Introduction to Bioinformatics

Size: px
Start display at page:

Download "Introduction to Bioinformatics"

Transcription

1 Introduction to Bioinformatics September 1, 2006 Jonathan Pevsner, Ph.D.

2 Teaching assistants Hugh Cahill Jennifer Turney Meg Zupancic

3 Who is taking this course? People with very diverse backgrounds in biology People with diverse backgrounds in computer science and biostatistics Most people have a favorite gene, protein, or disease

4 What are the goals of the course? To provide an introduction to bioinformatics with a focus on the National Center for Biotechnology Information (NCBI) and EBI To focus on the analysis of DNA, RNA and proteins To introduce you to the analysis of genomes To combine theory and practice to help you solve research problems

5 Themes throughout the course Textbooks Web sites Literature references Gene/protein families Computer labs

6 Textbook The course textbook is J. Pevsner, Bioinformatics and Functional Genomics (Wiley, 2003). The chapters contain content, lab exercises, and quizzes that were developed in this course over the past six years. A few copies will be available on reserve at Welch Library for those of you who do not want to buy a copy (go up to the 2 nd floor), and the library has six more copies. Several other bioinformatics texts are available: Baxevanis and Ouellette David Mount Durbin et al.

7 Web sites The course website is reached via: (or Google pevsnerlab courses) This site contains the powerpoints for each lecture. The textbook website is: This has 1000 URLs, organized by chapter This site also contains the same powerpoints. The weekly quizzes are on my website: Once you log in and take a quiz, you will get instant feedback. You can use moodle to ask questions as well.

8 Literature references You are encouraged to read original source articles. They will enhance your understanding of the material. Reading will be assigned.

9 Themes throughout the course: gene/protein families We will use retinol-binding protein 4 (RBP4) as a model gene/protein throughout the course. RBP4 is a member of the lipocalin family. It is a small, abundant carrier protein. We will study it in a variety of contexts including --sequence alignment --gene expression --protein structure --phylogeny --homologs in various species We will also use other examples, such as the globins and the pol protein of HIV-1

10

11 The HIV-1 pol gene encodes three proteins Aspartyl protease Reverse transcriptase Integrase PR RT IN

12 Themes throughout the course: computer labs There is a computer lab each Friday. This is a chance to gain practical experience using a variety of web resources. You can do the lab on your own, ahead of time. However, during the Friday lab you can get help on problems, and in some cases the computers will have specialized software.

13 Grading 40% ten moodle quizzes (corresponding to chapters 2-11) 30% final exam October 25 (in class) 30% discovery of a novel gene: --Find the novel gene by the end of September, and turn in the final report, with phylogenetic tree, by October 25 --Instructions are posted on the course website --We will discuss this project in detail in the next two weeks.

14 Grading Quizzes are taken at the moodle website, and are due one week after the relevant lecture ten quizzes 4% Chapter 2 quiz (sequences) 4% Chapter 3 quiz (alignment) 4% Chapter 4 quiz (BLAST) 4% Chapter 5 quiz (advanced BLAST) 4% Chapter 6 quiz (RNA) 4% Chapter 7 quiz (microarrays) 4% Chapter 8 quiz (proteomics) 4% Chapter 9 quiz (protein structure) 4% Chapter 10 quiz (multiple alignment) 4% Chapter 11 quiz (phylogeny) 30% find-a-gene project (due October 25) 30% final exam October 25 (in class)

15 Outline for today (chapters 1 and 2) Definition of bioinformatics Overview of the NCBI website Accessing information about DNA and proteins --Definition of an accession number --Four ways to find information on proteins and DNA Access to biomedical literature

16 What is bioinformatics? Interface of biology and computers Analysis of proteins, genes and genomes using computer algorithms and computer databases Genomics is the analysis of genomes. The tools of bioinformatics are used to make sense of the billions of base pairs of DNA that are sequenced by genomics projects.

17 Top ten challenges for bioinformatics [1] Precise models of where and when transcription will occur in a genome (initiation and termination) [2] Precise, predictive models of alternative RNA splicing [3] Precise models of signal transduction pathways; ability to predict cellular responses to external stimuli [4] Determining protein:dna, protein:rna, protein:protein recognition codes [5] Accurate ab initio protein structure prediction

18 Top ten challenges for bioinformatics [6] Rational design of small molecule inhibitors of proteins [7] Mechanistic understanding of protein evolution [8] Mechanistic understanding of speciation [9] Development of effective gene ontologies: systematic ways to describe gene and protein function [10] Education: development of bioinformatics curricula Source: Ewan Birney, Chris Burge, Jim Fickett

19 On bioinformatics Science is about building causal relations between natural phenomena (for instance, between a mutation in a gene and a disease). The development of instruments to increase our capacity to observe natural phenomena has, therefore, played a crucial role in the development of science - the microscope being the paradigmatic example in biology. With the human genome, the natural world takes an unprecedented turn: it is better described as a sequence of symbols. Besides high-throughput machines such as sequencers and DNA chip readers, the computer and the associated software becomes the instrument to observe it, and the discipline of bioinformatics flourishes.

20 On bioinformatics However, as the separation between us (the observers) and the phenomena observed increases (from organism to cell to genome, for instance), instruments may capture phenomena only indirectly, through the footprints they leave. Instruments therefore need to be calibrated: the distance between the reality and the observation (through the instrument) needs to be accounted for. This issue of Genome Biology is about calibrating instruments to observe gene sequences; more specifically, computer programs to identify human genes in the sequence of the human genome. Martin Reese and Roderic Guigó, Genome Biology (Suppl I):S1, introducing EGASP, the Encyclopedia of DNA Elements (ENCODE) Genome Annotation Assessment Project

21 bioinformatics medical informatics Tool-users public health informatics databases algorithms Tool-makers infrastructure

22 Three perspectives on bioinformatics The cell The organism The tree of life Page 4

23

24 DNA RNA protein phenotype Page 5

25 Time of development Body region, physiology, pharmacology, pathology Page 5

26 After Pace NR (1997) Science 276:734 Page 6

27 DNA RNA protein phenotype

28 Growth of GenBank Base pairs of DNA (billions) Fig. 2.1 Year Page 17 Sequences (millions) Updated : >40b base pairs

29 Base pairs of DNA (billions) Growth of GenBank Sequences (millions) December 1982 June 2006

30 Growth of the International Nucleotide Sequence Database Collaboration Base pairs of DNA (billions) Base pairs contributed by GenBank EMBL DDBJ

