms. The thickness of the liquid top layer was varied by the Scattering (cm -1 ) Absorption (cm -1 ) separation of the probe head from the surface of the Top Layer 1.5,.2,.5, 2. lower layer. This thickness of the top layer was, 1, 2, or Lower Layer 7, 12, 18.5,.15,.3 5 mm Diffuse Reflectance and Fluence Rate Probes Figure 3 shows a schematic of the fluence measurements. Diffuse reflectance measurements were made using a 15-fiber probe. At the proximal end of the probe, each fiber was placed in the specially designed head, with fibers spaced approximately 1 mm apart. At the distal end, each fiber was connected to 1 of 2 8-channel light dosimetry systems with absolute calibration. Depth profiling of the fluence rate in the phantoms was made using an isotropic probe placed in a catheter directly under the laser light source. (C in Figure 2) This fiber was connected to the remaining channel on the light dosimetry units. The catheter was first positioned relative to the top of the lower layer of the phantoms using a manually controlled translation stage (A in Figure 2). The probe/catheter was withdrawn automatically with a computercontrolled actuator for precise positioning (8 m accuracy) (B in Figure 2). The fluence rate was recorded between 2 2 mm below the surface in 1 mm increments. A manually controlled translation stage was used to position the measuring head on the surface of the gel phantoms and at one, two and five millimeters above it (F in Figure 2). Diffuse reflectance measurements were made on the phantom surface with corresponding measurements of the fluence versus depth. Liquid phantom was added to the sample container, and the probe head raised to the next height (1, 2, or 5 mm from the surface). The measurements were then repeated. Considering the combinations of phantoms (upper and lower layer) and depths of the top layer (, 1, 2, & 5 mm), the number of diffuse reflectance surface measurements was approximately 9. Proc. of SPIE Vol

5 Laser Driver F G E D B C H Figure 2: Schematic of phantom Light Dosimeter Unit measurement. Components are: A) Manual translation stage to move isotropic probe and actuator unit to absolute ero position of the phantom surface; B) computer-controlled actuator Computer Control to move isotropic probe in phantom; C) and Detection istropic probe in catheter; D) phantom; E) probe head with diode laser source A and collection fibers, which is attached to; F) translation stage to move probe head to positions of, 1, 2, or 5 mm from lower layer surface; G) connection from laser driver to laser diode on probe head; and H) diffuse reflectance collection fibers connected to light dosimetry unit. The computer controls the movement of the actuator (B) and collects light intensity date from the diffuse reflectance fibers and the isotropic probe. 4. RESULTS 4.1. Monte Carlo Simulations Predictions of the fluence were best for depths close to the surface and using the largest number of surface detectors. The predicted vs measured fluence rates for a typical example are given in Fig 3. In this case, the fluence rate predictions were made at a depth of 5 mm using 2 reflectance positions. As can be seen the fit is excellent, with r 2 =.97 and percent error of 8%. The most accurate models used 2 detection positions on the tissue surface. Fits were excellent for all depths, although the error in prediction increased for models deeper in the tissue. Reducing the number of collection positions did reduce the goodness of fits, although reasonable predictions could be made when only 4 detector positions were used (Figure 4). With 4 positions, the fluence rate 12 mm below the tissue could be predicted with ~±3% accuracy. Predicted Fluence (mw/cm 2 ) Measured Fluence (mw/cm 2 ) Figure 3: Predicted fluence vs. measured fluence at 5 mm below surface for simulations of homogeneous tissue. The model used 2 reflectance positions. Fit has 8% error with r 2 =.97. Predicted Fluence Rate (mw/cm 2 ) Actual Fluence Rate (mw/cm 2 ) Figure 4: Predicted fluence vs. measured fluence at 5 mm below surface for simulations of layered tissue. The model used 4 reflectance positions. Fit has 3% error with r 2 =.91. Proc. of SPIE Vol

6 This analysis shows that the diffuse reflectance can be used to provide a reasonably accurate prediction of the fluence rate at any particular depth below the tissue surface. With this information, the clinician can adjust the light delivered to the surface so that the fluence rate delivered to the target is consistent for all patients, i.e. if the dosimetry indicates highly attenuating tissue, then the clinician can increase the light delivered to the surface. For the clinician, the question may be whether the on-line dosimetry at the level of accuracy developed here represents a significant improvement in consistently delivering the light dose to the target, especially when compared to not using any on-line dosimetry. Without on-line dosimetry, the clinician inherently assumes that for a given surface irradiance, the subsurface fluence rate is the same for every patient. We can estimate this standard or average fluence rate by using the average fluence rate calculated by the Monte Carlo simulations. The accuracy of using this average fluence rate can be tested by comparing it to the actual value using the same definition of percentage error as used in equation 1, where p now equals the average fluence rate. Figures 5 shows plots of 2 for both the homogeneous and layered cases using four reflectance distances in the models. These are compared to 2 values when the predicted fluence rate is always the average value. For the homogeneous case, (Figure 6a) the error becomes extremely large by a depth of 5 mm. The range in optical properties is quite large in the homogeneous model, and at larger depths, the fluence rates vary by 2 orders of magnitude. In the layered (skin on fat) case, (Figure 6b) the variation in the optical properties below the dermis is minor, with the largest variation in fluence rates due to the absorption of the epidermis and variations in the dermis oxygenation. The variation in fluence rates is not as large as in the homogeneous case since the optical properties have been restricted in the top layer to simulate that of skin and in the lower layer that of muscle or fat. Predictions using the diffuse reflectance modeling (with only a small number of detectors) improves the prediction by a factor of ~3 when compared to using the average fluence rate. a) 25 b) % Prediction Error) Average Fluence Rate Model (4 distances) 2 (% Prediction Error) Average Fluence Rate Model (4 Distances) 5 1 Depth (mm) 5 1 Depth (mm) Figure 5: Comparison of error in fluence rate using either the average fluence rate for all simulations, or the fluence rate as predicted by a diffuse reflectance model that incorporates 4 reflectance measurements. a) homogeneous tissue, b) layered tissue (skin on fat or muscle) Phantom Measurements The results of the phantom measurements were similar to those predicted by the Monte Carlo simulations, with a slightly reduced accuracy, likely the result measurement errors. In general, the spatially resolved diffuse reflectance measurements can be used to estimate the fluence rate with an accuracy of ~15-3% standard error, depending on the depth probed, the analytical model used and the number of diffuse reflectance positions used in the model. The standard error in prediction of the fluence rate increases with increased depth, to a depth of approximately 7 mm, where it then remains essentially the same for all depths. This result is similar to the Monte Carlo modeling predictions. Figure 6 shows the predicted versus measured fluence rates in phantom measurements using either 15 or 4 diffuse reflectance positions in deriving the analytical model. In both cases, the predictions are reasonably accurate, with 24% and 27% error for 15 and 4 positions respectively. Proc. of SPIE Vol