31 Central dogma of molecular biology DNA RNA protein genome transcriptome proteome Central dogma of bioinformatics and genomics

32 DNA RNA protein phenotype genomic DNA databases cdna ESTs UniGene protein sequence databases Fig. 2.2 Page 20

33 There are three major public DNA databases EMBL GenBank DDBJ The underlying raw DNA sequences are identical Page 16

34 There are three major public DNA databases EMBL Housed at EBI European Bioinformatics Institute GenBank Housed at NCBI National Center for Biotechnology Information DDBJ Housed in Japan Page 16

35 >100,000 species are represented in GenBank all species 128,941 viruses 6,137 bacteria 31,262 archaea 2,100 eukaryota 87,147 Table 2-1 Page 17

36 Taxonomy nodes at NCBI 8/06

37 The most sequenced organisms in GenBank Homo sapiens 10.7 billion bases Mus musculus 6.5b Rattus norvegicus 5.6b Danio rerio 1.7b Zea mays 1.4b Oryza sativa 0.8b Drosophila melanogaster 0.7b Gallus gallus 0.5b Arabidopsis thaliana 0.5b Updated GenBank release Table 2-2 Page 18

38 The most sequenced organisms in GenBank Homo sapiens 11.2 billion bases Mus musculus 7.5b Rattus norvegicus 5.7b Danio rerio 2.1b Bos taurus 1.9b Zea mays 1.4b Oryza sativa (japonica) 1.2b Xenopus tropicalis 0.9b Canis familiaris 0.8b Drosophila melanogaster 0.7b Updated GenBank release Table 2-2 Page 18

39 The most sequenced organisms in GenBank Homo sapiens 12.3 billion bases Mus musculus 8.0b Rattus norvegicus 5.7b Bos taurus 3.5b Danio rerio 2.5b Zea mays 1.8b Oryza sativa (japonica) 1.5b Strongylocentrotus purpurata 1.2b Sus scrofa 1.0b Xenopus tropicalis 1.0b Updated GenBank release Table 2-2 Page 18

40 National Center for Biotechnology Information (NCBI) Page 24

41 Fig. 2.5 Page 25

42 Fig. 2.5 Page 25

43 PubMed is National Library of Medicine's search service 16 million citations in MEDLINE links to participating online journals PubMed tutorial (via Education on side bar) Page 24

44 Entrez integrates the scientific literature; DNA and protein sequence databases; 3D protein structure data; population study data sets; assemblies of complete genomes Page 24

45 Entrez is a search and retrieval system that integrates NCBI databases Page 24

46 BLAST is Basic Local Alignment Search Tool NCBI's sequence similarity search tool supports analysis of DNA and protein databases 100,000 searches per day Page 25

47 OMIM is Online Mendelian Inheritance in Man catalog of human genes and genetic disorders edited by Dr. Victor McKusick, others at JHU Page 25

48 Books is searchable resource of on-line books Page 26

49 TaxBrowser is browser for the major divisions of living organisms (archaea, bacteria, eukaryota, viruses) taxonomy information such as genetic codes molecular data on extinct organisms Page 26

50 Structure site includes Molecular Modelling Database (MMDB) biopolymer structures obtained from the Protein Data Bank (PDB) Cn3D (a 3D-structure viewer) vector alignment search tool (VAST) Page 26

51 Accessing information on molecular sequences Page 26

52 Accession numbers are labels for sequences NCBI includes databases (such as GenBank) that contain information on DNA, RNA, or protein sequences. You may want to acquire information beginning with a query such as the name of a protein of interest, or the raw nucleotides comprising a DNA sequence of interest. DNA sequences and other molecular data are tagged with accession numbers that are used to identify a sequence or other record relevant to molecular data. Page 26

53 What is an accession number? An accession number is label that used to identify a sequence. It is a string of letters and/or numbers that corresponds to a molecular sequence. Examples (all for retinol-binding protein, RBP4): X02775 NT_ Rs GenBank genomic DNA sequence Genomic contig dbsnp (single nucleotide polymorphism) DNA N An expressed sequence tag (1 of 170) NM_ RefSeq DNA sequence (from a transcript) RNA NP_ AAC02945 Q KT7 RefSeq protein GenBank protein SwissProt protein Protein Data Bank structure record protein Page 27

54 Four ways to access DNA and protein sequences [1] Entrez Gene with RefSeq [2] UniGene [3] European Bioinformatics Institute (EBI) and Ensembl (separate from NCBI) [4] ExPASy Sequence Retrieval System (separate from NCBI) Note: LocusLink at NCBI was recently retired. The third printing of the book has updated these sections (pages 27-31). Page 27

55 4 ways to access protein and DNA sequences [1] Entrez Gene with RefSeq Entrez Gene is a great starting point: it collects key information on each gene/protein from major databases. It covers all major organisms. RefSeq provides a curated, optimal accession number for each DNA (NM_006744) or protein (NP_007635) Page 27

56 From the NCBI home page, type rbp4 and hit Go revised Fig. 2.7 Page 29

57 revised Fig. 2.7 Page 29

58

59

60 By applying limits, there are now just two entries

61 Entrez Gene (top of page) Note that links to many other RBP4 database entries are available revised Fig. 2.8 Page 30

62 Entrez Gene (middle of page)

63 Entrez Gene (bottom of page)

64 Fig. 2.9 Page 32

65 Fig. 2.9 Page 32

66 Fig. 2.9 Page 32

67 FASTA format Fig Page 32

68 What is an accession number? An accession number is label that used to identify a sequence. It is a string of letters and/or numbers that corresponds to a molecular sequence. Examples (all for retinol-binding protein, RBP4): X02775 NT_ Rs GenBank genomic DNA sequence Genomic contig dbsnp (single nucleotide polymorphism) DNA N An expressed sequence tag (1 of 170) NM_ RefSeq DNA sequence (from a transcript) RNA NP_ AAC02945 Q KT7 RefSeq protein GenBank protein SwissProt protein Protein Data Bank structure record protein Page 27