7 The prediction error is smaller closer to the surface, (Figure 7) as expected since the variation in the fluence rates is smallest closest to the surface. While the Monte Carlo simulations showed that using larger number of reflectance measurement positions significantly improved the fluence rate prediction, for the phantom measurements, the effect was minor (Figure 8). This can likely be attributed to measurement precision compromising the development of the predictive models. 6 Predicted Fluence Rate (mw/cm 2 ) Distances 4 Distances Figure 6: Predicted vs actual fluence rates for phantom measurements at 1 mm from surface. Results are shown for models derived from either 15 or 4 reflectance distances. Prediction error is 24% for the model using 15 distances, and 27% for the model using 4 distances Actual Fluence Rate (mw/cm 2 ) 35 3 % Standard Error % Standard Error (9mm) Depth (mm) Number of Reflectance Positions Figure 7: Percent standard error for phantom measurements made at different depths under the surface, and for different number of positions used in creating the predictive model. Figure 8: Percent standard error of prediction for both the model as a function of the number of diffuse reflectance positions used to predict the fluence rate at a depth of 9 mm. Proc. of SPIE Vol

8 5. DISCUSSION We have developed a non-invasive method of accurately predicting the fluence rate below the tissue surface using measurements of the diffusely reflected treatment light. The method uses spatially-resolved diffuse reflectance measurements of the treatment light as a means of providing information on the subsurface fluence rate. Monte Carlo simulations and measurements on tissue simulating phantoms were used to test and validate the concept. Using this approach, the fluence rate can be predicted to within 27% of the actual value at depths between 2-15 mm. Predictions were better just below the surface than much deeper in the tissue since the variation in the fluence rate is smaller just below the surface. While the accuracy of the approach improved with larger number of surface reflectance measurements, it was found that accurate predictions could be made using only 4 diffuse reflectance measurements, located between 3 15 mm from the source position. Incorporating accurate measures of light dosimetry as a standard clinical practice in low level laser therapy will enable impartial and consistent comparisons of LLLT clinical trials. It will also enable a more methodical assessment of the biological response of the different tissues to LLLT, allowing the field to begin to understand the effect of patient variability on treatment response and should lead to a more rapid development of clinical protocols. 6. ACKNOWLEDGEMENTS This study was supported in part by Theralase Inc., the Ontario Centres of Excellence, and the Industrial Research Assistance Program of the National Research Council of Canada. 7. REFERENCES 1. Chow, R. T., Barnsley, L.: Systematic review of the literature of low-level laser therapy (LLLT) in the management of neck pain. Lasers Surg. Med., 37: 46, (25) 2. Bjordal, J. M., Couppe, C., Chow, R. T. et al.: A systematic review of low level laser therapy with locationspecific doses for pain from chronic joint disorders. Aust. J. Physiother., 49: 17, (23) 3. Karu, T.: Primary and secondary mechanisms of action of visible to near-ir radiation on cells. J. Photochem. Photobiol. B-Biol., 49: 1, (1999) 4. Eell, G. A., Galvin, J. M., Low, D. et al.: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med. Phys., 3: 289, (23) 5. Jacky, J.: 3-D Radiation-Therapy Treatment Planning - Overview and Assessment. Am. J. Clin. Oncol.-Cancer Clin. Trials, 13: 331, (199) 6. Altschuler, M. D., Zhu, T. C., Li, J. et al.: Optimied interstitial PDT prostate treatment planning with the Cimmino feasibility algorithm. Med. Phys., 32: 3524, (25) 7. Farrell, T. J., Patterson, M. S., Wilson, B.: A Diffusion-Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical-Properties Invivo. Med. Phys., 19: 879, (1992) 8. Farrell, T. J., Patterson, M. S., Essenpreis, M.: Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry. Appl. Optics, 37: 1958, (1998) 9. Weersink, R. A., Hayward, J. E., Diamond, K. R. et al.: Accuracy of noninvasive in vivo measurements of photosensitier uptake based on a diffusion model of reflectance spectroscopy. Photochem. Photobiol., 66: 326, (1997) 1. Kienle, A., Patterson, M. S., Dognit, N. et al.: Noninvasive determination of the optical properties of twolayered turbid media. Appl. Optics, 37: 779, (1998) 11. Jacques, S. L.: Monte Carlo modeling of light transport in tissues. In: Optical-Thermal Response of Laser Irradiated Tissue. Edited by A. J. Welch and M. J. C. van Gemert. New York: Plenum, 1995 Proc. of SPIE Vol

Photoacoustic Imaging in Biomedicine Critical Review by Saurabh Vyas Group 9: Interventional Photoacoustic Ultrasound CIS II: 600.

Photoacoustic Imaging in Biomedicine Critical Review by Saurabh Vyas Group 9: Interventional Photoacoustic Ultrasound CIS II: 600. Photoacoustic Imaging in Biomedicine Critical Review by Saurabh Vyas Group 9: Interventional Photoacoustic Ultrasound CIS II: 600.446, Spring 2011 Introduction Photoacoustic imaging (PA Imaging) is the

More information

Imaging/Imagine Needs for Proton Therapy: Treatment Planning. Lei Dong, Ph.D. Scripps Proton Therapy Center San Diego, CA

Imaging/Imagine Needs for Proton Therapy: Treatment Planning. Lei Dong, Ph.D. Scripps Proton Therapy Center San Diego, CA Imaging/Imagine Needs for Proton Therapy: Treatment Planning Lei Dong, Ph.D. Scripps Proton Therapy Center San Diego, CA AAPM Annual Meeting Indianapolis, Aug. 07, 2013 Disclosure Software licensing agreement

More information

Laser- and Light-Induced Autofluorescence Spectroscopy of Human Skin in Dependence on Excitation Wavelengths

Laser- and Light-Induced Autofluorescence Spectroscopy of Human Skin in Dependence on Excitation Wavelengths Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Laser- and Light-Induced

More information

} } 8/3/2016. Accounting for kv Imaging Dose. kilovoltage imaging devices/techniques. Current imaging dose determination methods

} } 8/3/2016. Accounting for kv Imaging Dose. kilovoltage imaging devices/techniques. Current imaging dose determination methods Accounting for kv Imaging Dose Parham Alaei, Ph.D. Department of Radiation Oncology University of Minnesota 1 2016 AAPM Annual Meeting - SAM Therapy Educational Course, TU-B-201-2 Washington, DC, August

More information

Translational Multimodality Optical Imaging

Translational Multimodality Optical Imaging Translational Multimodality Optical Imaging Fred S. Azar Xavier Intes Editors 0 ARTECH H O U S E BOSTON LONDON artechhouse.com Contents Foreword Preface xv xvii CHAPTER1 Introduction to Clinical Optical

More information

INTRODUCTION TO PHOTOBIOMODULATION Juanita J. Anders, Ph.D. Uniformed Services University of the Health Sciences Department of Anatomy, Physiology &

INTRODUCTION TO PHOTOBIOMODULATION Juanita J. Anders, Ph.D. Uniformed Services University of the Health Sciences Department of Anatomy, Physiology & INTRODUCTION TO PHOTOBIOMODULATION Juanita J. Anders, Ph.D. Uniformed Services University of the Health Sciences Department of Anatomy, Physiology & Genetics Don Patthoff DDS presenter American Dental

More information

INTRODUCING E L IM I N ATE PA I N

INTRODUCING E L IM I N ATE PA I N TLC-2000 INTRODUCING N O N - T H E R M A L TH E R A P E U T I C L A S E R ACC E L E R AT E H E A L I N G R E D U C E I N F L A M M AT I O N E L IM I N ATE PA I N How Theralase Laser Work Theralase lasers

More information

Absorption of an electromagnetic wave

Absorption of an electromagnetic wave In vivo optical imaging?? Absorption of an electromagnetic wave Tissue absorption spectrum Extinction = Absorption + Scattering Absorption of an electromagnetic wave Scattering of an electromagnetic wave

More information

Deliverable 2.1: Definition of paradigms representing exemplary breast lesions cases

Deliverable 2.1: Definition of paradigms representing exemplary breast lesions cases Project title: Smart Optical and Ultrasound Diagnostics of Breast Cancer Grant Agreement: 731877 Call identifier: H2020-ICT-2016-1 Topic: ICT-29-2016 Photonics KET 2016 Deliverable 2.1: Definition of paradigms

More information

Transient and selective suppression of neural activity with infrared light

Transient and selective suppression of neural activity with infrared light Supplementary Material Transient and selective suppression of neural activity with infrared light Authors: Austin R. Duke 1, Michael W. Jenkins 2, Hui Lu 3, Jeffrey M. McManus 3, Hillel J. Chiel 3,2,4,

More information

Optical Systems for Guidance in Surgery, PDT & Radiotherapy

Optical Systems for Guidance in Surgery, PDT & Radiotherapy Optical Systems for Guidance in Surgery, PDT & Radiotherapy Brian W Pogue PhD Professor, Engineering Science, Surgery, Physics & Astronomy, Dartmouth College, Hanover NH 03755 President, DoseOptics LLC

More information

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1 Biophotonics Light Matter Interactions & Lasers NPTEL Biophotonics 1 Overview In this lecture you will learn, Light matter interactions: absorption, emission, stimulated emission Lasers and some laser

More information

Radio-opaque isotropic fibre optic probes for in vivo photodynamic therapy dosimetry

Radio-opaque isotropic fibre optic probes for in vivo photodynamic therapy dosimetry Radio-opaque isotropic fibre optic probes for in vivo photodynamic therapy dosimetry E.J. Hudson, M.R. Stringer, H.J. van Staveren*, M.. Smith cademic Unit of Medical Physics, Department of Clinical Medicine,

More information

Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue

Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue Jianhua Mo, Wei Zheng, and Zhiwei Huang* Optical Bioimaging Laboratory, Department of Bioengineering,

More information

Spectroscopy and Imaging IV

Spectroscopy and Imaging IV PROGRESS IN BIOMEDICAL OPTICS AND IMAGING Vol. 16 No. 55 Clinical and Biomedical Spectroscopy and Imaging IV J. Quincy Brown Volker Decked Edifors 22-24 June 2015 Munich, Germany Sponsored by SPIE (United

More information

Biophotonics?? Biophotonics. technology in biomedical engineering. Advantages of the lightwave

Biophotonics?? Biophotonics. technology in biomedical engineering. Advantages of the lightwave Biophotonics - Imaging: X-ray, OCT, polarimetry, DOT, TIRF, photon migration, endoscopy, confocal microscopy, multiphoton microscopy, multispectral imaging - Biosensing: IR spectroscopy, fluorescence,

More information

A Three-Dimensional Finite Element Model to Study Dynamic Changes of Tissue during Laser Interstitial Thermotherapy

A Three-Dimensional Finite Element Model to Study Dynamic Changes of Tissue during Laser Interstitial Thermotherapy American Journal of Biomedical Engineering 2015, 5(3): 86-93 DOI: 10.5923/j.ajbe.20150503.02 A Three-Dimensional Finite Element Model to Study Dynamic Changes of Tissue during Laser Interstitial Thermotherapy