69 NCBI s important RefSeq project: best representative sequences RefSeq (accessible via the main page of NCBI) provides an expertly curated accession number that corresponds to the most stable, agreed-upon reference version of a sequence. RefSeq identifiers include the following formats: Complete genome Complete chromosome Genomic contig mrna (DNA format) Protein NC_###### NC_###### NT_###### NM_###### e.g. NM_ NP_###### e.g. NP_ Page 29-30

70 NCBI s RefSeq project: accession for genomic, mrna, protein sequences Accession Molecule Method Note AC_ Genomic Mixed Alternate complete genomic AP_ Protein Mixed Protein products; alternate NC_ Genomic Mixed Complete genomic molecules NG_ Genomic Mixed Incomplete genomic regions NM_ mrna Mixed Transcript products; mrna NM_ mrna Mixed Transcript products; 9-digit NP_ Protein Mixed Protein products; NP_ Protein Curation Protein products; 9-digit NR_ RNA Mixed Non-coding transcripts NT_ Genomic Automated Genomic assemblies NW_ Genomic Automated Genomic assemblies NZ_ABCD Genomic Automated Whole genome shotgun data XM_ mrna Automated Transcript products XP_ Protein Automated Protein products XR_ RNA Automated Transcript products YP_ Protein Auto. & Curated Protein products ZP_ Protein Automated Protein products

71 Four ways to access DNA and protein sequences [1] Entrez Gene with RefSeq [2] UniGene [3] European Bioinformatics Institute (EBI) and Ensembl (separate from NCBI) [4] ExPASy Sequence Retrieval System (separate from NCBI) Page 31

72 DNA RNA protein complementary DNA (cdna) UniGene Fig. 2.3 Page 23

73 UniGene: unique genes via ESTs Find UniGene at NCBI: UniGene clusters contain many expressed sequence tags (ESTs), which are DNA sequences (typically 500 base pairs in length) corresponding to the mrna from an expressed gene. ESTs are sequenced from a complementary DNA (cdna) library. UniGene data come from many cdna libraries. Thus, when you look up a gene in UniGene you get information on its abundance and its regional distribution. Pages 20-21

74 Cluster sizes in UniGene This is a gene with 1 EST associated; the cluster size is 1 Fig. 2.3 Page 23

75 Cluster sizes in UniGene This is a gene with 10 ESTs associated; the cluster size is 10

76 Cluster sizes in UniGene (human) Cluster size (ESTs) Number of clusters 1 42, , , , , , , , ,000-30,000 8 UniGene build 194, 8/06

77 UniGene: unique genes via ESTs Conclusion: UniGene is a useful tool to look up information about expressed genes. UniGene displays information about the abundance of a transcript (expressed gene), as well as its regional distribution of expression (e.g. brain vs. liver). We will discuss UniGene further on September 18 (gene expression). Page 31

78 Five ways to access DNA and protein sequences [1] Entrez Gene with RefSeq [2] UniGene [3] European Bioinformatics Institute (EBI) and Ensembl (separate from NCBI) [4] ExPASy Sequence Retrieval System (separate from NCBI) Page 31

79 Ensembl to access protein and DNA sequences Try Ensembl at for a premier human genome web browser. We will encounter Ensembl as we study the human genome, BLAST, and other topics.

80 click human

81 enter RBP4

82

83 Five ways to access DNA and protein sequences [1] Entrez Gene with RefSeq [2] UniGene [3] European Bioinformatics Institute (EBI) and Ensembl (separate from NCBI) [4] ExPASy Sequence Retrieval System (separate from NCBI) Page 33

84 ExPASy to access protein and DNA sequences ExPASy sequence retrieval system (ExPASy = Expert Protein Analysis System) Visit Page 33

85 Fig Page 33

86

87 Example of how to access sequence data: HIV-1 pol There are many possible approaches. Begin at the main page of NCBI, and type an Entrez query: hiv-1 pol Page 34

88

89 Searching for HIV-1 pol: Following the genome link yields a manageable three results Page 34

90 Example of how to access sequence data: HIV-1 pol For the Entrez query: hiv-1 pol there are about 40,000 nucleotide or protein records (and >100,000 records for a search for hiv-1 ), but these can easily be reduced in two easy steps: --specify the organism, e.g. hiv-1[organism] --limit the output to RefSeq! Page 34

91 only 1 RefSeq over 100,000 nucleotide entries for HIV-1

92 Examples of how to access sequence data: histone query for histone # results protein records RefSeq entries 7544 RefSeq (limit to human) 1108 NOT deacetylase 697 At this point, select a reasonable candidate (e.g. histone 2, H4) and follow its link to Entrez Gene. There, you can confirm you have the right gene/protein

93

94 Access to Biomedical Literature Page 35

95 PubMed at NCBI to find literature information

96 PubMed is the NCBI gateway to MEDLINE. MEDLINE contains bibliographic citations and author abstracts from over 4,600 journals published in the United States and in 70 foreign countries. It has >14 million records dating back to Page 35

97 MeSH is the acronym for "Medical Subject Headings." MeSH is the list of the vocabulary terms used for subject analysis of biomedical literature at NLM. MeSH vocabulary is used for indexing journal articles for MEDLINE. The MeSH controlled vocabulary imposes uniformity and consistency to the indexing of biomedical literature. Page 35

98

99

100 PubMed search strategies Try the tutorial ( education on the left sidebar) Use boolean queries (capitalize AND, OR, NOT) lipocalin AND disease Try using limits Try Links to find Entrez information and external resources Obtain articles on-line via Welch Medical Library (and download pdf files): Page 35

101 1 AND lipocalin AND disease (60 results) 1 OR lipocalin OR disease (1,650,000 results) 1 NOT 2 8/ lipocalin NOT disease (530 results) Fig Page 34

102 Search result: globin is present Article contents: globin is absent globin is found true positive false positive (article does not discuss globins) globin is not found false negative (article discusses globins) true negative 8/06

103 WelchWeb is available at

104 Brian Brown and Carrie Iwema are the Welch Medical Library liasons to the basic sciences

105 Course sponsors Dept. of Molecular Microbiology & Immunology, and Dept. of Biostatistics, School of Public Health

Introduction to Bioinformatics CPSC 265. What is bioinformatics? Textbooks

Introduction to Bioinformatics CPSC 265. What is bioinformatics? Textbooks Introduction to Bioinformatics CPSC 265 Thanks to Jonathan Pevsner, Ph.D. Textbooks Johnathan Pevsner, who I stole most of these slides from (thanks!) has written a textbook, Bioinformatics and Functional