More information

Time-resolved optical spectroscopy and imaging of breast

Time-resolved optical spectroscopy and imaging of breast Contributed paper OPTO-ELECTRONICS REVIEW 12(2), 249 253 (2004) Time-resolved optical spectroscopy and imaging of breast P. TARONI *, A. PIFFERI, A. TORRICELLI, and R. CUBEDDU INFM-Dipartimento di Fisica,

More information

Heat Transfer in Laser Tumor Excision

Heat Transfer in Laser Tumor Excision BEE 453: COMPUTER AIDED ENGINEERING Professor Ashim K. Datta May 7, 2004 Heat Transfer in Laser Tumor Excision Submitted by Alan Chen, Edwin Cheung, Steven Lee, John Picuri, Tsung Li Shih Contents Executive

More information

Initial Certification

Initial Certification Initial Certification Therapeutic Medical Physics (TMP) Content Guide Part 2 Content Guide and Sample Questions PLEASE NOTE: List of Constants and Physical Values for Use on the Part 2 Physics Exams The

More information

A new model of selective photothermolysis to aid laser treatment of port wine stains

A new model of selective photothermolysis to aid laser treatment of port wine stains Article Engineering Thermophysics January 2013 Vol.58 No.3: 416 426 doi: 10.1007/s11434-012-5444-0 A new model of selective photothermolysis to aid laser treatment of port wine stains LI Dong 1, HE YaLing

More information

IMRT Planning: Concepts and Recommendations of the ICRU report n. 83

IMRT Planning: Concepts and Recommendations of the ICRU report n. 83 School on Medical Physics for Radiation Therapy: Dosimetry and Treatment Planning for Basic and Advanced Applications Trieste - Italy, 27 March - 7 April 2017 IMRT Planning: Concepts and Recommendations

More information

Glossary of Terms Specific to the general field of Light Therapy

Glossary of Terms Specific to the general field of Light Therapy Glossary of Terms Specific to the general field of Light Therapy Absorption When light quanta travel through tissue, the energy is eventually absorbed by some component within the tissue. When energy is

More information

THERMOGRAPHIC METHODS DURING LASER-TISSUE INTERACTION

THERMOGRAPHIC METHODS DURING LASER-TISSUE INTERACTION THERMOGRAPHIC METHODS DURING LASER-TISSUE INTERACTION R. A Thomas a, K. E Donne a, M. Clement b, G. Daniel b, a Faculty of Applied Design and Engineering, Swansea Institute, Mount Pleasant, Swansea, UK,

More information

Fiber and Electro-Optics Research Center Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

Fiber and Electro-Optics Research Center Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061 OPTICAL FIBER METHODS FOR AUTOCLAVE AND EPOXY CURE MONITORING B. Zimmermann, C. DiFrancia K. Murphy, A.Vengsarkar,' and R. Claus Fiber and Electro-Optics Research Center Virginia Polytechnic Institute

More information

TITLE PAGE. Citation Format: Copyright notice: DOI abstract link:

TITLE PAGE. Citation Format: Copyright notice: DOI abstract link: TITLE PAGE Citation Format: Matthias Rehberger, Martina Giovannella, Marco Pagliazzi, Udo Weigel, Turgut Durduran, Davide Contini, Lorenzo Spinelli, Antonio Pifferi, Alessandro Torricelli, Robert Schmitt,

More information

Optical Dosimetry and Treatment Planning for Photodynamic Therapy

Optical Dosimetry and Treatment Planning for Photodynamic Therapy Optical Dosimetry and Treatment Planning for Photodynamic Therapy by Timothy M. Baran Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Supervised by Thomas Foster

More information

8/17/2011. Implementation and Quality Assurance Considerations for Volumetric Modulated Arc Therapy (VMAT)*

8/17/2011. Implementation and Quality Assurance Considerations for Volumetric Modulated Arc Therapy (VMAT)* and Quality Assurance Considerations for Volumetric Modulated Arc Therapy * What is? Report of writing group from TETAWG under Therapy Physics Committee (TPC) of AAPM Writing Group members: James M. Galvin,

More information

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator Rosure B. Abdulrahman, Arif S. Alagoz, Tansel Karabacak Department of Applied Science, University of Arkansas at Little Rock,

More information

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery Carlos M. Bledt * a, Daniel V. Kopp a, and James A. Harrington a

More information

Detecting Gene Expression In-Vivo Using Differential Laser. Absorption. Senior Thesis - Physics, May By Hermonta M Godwin

Detecting Gene Expression In-Vivo Using Differential Laser. Absorption. Senior Thesis - Physics, May By Hermonta M Godwin Detecting Gene Expression In-Vivo Using Differential Laser Absorption Senior Thesis - Physics, May 2002 By Hermonta M Godwin Advisor: Professor William E. Cooke College of William and Mary Abstract: The

More information

3 Pulsed laser ablation and etching of fused silica

3 Pulsed laser ablation and etching of fused silica 3 Pulsed laser ablation and etching of fused silica 17 3 Pulsed laser ablation and etching of fused silica Material erosion caused by short laser pulses takes place far from equilibrium and may be based

More information

Effects of relative humidity on laser light transmittance during cryogen spray cooling of in vitro skin phantoms

Effects of relative humidity on laser light transmittance during cryogen spray cooling of in vitro skin phantoms Effects of relative humidity on laser light transmittance during cryogen spray cooling of in vitro skin phantoms JC Ramirez-San-Juan a,b, B Choi a, W Franco c, JS Nelson a, G Aguilar c a Beckman Laser

More information

Basic principles of quantification using optical techniques

Basic principles of quantification using optical techniques Contents Basic principles of quantification using optical techniques Adrian Taruttis Helmholtz Zentrum München Chair for Biological Imaging Technische Universität München Light/ tissue interactions Planar

More information

Laser Processing and Characterisation of 3D Diamond Detectors

Laser Processing and Characterisation of 3D Diamond Detectors Laser Processing and Characterisation of 3D Diamond Detectors ADAMAS GSI meeting 3rd Dec 2015 Steven Murphy University of Manchester 3D Diamond Group / RD42 Outline Laser setup for fabricating graphitic