More information

Introduction to Bioinformatics. What are the goals of the course? Who is taking this course? Textbook. Web sites. Literature references

Introduction to Bioinformatics. What are the goals of the course? Who is taking this course? Textbook. Web sites. Literature references Introduction to Bioinformatics Who is taking this course? People with very diverse backgrounds in biology Some people with backgrounds in computer science and biostatistics Most people (will) have a favorite

More information

EECS 730 Introduction to Bioinformatics Sequence Alignment. Luke Huan Electrical Engineering and Computer Science

EECS 730 Introduction to Bioinformatics Sequence Alignment. Luke Huan Electrical Engineering and Computer Science EECS 730 Introduction to Bioinformatics Sequence Alignment Luke Huan Electrical Engineering and Computer Science http://people.eecs.ku.edu/~jhuan/ Database What is database An organized set of data Can

More information

Computational Biology and Bioinformatics

Computational Biology and Bioinformatics Computational Biology and Bioinformatics Computational biology Development of algorithms to solve problems in biology Bioinformatics Application of computational biology to the analysis and management

More information

Chapter 2: Access to Information

Chapter 2: Access to Information Chapter 2: Access to Information Outline Introduction to biological databases Centralized databases store DNA sequences Contents of DNA, RNA, and protein databases Central bioinformatics resources: NCBI

More information

Protein Bioinformatics Part I: Access to information

Protein Bioinformatics Part I: Access to information Protein Bioinformatics Part I: Access to information 260.655 April 6, 2006 Jonathan Pevsner, Ph.D. pevsner@kennedykrieger.org Outline [1] Proteins at NCBI RefSeq accession numbers Cn3D to visualize structures

More information

Introduction to Bioinformatics. What are the goals of the course? Who is taking this course? Different user needs, different approaches

Introduction to Bioinformatics. What are the goals of the course? Who is taking this course? Different user needs, different approaches Introduction to Bioinformatics Who is taking this course? Monday, November 19, 2012 Jonathan Pevsner pevsner@kennedykrieger.org Bioinformatics M.E:800.707 People with very diverse backgrounds in biology

More information

NCBI web resources I: databases and Entrez

NCBI web resources I: databases and Entrez NCBI web resources I: databases and Entrez Yanbin Yin Most materials are downloaded from ftp://ftp.ncbi.nih.gov/pub/education/ 1 Homework assignment 1 Two parts: Extract the gene IDs reported in table

More information

Types of Databases - By Scope

Types of Databases - By Scope Biological Databases Bioinformatics Workshop 2009 Chi-Cheng Lin, Ph.D. Department of Computer Science Winona State University clin@winona.edu Biological Databases Data Domains - By Scope - By Level of

More information

The University of California, Santa Cruz (UCSC) Genome Browser

The University of California, Santa Cruz (UCSC) Genome Browser The University of California, Santa Cruz (UCSC) Genome Browser There are hundreds of available userselected tracks in categories such as mapping and sequencing, phenotype and disease associations, genes,

More information

Gene-centered resources at NCBI

Gene-centered resources at NCBI COURSE OF BIOINFORMATICS a.a. 2014-2015 Gene-centered resources at NCBI We searched Accession Number: M60495 AT NCBI Nucleotide Gene has been implemented at NCBI to organize information about genes, serving

More information

Introduction to Bioinformatics Part 1 of 2

Introduction to Bioinformatics Part 1 of 2 Introduction to Bioinformatics Part 1 of 2 CS 91.510 January 28, 2004 Georges Grinstein, Ph.D. grinstein@cs.uml.edu Copyright notice Many of the images in this PowerPoint presentation are from Bioinformatics

More information

Bioinformatics for Proteomics. Ann Loraine

Bioinformatics for Proteomics. Ann Loraine Bioinformatics for Proteomics Ann Loraine aloraine@uab.edu What is bioinformatics? The science of collecting, processing, organizing, storing, analyzing, and mining biological information, especially data

More information

Information Driven Biomedicine. Prof. Santosh K. Mishra Executive Director, BII CIAPR IV Shanghai, May

Information Driven Biomedicine. Prof. Santosh K. Mishra Executive Director, BII CIAPR IV Shanghai, May Information Driven Biomedicine Prof. Santosh K. Mishra Executive Director, BII CIAPR IV Shanghai, May 21 2004 What/How RNA Complexity of Data Information The Genetic Code DNA RNA Proteins Pathways Complexity

More information

Introduction to BIOINFORMATICS

Introduction to BIOINFORMATICS Introduction to BIOINFORMATICS Antonella Lisa CABGen Centro di Analisi Bioinformatica per la Genomica Tel. 0382-546361 E-mail: lisa@igm.cnr.it http://www.igm.cnr.it/pagine-personali/lisa-antonella/ What

More information

The Ensembl Database. Dott.ssa Inga Prokopenko. Corso di Genomica

The Ensembl Database. Dott.ssa Inga Prokopenko. Corso di Genomica The Ensembl Database Dott.ssa Inga Prokopenko Corso di Genomica 1 www.ensembl.org Lecture 7.1 2 What is Ensembl? Public annotation of mammalian and other genomes Open source software Relational database

More information

user s guide Question 1

user s guide Question 1 Question 1 How does one find a gene of interest and determine that gene s structure? Once the gene has been located on the map, how does one easily examine other genes in that same region? doi:10.1038/ng966

More information

Bioinformatics for Cell Biologists

Bioinformatics for Cell Biologists Bioinformatics for Cell Biologists 15 19 March 2010 Developmental Biology and Regnerative Medicine (DBRM) Schedule Monday, March 15 09.00 11.00 Introduction to course and Bioinformatics (L1) D224 Helena

More information

Bioinformatics Tools. Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine

Bioinformatics Tools. Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Bioinformatics Tools Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Bioinformatics Tools Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Overview This lecture will

More information

Gene-centered databases and Genome Browsers

Gene-centered databases and Genome Browsers COURSE OF BIOINFORMATICS a.a. 2015-2016 Gene-centered databases and Genome Browsers We searched Accession Number: M60495 AT NCBI Nucleotide Gene has been implemented at NCBI to organize information about

More information

Gene-centered databases and Genome Browsers

Gene-centered databases and Genome Browsers COURSE OF BIOINFORMATICS a.a. 2016-2017 Gene-centered databases and Genome Browsers We searched Accession Number: M60495 AT NCBI Nucleotide Gene has been implemented at NCBI to organize information about

More information

Annotation. (Chapter 8)

Annotation. (Chapter 8) Annotation (Chapter 8) Genome annotation Genome annotation is the process of attaching biological information to sequences: identify elements on the genome attach biological information to elements store

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics If the 19 th century was the century of chemistry and 20 th century was the century of physic, the 21 st century promises to be the century of biology...professor Dr. Satoru

More information

ELE4120 Bioinformatics. Tutorial 5

ELE4120 Bioinformatics. Tutorial 5 ELE4120 Bioinformatics Tutorial 5 1 1. Database Content GenBank RefSeq TPA UniProt 2. Database Searches 2 Databases A common situation for alignment is to search through a database to retrieve the similar

More information

Gene Prediction 10/21/05

Gene Prediction 10/21/05 Gene Prediction 1/21/5 1/21/5 Gene Prediction Announcements Eam 2 - net Friday Posted online: Eam 2 Study Guide 544 Reading Assignment (2 papers) (formerly Gene Prediction - ) 1/21/5 D Dobbs ISU - BCB

More information

Data Retrieval from GenBank

Data Retrieval from GenBank Data Retrieval from GenBank Peter J. Myler Bioinformatics of Intracellular Pathogens JNU, Feb 7-0, 2009 http://www.ncbi.nlm.nih.gov (January, 2007) http://ncbi.nlm.nih.gov/sitemap/resourceguide.html Accessing

More information

BCHM 6280 Tutorial: Gene specific information using NCBI, Ensembl and genome viewers

BCHM 6280 Tutorial: Gene specific information using NCBI, Ensembl and genome viewers BCHM 6280 Tutorial: Gene specific information using NCBI, Ensembl and genome viewers Web resources: NCBI database: http://www.ncbi.nlm.nih.gov/ Ensembl database: http://useast.ensembl.org/index.html UCSC

More information

user s guide Question 3

user s guide Question 3 Question 3 During a positional cloning project aimed at finding a human disease gene, linkage data have been obtained suggesting that the gene of interest lies between two sequence-tagged site markers.

More information

Web-based tools for Bioinformatics; A (free) introduction to (freely available) NCBI, MUSC and World-wide.

Web-based tools for Bioinformatics; A (free) introduction to (freely available) NCBI, MUSC and World-wide. Page 1 of 18 Web-based tools for Bioinformatics; A (free) introduction to (freely available) NCBI, MUSC and World-wide. When and Where---Wednesdays 1-2pm Room 438 Library Admin Building Beginning September

More information

user s guide Question 3

user s guide Question 3 Question 3 During a positional cloning project aimed at finding a human disease gene, linkage data have been obtained suggesting that the gene of interest lies between two sequence-tagged site markers.

More information

Introduction to Bioinformatics for Medical Research. Gideon Greenspan TA: Oleg Rokhlenko. Lecture 1

Introduction to Bioinformatics for Medical Research. Gideon Greenspan TA: Oleg Rokhlenko. Lecture 1 Introduction to Bioinformatics for Medical Research Gideon Greenspan gdg@cs.technion.ac.il TA: Oleg Rokhlenko Lecture 1 Introduction to Bioinformatics Introduction to Bioinformatics What is Bioinformatics?

More information

Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH. BIOL 7210 A Computational Genomics 2/18/2015

Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH. BIOL 7210 A Computational Genomics 2/18/2015 Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH BIOL 7210 A Computational Genomics 2/18/2015 The $1,000 genome is here! http://www.illumina.com/systems/hiseq-x-sequencing-system.ilmn Bioinformatics bottleneck

More information

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology.

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology. G16B BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY Methods or systems for genetic

More information

Genetics and Bioinformatics

Genetics and Bioinformatics Genetics and Bioinformatics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be Lecture 1: Setting the pace 1 Bioinformatics what s

More information

BIOL 274 Introduction to Bioinformatics Fall 2016

BIOL 274 Introduction to Bioinformatics Fall 2016 Instructor: Eric S. Ho (hoe@lafayette.edu) Office: Kunkel 13 Office hours: TTh 2-4 pm Lecture: MWF 11:00-11:50 am, Venue: Kunkel 117 Lab: M/W 1:10-4:00 pm, Venue: Kunkel 313B TAs: Amy Boles (bolesa@lafayette.edu),

More information

ab initio and Evidence-Based Gene Finding

ab initio and Evidence-Based Gene Finding ab initio and Evidence-Based Gene Finding A basic introduction to annotation Outline What is annotation? ab initio gene finding Genome databases on the web Basics of the UCSC browser Evidence-based gene

More information

BIMM 143: Introduction to Bioinformatics (Winter 2018)

BIMM 143: Introduction to Bioinformatics (Winter 2018) BIMM 143: Introduction to Bioinformatics (Winter 2018) Course Instructor: Dr. Barry J. Grant ( bjgrant@ucsd.edu ) Course Website: https://bioboot.github.io/bimm143_w18/ DRAFT: 2017-12-02 (20:48:10 PST

More information

Applied Bioinformatics

Applied Bioinformatics Applied Bioinformatics Bing Zhang Department of Biomedical Informatics Vanderbilt University bing.zhang@vanderbilt.edu Course overview What is bioinformatics Data driven science: the creation and advancement

More information

Week 1 BCHM 6280 Tutorial: Gene specific information using NCBI, Ensembl and genome viewers

Week 1 BCHM 6280 Tutorial: Gene specific information using NCBI, Ensembl and genome viewers Week 1 BCHM 6280 Tutorial: Gene specific information using NCBI, Ensembl and genome viewers Web resources: NCBI database: http://www.ncbi.nlm.nih.gov/ Ensembl database: http://useast.ensembl.org/index.html

More information

GREG GIBSON SPENCER V. MUSE

GREG GIBSON SPENCER V. MUSE A Primer of Genome Science ience THIRD EDITION TAGCACCTAGAATCATGGAGAGATAATTCGGTGAGAATTAAATGGAGAGTTGCATAGAGAACTGCGAACTG GREG GIBSON SPENCER V. MUSE North Carolina State University Sinauer Associates, Inc.