More information

LED-ENHANCEMENT OF CELL GROWTH

LED-ENHANCEMENT OF CELL GROWTH This work is supported and managed through the NASA Marshall Space Flight Center - SBIR Program. LEDtechnology developed for NASA plant growth experiments in space shows promise for delivering light deep

More information

Monte Carlo Methods & Virtual Photonics

Monte Carlo Methods & Virtual Photonics Monte Carlo Methods & Virtual Photonics Tuesday-Thursday 9 10:30 Room 3201, Nat. Sci. II Jerry Spanier P220 BLI jspanier@uci.edu Please help yourselves to refreshments at the back of the room and leave

More information

Complex Treatments in Proton Therapy - Selected Topics. Martin Bues, PhD Proton Therapy M.D. Anderson Cancer Center

Complex Treatments in Proton Therapy - Selected Topics. Martin Bues, PhD Proton Therapy M.D. Anderson Cancer Center Complex Treatments in Proton Therapy - Selected Topics Educational Workshop PTCOG 46, May 18-20, Wanjie, China Martin Bues, PhD Proton Therapy M.D. Anderson Cancer Center Outline Topic 1: Topic 2: Topic

More information

Genetically targeted all-optical electrophysiology with a transgenic Credependent

Genetically targeted all-optical electrophysiology with a transgenic Credependent Genetically targeted all-optical electrophysiology with a transgenic Credependent Optopatch mouse Short title: Transgenic Optopatch mouse Shan Lou 1, Yoav Adam 1, Eli N. Weinstein 1,4, Erika Williams 2,

More information

ArcCHECK & 3DVH. The Ultimate 4D Patient QA Solution. Your Most Valuable QA and Dosimetry Tools

ArcCHECK & 3DVH. The Ultimate 4D Patient QA Solution. Your Most Valuable QA and Dosimetry Tools ArcCHECK & 3DVH The Ultimate 4D Patient QA Solution Your Most Valuable QA and Dosimetry Tools THE 4D QA GOLD STANDARD The ArcCHECK is the world s most selected independent 4D measurement array. Simply

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

Damage Threats and Response of Final Optics for Laser-Fusion Power Plants

Damage Threats and Response of Final Optics for Laser-Fusion Power Plants Damage Threats and Response of Final Optics for Laser-Fusion Power Plants M. S. Tillack 1, S. A. Payne 2, N. M. Ghoniem 3, M. R. Zaghloul 1 and J. F. Latkowski 2 1 UC San Diego, La Jolla, CA 92093-0417

More information

How to measure the effectiveness of therapy by measuring oxygenation of the target tissues

How to measure the effectiveness of therapy by measuring oxygenation of the target tissues How to measure the effectiveness of therapy by measuring oxygenation of the target tissues Harold Swartz, M.D., Ph.D. Geisel Medical School at Dartmouth Disclosures Scientific Director of Clin-EPR, LLC

More information

Synergy: Unpacking my Research Experience in the Schenkman Lab. My work on my bioengineering senior capstone project in the Schenkman lab is much

Synergy: Unpacking my Research Experience in the Schenkman Lab. My work on my bioengineering senior capstone project in the Schenkman lab is much Synergy: Unpacking my Research Experience in the Schenkman Lab My work on my bioengineering senior capstone project in the Schenkman lab is much more than completing a departmental requirement for graduation

More information

Computational benchmarks - proposal - Robert Jeraj

Computational benchmarks - proposal - Robert Jeraj Computational benchmarks - proposal - Robert Jeraj Departments of Medical Physics, Human Oncology and Biomedical Engineering University of Wisconsin Madison, WI Increased importance of computer modeling

More information

Nayar Prize I Quarterly Progress Report (Quarters 2&3) August, 2016

Nayar Prize I Quarterly Progress Report (Quarters 2&3) August, 2016 Nayar Prize I Quarterly Progress Report (Quarters 2&3) August, 2016 Project: ADEPT Cancer Imager Team: Ken Tichauer, Jovan Brankov, Raju Mehta Students: Lagnojita Sinha, Xiaochun Xu Progress Summary Since

More information

Review. Intricacies of Dose in Laser Phototherapy for Tissue Repair and Pain Relief. Chukuka S. Enwemeka, Ph.D., FACSM

Review. Intricacies of Dose in Laser Phototherapy for Tissue Repair and Pain Relief. Chukuka S. Enwemeka, Ph.D., FACSM Photomedicine and Laser Surgery Volume 27, Number 3, 2009 ª Mary Ann Liebert, Inc. Pp. 1 7 DOI: 10.1089=pho.2009.2503 Review Intricacies of Dose in Laser Phototherapy for Tissue Repair and Pain Relief

More information

DESIGN OF AN ANTHROPOMORPHIC INTENSITY MODULATED RADIATION THERAPY QUALITY ASSURANCE PHANTOM

DESIGN OF AN ANTHROPOMORPHIC INTENSITY MODULATED RADIATION THERAPY QUALITY ASSURANCE PHANTOM DESIGN OF AN ANTHROPOMORPHIC INTENSITY MODULATED RADIATION THERAPY QUALITY ASSURANCE PHANTOM Dee-Ann Radford, David S. Followill, Peter A. Balter, William F. Hanson Department of Radiation Physics The

More information

Joseph E. Berman PT, MHS 1,2,3 Cheryl Lasselle PT, DPT, MBA 1,2,4* Edwin P. Monroy PT, DPT, CLT, CWS 1,3

Joseph E. Berman PT, MHS 1,2,3 Cheryl Lasselle PT, DPT, MBA 1,2,4* Edwin P. Monroy PT, DPT, CLT, CWS 1,3 RECENT RESEARCH UPDATE REGARDING THE USE OF PHOTOBIOMODULATION FOR WOUND HEALING Joseph E. Berman PT, MHS 1,2,3 Cheryl Lasselle PT, DPT, MBA 1,2,4* Edwin P. Monroy PT, DPT, CLT, CWS 1,3 1 Clement J. Zablocki

More information

Practical Workflow and the Cost of Adaptive Therapy. Rojano Kashani, Ph.D., DABR Washington University School of Medicine March 7, 2015