More information

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools News About NCBI Site Map

More information

Entrez Gene: gene-centered information at NCBI

Entrez Gene: gene-centered information at NCBI D54 D58 Nucleic Acids Research, 2005, Vol. 33, Database issue doi:10.1093/nar/gki031 Entrez Gene: gene-centered information at NCBI Donna Maglott*, Jim Ostell, Kim D. Pruitt and Tatiana Tatusova National

More information

Compiled by Mr. Nitin Swamy Asst. Prof. Department of Biotechnology

Compiled by Mr. Nitin Swamy Asst. Prof. Department of Biotechnology Bioinformatics Model Answers Compiled by Mr. Nitin Swamy Asst. Prof. Department of Biotechnology Page 1 of 15 Previous years questions asked. 1. Describe the software used in bioinformatics 2. Name four

More information

B I O I N F O R M A T I C S

B I O I N F O R M A T I C S B I O I N F O R M A T I C S Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be SUPPLEMENTARY CHAPTER: DATA BASES AND MINING 1 What

More information

Ensembl workshop. Thomas Randall, PhD bioinformatics.unc.edu. handouts, papers, datasets

Ensembl workshop. Thomas Randall, PhD bioinformatics.unc.edu.   handouts, papers, datasets Ensembl workshop Thomas Randall, PhD tarandal@email.unc.edu bioinformatics.unc.edu www.unc.edu/~tarandal/ensembl handouts, papers, datasets Ensembl is a joint project between EMBL - EBI and the Sanger

More information

Gene Regulation 10/19/05

Gene Regulation 10/19/05 10/19/05 Gene Regulation (formerly Gene Prediction - 2) Gene Prediction & Regulation Mon - Overview & Gene structure review: Eukaryotes vs prokaryotes Wed - Regulatory regions: Promoters & enhancers -

More information

Introduc)on to Databases and Resources Biological Databases and Resources

Introduc)on to Databases and Resources Biological Databases and Resources Introduc)on to Bioinforma)cs Online Course : IBT Introduc)on to Databases and Resources Biological Databases and Resources Learning Objec)ves Introduc)on to Databases and Resources - Understand how bioinforma)cs

More information

Grundlagen der Bioinformatik Summer Lecturer: Prof. Daniel Huson

Grundlagen der Bioinformatik Summer Lecturer: Prof. Daniel Huson Grundlagen der Bioinformatik, SoSe 11, D. Huson, April 11, 2011 1 1 Introduction Grundlagen der Bioinformatik Summer 2011 Lecturer: Prof. Daniel Huson Office hours: Thursdays 17-18h (Sand 14, C310a) 1.1

More information

DNAFSMiner: A Web-Based Software Toolbox to Recognize Two Types of Functional Sites in DNA Sequences

DNAFSMiner: A Web-Based Software Toolbox to Recognize Two Types of Functional Sites in DNA Sequences DNAFSMiner: A Web-Based Software Toolbox to Recognize Two Types of Functional Sites in DNA Sequences Huiqing Liu Hao Han Jinyan Li Limsoon Wong Institute for Infocomm Research, 21 Heng Mui Keng Terrace,

More information

Computational gene finding

Computational gene finding Computational gene finding Devika Subramanian Comp 470 Outline (3 lectures) Lec 1 Lec 2 Lec 3 The biological context Markov models and Hidden Markov models Ab-initio methods for gene finding Comparative

More information

Analysis of Microarray Data

Analysis of Microarray Data Analysis of Microarray Data Lecture 3: Visualization and Functional Analysis George Bell, Ph.D. Bioinformatics Scientist Bioinformatics and Research Computing Whitehead Institute Outline Review Visualizing

More information

BIOINF525: INTRODUCTION TO BIOINFORMATICS LAB SESSION 1

BIOINF525: INTRODUCTION TO BIOINFORMATICS LAB SESSION 1 BIOINF525: INTRODUCTION TO BIOINFORMATICS LAB SESSION 1 Bioinformatics Databases http://bioboot.github.io/bioinf525_w17/module1/#1.1 Dr. Barry Grant Jan 2017 Overview: The purpose of this lab session is

More information

Online Mendelian Inheritance in Man (OMIM)

Online Mendelian Inheritance in Man (OMIM) HUMAN MUTATION 15:57 61 (2000) MDI SPECIAL ARTICLE Online Mendelian Inheritance in Man (OMIM) Ada Hamosh, Alan F. Scott,* Joanna Amberger, David Valle, and Victor A. McKusick McKusick-Nathans Institute

More information

Introduction and Public Sequence Databases. BME 110/BIOL 181 CompBio Tools

Introduction and Public Sequence Databases. BME 110/BIOL 181 CompBio Tools Introduction and Public Sequence Databases BME 110/BIOL 181 CompBio Tools Todd Lowe March 29, 2011 Course Syllabus: Admin http://www.soe.ucsc.edu/classes/bme110/spring11 Reading: Chapters 1, 2 (pp.29-56),

More information

Overview of Health Informatics. ITI BMI-Dept

Overview of Health Informatics. ITI BMI-Dept Overview of Health Informatics ITI BMI-Dept Fellowship Week 5 Overview of Health Informatics ITI, BMI-Dept Day 10 7/5/2010 2 Agenda 1-Bioinformatics Definitions 2-System Biology 3-Bioinformatics vs Computational

More information

Pathway Analysis. Min Kim Bioinformatics Core Facility 2/28/2018

Pathway Analysis. Min Kim Bioinformatics Core Facility 2/28/2018 Pathway Analysis Min Kim Bioinformatics Core Facility 2/28/2018 Outline 1. Background 2. Databases: KEGG, Reactome, Biocarta, Gene Ontology, MSigDB, MetaCyc, SMPDB, IPA. 3. Statistical Methods: Overlap

More information

Following text taken from Suresh Kumar. Bioinformatics Web - Comprehensive educational resource on Bioinformatics. 6th May.2005

Following text taken from Suresh Kumar. Bioinformatics Web - Comprehensive educational resource on Bioinformatics. 6th May.2005 Bioinformatics is the recording, annotation, storage, analysis, and searching/retrieval of nucleic acid sequence (genes and RNAs), protein sequence and structural information. This includes databases of

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Brad Broom Department of Bioinformatics and Computational Biology UT M. D. Anderson Cancer Center kabagg@mdanderson.org bmbroom@mdanderson.org 7

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Brad Broom Department of Bioinformatics and Computational Biology UT M. D. Anderson Cancer Center kabagg@mdanderson.org bmbroom@mdanderson.org 8

More information

Analysis of Microarray Data

Analysis of Microarray Data Analysis of Microarray Data Lecture 3: Visualization and Functional Analysis George Bell, Ph.D. Senior Bioinformatics Scientist Bioinformatics and Research Computing Whitehead Institute Outline Review

More information

Array-Ready Oligo Set for the Rat Genome Version 3.0

Array-Ready Oligo Set for the Rat Genome Version 3.0 Array-Ready Oligo Set for the Rat Genome Version 3.0 We are pleased to announce Version 3.0 of the Rat Genome Oligo Set containing 26,962 longmer probes representing 22,012 genes and 27,044 gene transcripts.

More information

Genome Resources. Genome Resources. Maj Gen (R) Suhaib Ahmed, HI (M)

Genome Resources. Genome Resources. Maj Gen (R) Suhaib Ahmed, HI (M) Maj Gen (R) Suhaib Ahmed, I (M) The human genome comprises DNA sequences mostly contained in the nucleus. A small portion is also present in the mitochondria. The nuclear DNA is present in chromosomes.

More information

Introduction to 'Omics and Bioinformatics

Introduction to 'Omics and Bioinformatics Introduction to 'Omics and Bioinformatics Chris Overall Department of Bioinformatics and Genomics University of North Carolina Charlotte Acquire Store Analyze Visualize Bioinformatics makes many current

More information

FACULTY OF BIOCHEMISTRY AND MOLECULAR MEDICINE

FACULTY OF BIOCHEMISTRY AND MOLECULAR MEDICINE FACULTY OF BIOCHEMISTRY AND MOLECULAR MEDICINE BIOMOLECULES COURSE: COMPUTER PRACTICAL 1 Author of the exercise: Prof. Lloyd Ruddock Edited by Dr. Leila Tajedin 2017-2018 Assistant: Leila Tajedin (leila.tajedin@oulu.fi)

More information

Sequence Based Function Annotation

Sequence Based Function Annotation Sequence Based Function Annotation Qi Sun Bioinformatics Facility Biotechnology Resource Center Cornell University Sequence Based Function Annotation 1. Given a sequence, how to predict its biological

More information

Sequence Databases and database scanning

Sequence Databases and database scanning Sequence Databases and database scanning Marjolein Thunnissen Lund, 2012 Types of databases: Primary sequence databases (proteins and nucleic acids). Composite protein sequence databases. Secondary databases.

More information

BLASTing through the kingdom of life

BLASTing through the kingdom of life Information for teachers Description: In this activity, students copy unknown DNA sequences and use them to search GenBank, the database of nucleotide sequences at the National Center for Biotechnology

More information

Two Mark question and Answers

Two Mark question and Answers 1. Define Bioinformatics Two Mark question and Answers Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline. There are three

More information

A Field Guide to GenBank and NCBI Molecular Biology Resources

A Field Guide to GenBank and NCBI Molecular Biology Resources A Field Guide to GenBank and NCBI Molecular Biology Resources slightly modified from Peter Cooper ftp://ftp.ncbi.nih.gov/pub/cooper/fieldguide/ Eric Sayers ftp://ftp.ncbi.nih.gov/pub/sayers/field_guide/u_penn/

More information

Computational gene finding

Computational gene finding Computational gene finding Devika Subramanian Comp 470 Outline (3 lectures) Lec 1 Lec 2 Lec 3 The biological context Markov models and Hidden Markov models Ab-initio methods for gene finding Comparative

More information

UCSC Genome Browser. Introduction to ab initio and evidence-based gene finding

UCSC Genome Browser. Introduction to ab initio and evidence-based gene finding UCSC Genome Browser Introduction to ab initio and evidence-based gene finding Wilson Leung 06/2006 Outline Introduction to annotation ab initio gene finding Basics of the UCSC Browser Evidence-based gene

More information

Discovering gene regulatory control using ChIP-chip and ChIP-seq. Part 1. An introduction to gene regulatory control, concepts and methodologies

Discovering gene regulatory control using ChIP-chip and ChIP-seq. Part 1. An introduction to gene regulatory control, concepts and methodologies Discovering gene regulatory control using ChIP-chip and ChIP-seq Part 1 An introduction to gene regulatory control, concepts and methodologies Ian Simpson ian.simpson@.ed.ac.uk http://bit.ly/bio2links

More information

Hot Topics. What s New with BLAST?

Hot Topics. What s New with BLAST? Hot Topics What s New with BLAST? Slides based on NCBI talk at American Society of Human Genetics October 2005 Hot Topics Outline I. New BLAST Algorithm: Discontiguous MegaBLAST II. New Databases III.

More information

FUNCTIONAL BIOINFORMATICS

FUNCTIONAL BIOINFORMATICS Molecular Biology-2018 1 FUNCTIONAL BIOINFORMATICS PREDICTING THE FUNCTION OF AN UNKNOWN PROTEIN Suppose you have found the amino acid sequence of an unknown protein and wish to find its potential function.