Practical Workflow and the Cost of Adaptive Therapy. Rojano Kashani, Ph.D., DABR Washington University School of Medicine March 7, 2015 Practical Workflow and the Cost of Adaptive Therapy Rojano Kashani, Ph.D., DABR Washington University School of Medicine March 7, 2015 Disclosures Travel expenses paid by ViewRay Inc. for on-site software

More information

Principles of translational medicine: imaging, biomarker imaging, theranostics

Principles of translational medicine: imaging, biomarker imaging, theranostics Principles of translational medicine: imaging, biomarker imaging, theranostics Compiled by: Endre Mikus PhD, CEO Budapest, 21/9/2015 Imaging and imaging biomarkers An imaging biomarker is an anatomic,

More information

Experimental evaluation of the accuracy of skin dose calculation for a commercial treatment planning system

Experimental evaluation of the accuracy of skin dose calculation for a commercial treatment planning system JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 9, NUMBER 1, WINTER 2008 Experimental evaluation of the accuracy of skin dose calculation for a commercial treatment planning system Laurence E. Court,

More information

Evaluation of thermal effects during vascular lesions treatment by dye laser

Evaluation of thermal effects during vascular lesions treatment by dye laser International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.12 pp 610-615, 2015 Evaluation of thermal effects during vascular lesions treatment by dye laser Johnny Toumi, Fawaz

More information

Laser Activated Gold Nanorods for the Photothermal Treatment of Cancer

Laser Activated Gold Nanorods for the Photothermal Treatment of Cancer Laser Activated Gold Nanorods for the Photothermal Treatment of Cancer F. Rossi *1, F. Ratto 1, and R. Pini 1 1 Institute of Applied Physics Nello Carrara, Italian National Research Council *Corresponding

More information

Analysis of Phosphor Heat Generation and Temperature Distribution in Remoteplate Phosphor-Converted Light-Emitting Diodes

Analysis of Phosphor Heat Generation and Temperature Distribution in Remoteplate Phosphor-Converted Light-Emitting Diodes Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00328 Analysis of Phosphor Heat Generation and Temperature Distribution in Remoteplate

More information

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION Journal of Optoelectronics and Advanced Materials Vol. 7, No. 3, June 2005, p. 1191-1195 Invited lecture PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION J. Ihlemann * Laser-Laboratorium Göttingen e.v.,

More information

Miniature fibre optic probe for minimally invasive photoacoustic sensing

Miniature fibre optic probe for minimally invasive photoacoustic sensing Miniature fibre optic probe for minimally invasive photoacoustic sensing Sunish J. Mathews*, Edward Z. Zhang, Adrien E. Desjardins and Paul C. Beard Department of Medical Physics and Biomedical Engineering,

More information

1. RF ablation guarding circuits for EIT

1. RF ablation guarding circuits for EIT 1. RF ablation guarding circuits for EIT Synopsis: Intracardiac and endovascular ablation therapies are widespread in their use in the treatment of a variety of cardiac arrhythmias as well as renal artery

More information

Numerical Simulation of the Medical Linear Accelerator Electron Beams Absorption by ABS-Plastic doped with Metal

Numerical Simulation of the Medical Linear Accelerator Electron Beams Absorption by ABS-Plastic doped with Metal Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical Simulation of the Medical Linear Accelerator Electron Beams Absorption by ABS-Plastic doped with Metal To cite this article: S G Stuchebrov

More information

Clinical Implementation of the PEREGRINE Monte Carlo Dose Calculations System for Photon Beam Therapy

Clinical Implementation of the PEREGRINE Monte Carlo Dose Calculations System for Photon Beam Therapy UCRL-JC-133076 PREPRINT Clinical Implementation of the PEREGRINE Monte Carlo Dose Calculations System for Photon Beam Therapy C.L. Hartmann Siantar, P.M. Bergstrom T.P. Daly, M. Descalle D. Garrett, R.K.

More information

1. Quantity & Quality of Infrared: Not all infrared is created equally

1. Quantity & Quality of Infrared: Not all infrared is created equally BUYER S GUIDE: WHAT TO LOOK FOR IN INFRARED SAUNAS 4 Most Important Factors to Consider With so much information on the internet, researching infrared saunas can be confusing. There are hundreds of saunas

More information

Experts in Femtosecond Laser Technology. DermaInspect. Non-invasive multiphoton tomography of human skin

Experts in Femtosecond Laser Technology. DermaInspect. Non-invasive multiphoton tomography of human skin Experts in Femtosecond Laser Technology DermaInspect Non-invasive multiphoton tomography of human skin In vivo optical biopsies with subcellular spatial resolution based on near infrared femtosecond laser

More information

Suprasil and Infrasil Material Grades for the Infrared Spectrum

Suprasil and Infrasil Material Grades for the Infrared Spectrum and Material Grades for the Infrared Spectrum Operation @946 nm @64 nm @39 nm Suprasil and Infrasil Material Grades for the Infrared Spectrum Operation @946 nm @64 nm @39 nm The growing need for Infrared

More information

Peak Irradiance & Energy Density

Peak Irradiance & Energy Density Peak Irradiance & Energy Density What They Are and How They Can Be Managed for UV Curing Applications A Phoseon Technology White Paper April 2018 Overview In the printing industry, professionals have used

More information

Аquaphotomics in biotechnology - new tools and opportunities

Аquaphotomics in biotechnology - new tools and opportunities Аquaphotomics in biotechnology - new tools and opportunities Prof. Albert Krastanov UNIVERSITY OF FOOD TECHNOLOGIES AQUAPHOTOMICS time-efficient allows rapid, chemical-free, noninvasive in vivo assessment

More information

Determination of Optical Parameters in Biological Tissues and. Application to Medical Imaging

Determination of Optical Parameters in Biological Tissues and. Application to Medical Imaging Determination of Optical Parameters in Biological Tissues and Application to Medical Imaging A Dissertation Presented to the Faculty of the Department of Physics East Carolina University In Partial Fulfillment

More information

INFRARED SAUNA BUYER S GUIDE

INFRARED SAUNA BUYER S GUIDE INFRARED SAUNA BUYER S GUIDE 4 Most Important Factors to Consider With so much information on the internet, researching infrared saunas can be confusing. There are hundreds of saunas online that look very

More information

Excelitas Technologies Utilizing deep-uv LED below 300nm to enhance curing

Excelitas Technologies Utilizing deep-uv LED below 300nm to enhance curing Excelitas Technologies Utilizing deep-uv LED below 300nm to enhance curing Dr. Tanja Bizjak-Bayer Business Development Manager, OmniCure Who We Are Lumen Dynamics was acquired by Excelitas Technologies

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AD Award Number: W81XWH-07-1-0231 TITLE: Spectroscopic Photoacoustic Tomography of Prostate Cancer PRINCIPAL INVESTIGATOR: Xueding Wang CONTRACTING ORGANIZATION: University Of Michigan Ann Arbor, MI 48109-1274

More information

The Effect of Diode laser wavelength on the Clearweld Welding Process

The Effect of Diode laser wavelength on the Clearweld Welding Process The Effect of Diode laser wavelength on the Clearweld Welding Process A.P. Hoult, Coherent Inc. Laser Applications Center Santa Clara, CA M. Burrell, Gentex Corporation, Carbondale, PA Abstract The acceptance

More information

Treatment Quality Assurance Cone Beam Image Guided Radiation Therapy. Jean-Pierre Bissonnette, PhD, MCCPM

Treatment Quality Assurance Cone Beam Image Guided Radiation Therapy. Jean-Pierre Bissonnette, PhD, MCCPM Treatment Quality Assurance Cone Beam Image Guided Radiation Therapy Jean-Pierre Bissonnette, PhD, MCCPM Disclosure Work supported, in part, by Elekta Oncology Systems Commercial Interest in Penta-Guide

More information

Biophotonics II general remarks

Biophotonics II general remarks general remarks BIOPHOTONICS I (WS 2017/18) I. Imaging Systems human vision microscopy II. Light Scattering Mie scattering light propagation in tissue BIOPHOTONICS II (SS 2018) III. Biospectroscopy Fluorescence

More information

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers supplementary material Michael Dürr, Andreas Schmid, Markus Obermaier, Silvia Rosselli, Akio Yasuda, and

More information

@01-258_via99-011_hepatoma_onscreen

@01-258_via99-011_hepatoma_onscreen Lei Xing, Ph.D. & Jacob Haimson Professor Department of Radiation Oncology & MIPS Stanford University School of Medicine Case study TrueBeam 6 MV FFF RapidArc Tx of a Lung SBRT 3D modeling Treatment planning

More information

Thanks to Jeff Williamson, Mike Steinberg, James Purdy

Thanks to Jeff Williamson, Mike Steinberg, James Purdy Thanks to Jeff Williamson, Mike Steinberg, James Purdy Radiation Therapy 1.6M new cancer cases this year in US Approximately 60% of cancer patients receive radiation therapy during the course of their

More information

White Paper. Dose Tracking System. Patient Skin Dose Estimates in Real Time

White Paper. Dose Tracking System. Patient Skin Dose Estimates in Real Time White Paper Dose Tracking System Patient Skin Dose Estimates in Real Time INTRODUCTION In an era of increased utilization of ionizing radiation for medical diagnostic and interventional procedures and

More information

N.MAFFEI, G.GUIDI, C.VECCHI, G.BALDAZZI Physics Department, University of Bologna, via Irnerio Bologna, Italy

N.MAFFEI, G.GUIDI, C.VECCHI, G.BALDAZZI Physics Department, University of Bologna, via Irnerio Bologna, Italy AN ARTIFICIAL NEURAL NETWORK TO PREDICT TIME OF REPLANNING FOR TOMOTHERAPY TREATMENTS N.MAFFEI, G.GUIDI, C.VECCHI, G.BALDAZZI Physics Department, University of Bologna, via Irnerio 40 40138 Bologna, Italy

More information

A Paradigm Shift in Patient Dose Monitoring

A Paradigm Shift in Patient Dose Monitoring VL White Paper A Paradigm Shift in Patient Dose Monitoring Dose Tracking System Andrew Kuhls-Gilcrist, Ph.D., D.A.B.R. Senior XRVL Clinical Science Manager Canon Medical Systems, Inc. Millions of fluoroscopically

More information

Thermal Modelling for Laser Treatment of Port Wine Stains

Thermal Modelling for Laser Treatment of Port Wine Stains The University of Akron From the SelectedWorks of Dr. Guo-Xiang Wang 2011 Thermal Modelling for Laser Treatment of Port Wine Stains Dong Li Guo-Xiang Wang Yaling He Available at: https://works.bepress.com/guo-xiang_wang/33/

More information

Biomedical Applications of Molecular Spectroscopy

Biomedical Applications of Molecular Spectroscopy Biomedical Applications of Molecular Spectroscopy Mike Kayat B&W Tek, Inc 19 Shea Way Newark, DE 19713 United States of America +1 302 368 7824 mikek@bwtek.com 1 Overview Molecular spectroscopy is a large

More information

Patient DVH based QA metrics using the Planned Dose Perturbation Algorithm

Patient DVH based QA metrics using the Planned Dose Perturbation Algorithm Session V: New Therapy Technologies Patient DVH based QA metrics using the Planned Dose Perturbation Algorithm March 31, 2012 Hosang Jin, Ph.D. Assistant Professor University of Oklahoma Conflict of Interest

More information

Exposure Limits for Laser Radiation

Exposure Limits for Laser Radiation Exposure Limits for Laser Radiation Bruce E. Stuck ICNIRP Member U.S. Army Medical Research Department (Recently retired!) San Antonio, TX Exposure Limits for Laser Radiation Bruce E. Stuck, ICNIRP Lasers

More information

Photoacoustic imaging of vascular networks in transgenic mice

Photoacoustic imaging of vascular networks in transgenic mice Photoacoustic imaging of vascular networks in transgenic mice J.G. Laufer 1, J.O. Cleary 1,2, E.Z. Zhang 1, M.F. Lythgoe 2, P.C. Beard 1 1. Department of Medical Physics and Bioengineering, University

More information

2018/7/31. Primary Objective

2018/7/31. Primary Objective Andrew Kuhls-Gilcrist, PhD, DABR July 31, 2018 Primary Objective The purpose of this session is to allow vendors to present their solutions and describe how their product can empower the clinician and

More information

Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation

Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation IOP Publishing Journal of Physics: Conference Series 59 (2007) 11 15 doi:10.1088/1742-6596/59/1/003 Eighth International Conference on Laser Ablation Time-resolved diffraction profiles and structural dynamics

More information

The quenching effect in PRESAGE dosimetry of proton beams: Is an empirical correction feasible?

The quenching effect in PRESAGE dosimetry of proton beams: Is an empirical correction feasible? The quenching effect in PRESAGE dosimetry of proton beams: Is an empirical correction feasible? S J Doran 1,2, T Gorjiara 3, J Adamovics 4,5, Z Kuncic 3, A Kacperek 6 and C Baldock 3 1 CRUK Cancer Imaging

More information

Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements

Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements Technical Overview Authors Dr. Fabian Zieschang, Katherine MacNamara,

More information

The Optimization of Inverse Planning and IMRT

The Optimization of Inverse Planning and IMRT The Optimization of Inverse Planning and IMRT James M. Galvin, D.Sc. Ying Xiao, Ph.D. Yan Chen, Ph.D. Greg Bednarz, Ph.D. Darek Michalski, Ph.D. Yair Censor, Ph.D. Chris Houser, B.S. Murshed Hossain, PhD

More information

Thermoelectric Detection of Spherical Tin Inclusions in Copper by Magnetic Sensing

Thermoelectric Detection of Spherical Tin Inclusions in Copper by Magnetic Sensing Thermoelectric Detection of Spherical Tin Inclusions in Copper by Magnetic Sensing Hector Carreon, Prof. Peter B. Nagy, and Prof. Adnan H. Nayfeh Department of Aerospace Engineering and Engineering Mechanics

More information

Commissioning of the Delta 4 Discover An investigation of its influence on the beam quality and of its error detection capabilities Vikren Sarkar,

Commissioning of the Delta 4 Discover An investigation of its influence on the beam quality and of its error detection capabilities Vikren Sarkar, Commissioning of the Delta 4 Discover An investigation of its influence on the beam quality and of its error detection capabilities Vikren Sarkar, Adam Paxton, Bill Salter Questions we aimed to answer

More information

Study of Hole Properties in Percussion Regime with a New Analysis Method

Study of Hole Properties in Percussion Regime with a New Analysis Method Study of Hole Properties in Percussion Regime with a New Analysis Method M. Schneider*, M. Muller*, R. Fabbro*, L. Berthe* *Laboratoire pour l Application des Lasers de Puissance (UPR CNRS 1578) 16 bis

More information

MLS the 3 rd Millennium Laser Therapy

MLS the 3 rd Millennium Laser Therapy Jste:im MLS the 3 rd Millennium Laser Therapy UNITED STATES PATENT No.: US 8,251,982 B2 The patent obtained in the USA officially recognizes the uniqueness and originality of MLS MLS Multiwave Locked System

More information

Physical validation of UF-RIPSA: A rapid in-clinic peak skin dose mapping algorithm for fluoroscopically guided interventions

Physical validation of UF-RIPSA: A rapid in-clinic peak skin dose mapping algorithm for fluoroscopically guided interventions Received: 21 July 2017 Revised: 21 July 2017 Accepted: 13 February 2018 DOI: 10.1002/acm2.12312 MEDICAL IMAGING Physical validation of UF-RIPSA: A rapid in-clinic peak skin dose mapping algorithm for fluoroscopically

More information

FEL Irradiation Tolerance of Multilayer Optical System

FEL Irradiation Tolerance of Multilayer Optical System FEL Irradiation Tolerance of Multilayer Optical System Satoshi Ichimaru, Masatoshi Hatayama NTT Advanced Technology Corporation 1. Introduction 2. Damage formation - Thermal process vs Non-thermal process

More information

The neov endovascular

The neov endovascular www.neo-laser.com The neov endovascular Surgical power was never so small The neov1470 surgical laser the smallest, lightest weight, and most portable laser system of its power class. DESIGNED FOR SURGERY

More information

Quantifying biological forces involved in the process of cell-mediated cytolysis

Quantifying biological forces involved in the process of cell-mediated cytolysis Quantifying biological forces involved in the process of cell-mediated cytolysis Experimentation based on responses of living cells (Cell-based assays) represents an important stratum in biological and

More information

Lasers service a diverse range of biomedical

Lasers service a diverse range of biomedical Meet Trends in Therapeutics Biomedical lasers are experiencing strong growth, with a move toward diode and fiber lasers. Current trends in biomedical laser therapeutics are characterizing the dynamic nature

More information

The importance of coherence in phototherapy

The importance of coherence in phototherapy The importance of coherence in phototherapy Tomas Hode* a, Donald Duncan b, Sean Kirkpatrick b, Peter Jenkins a, Lars Hode c. a Irradia USA, 16275 Patrick Henry Hwy, Roseland, VA 22967, USA; b Oregon Health

More information

Inhomogeneity in optical properties of rat brain: a study for LLLT dosimetry.

Inhomogeneity in optical properties of rat brain: a study for LLLT dosimetry. Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Física Nuclear - IF/FNC Comunicações em Eventos - IF/FNC 213 Inhomogeneity in optical properties of rat brain:

More information

Kinetics of Bacterial Colony Growth by Laser Induced Fluorescence 1

Kinetics of Bacterial Colony Growth by Laser Induced Fluorescence 1 ISSN 154-66X, Laser Physics, 29, Vol. 19, No. 3, pp. 468 472. Pleiades Publishing, Ltd., 29. Original Text Astro, Ltd., 29. LASER METHODS IN CHEMISTRY, BIOLOGY, AND MEDICINE Kinetics of Bacterial Colony

More information