More information

Protein Sequence Analysis. BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl)

Protein Sequence Analysis. BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl) Protein Sequence Analysis BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl) Linear Sequence Analysis What can you learn from a (single) protein sequence? Calculate it s physical

More information

CHAPTER 21 LECTURE SLIDES

CHAPTER 21 LECTURE SLIDES CHAPTER 21 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

BIOINFORMATICS FOR DUMMIES MB&C2017 WORKSHOP

BIOINFORMATICS FOR DUMMIES MB&C2017 WORKSHOP Jasper Decuyper BIOINFORMATICS FOR DUMMIES MB&C2017 WORKSHOP MB&C2017 Workshop Bioinformatics for dummies 2 INTRODUCTION Imagine your workspace without the computers Both in research laboratories and in

More information

Engineering Genetic Circuits

Engineering Genetic Circuits Engineering Genetic Circuits I use the book and slides of Chris J. Myers Lecture 0: Preface Chris J. Myers (Lecture 0: Preface) Engineering Genetic Circuits 1 / 19 Samuel Florman Engineering is the art

More information

Why learn sequence database searching? Searching Molecular Databases with BLAST

Why learn sequence database searching? Searching Molecular Databases with BLAST Why learn sequence database searching? Searching Molecular Databases with BLAST What have I cloned? Is this really!my gene"? Basic Local Alignment Search Tool How BLAST works Interpreting search results

More information

Discovering gene regulatory control using ChIP-chip and ChIP-seq. An introduction to gene regulatory control, concepts and methodologies

Discovering gene regulatory control using ChIP-chip and ChIP-seq. An introduction to gene regulatory control, concepts and methodologies Discovering gene regulatory control using ChIP-chip and ChIP-seq An introduction to gene regulatory control, concepts and methodologies Ian Simpson ian.simpson@.ed.ac.uk bit.ly/bio2_2012 The Central Dogma

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Kevin Coombes Department of Bioinformatics and Computational Biology UT M. D. Anderson Cancer Center kabagg@mdanderson.org kcoombes@mdanderson.org

More information

Biotechnology Explorer

Biotechnology Explorer Biotechnology Explorer C. elegans Behavior Kit Bioinformatics Supplement explorer.bio-rad.com Catalog #166-5120EDU This kit contains temperature-sensitive reagents. Open immediately and see individual

More information

Transcriptome Assembly, Functional Annotation (and a few other related thoughts)

Transcriptome Assembly, Functional Annotation (and a few other related thoughts) Transcriptome Assembly, Functional Annotation (and a few other related thoughts) Monica Britton, Ph.D. Sr. Bioinformatics Analyst June 23, 2017 Differential Gene Expression Generalized Workflow File Types

More information

I nternet Resources for Bioinformatics Data and Tools

I nternet Resources for Bioinformatics Data and Tools ~i;;;;;;;'s :.. ~,;;%.: ;!,;s163 ~. s :s163:: ~s ;'.:'. 3;3 ~,: S;I:;~.3;3'/////, IS~I'//. i: ~s '/, Z I;~;I; :;;; :;I~Z;I~,;'//.;;;;;I'/,;:, :;:;/,;'L;;;~;'~;~,::,:, Z'LZ:..;;',;';4...;,;',~/,~:...;/,;:'.::.

More information

BLASTing through the kingdom of life

BLASTing through the kingdom of life Information for students Instructions: In short, you will copy one of the sequences from the data set, use blastn to identify it, and use the information from your search to answer the questions below.

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Processes Activation Repression Initiation Elongation.... Processes Splicing Editing Degradation Translation.... Transcription Translation DNA Regulators DNA-Binding Transcription Factors Chromatin Remodelers....

More information

Chimp Sequence Annotation: Region 2_3

Chimp Sequence Annotation: Region 2_3 Chimp Sequence Annotation: Region 2_3 Jeff Howenstein March 30, 2007 BIO434W Genomics 1 Introduction We received region 2_3 of the ChimpChunk sequence, and the first step we performed was to run RepeatMasker

More information

Genome and DNA Sequence Databases. BME 110: CompBio Tools Todd Lowe April 5, 2007

Genome and DNA Sequence Databases. BME 110: CompBio Tools Todd Lowe April 5, 2007 Genome and DNA Sequence Databases BME 110: CompBio Tools Todd Lowe April 5, 2007 Admin Reading: Chapters 2 & 3 Notes available in PDF format on-line (see class calendar page): http://www.soe.ucsc.edu/classes/bme110/spring07/bme110-calendar.html

More information

BLASTing through the kingdom of life

BLASTing through the kingdom of life Information for teachers Description: In this activity, students copy unknown DNA sequences and use them to search GenBank, the main database of nucleotide sequences at the National Center for Biotechnology

More information

G4120: Introduction to Computational Biology

G4120: Introduction to Computational Biology G4120: Introduction to Computational Biology Oliver Jovanovic, Ph.D. Columbia University Department of Microbiology Lecture 3 February 13, 2003 Copyright 2003 Oliver Jovanovic, All Rights Reserved. Bioinformatics

More information

Retrieval of gene information at NCBI

Retrieval of gene information at NCBI Retrieval of gene information at NCBI Some notes 1. http://www.cs.ucf.edu/~xiaoman/fall/ 2. Slides are for presenting the main paper, should minimize the copy and paste from the paper, should write in

More information

Digital information cycle. Database. Database. BINF 630: Bioinformatics Methods

Digital information cycle. Database. Database. BINF 630: Bioinformatics Methods Digital information cycle BINF 630: Bioinformatics Methods Iosif Vaisman Email: ivaisman@gmu.edu Creation and capture Storage and management Rights management Search and access Distribution Electronic

More information

Introduction. CS482/682 Computational Techniques in Biological Sequence Analysis

Introduction. CS482/682 Computational Techniques in Biological Sequence Analysis Introduction CS482/682 Computational Techniques in Biological Sequence Analysis Outline Course logistics A few example problems Course staff Instructor: Bin Ma (DC 3345, http://www.cs.uwaterloo.ca/~binma)

More information

O C. 5 th C. 3 rd C. the national health museum

O C. 5 th C. 3 rd C. the national health museum Elements of Molecular Biology Cells Cells is a basic unit of all living organisms. It stores all information to replicate itself Nucleus, chromosomes, genes, All living things are made of cells Prokaryote,

More information

Enhancing Access to the Bibliome: The TREC Genomics Track

Enhancing Access to the Bibliome: The TREC Genomics Track MEDINFO 2004 M. Fieschi et al. (Eds) Amsterdam: IOS Press 2004 IMIA. All rights reserved Enhancing Access to the Bibliome: The TREC Genomics Track William Hersh, Ravi Teja Bhupatiraju, Sarah Corley Department

More information

This software/database/presentation is a "United States Government Work" under the terms of the United States Copyright Act. It was written as part

This software/database/presentation is a United States Government Work under the terms of the United States Copyright Act. It was written as part This software/database/presentation is a "United States Government Work" under the terms of the United States Copyright Act. It was written as part of the author's official duties as a United States Government

More information

This practical aims to walk you through the process of text searching DNA and protein databases for sequence entries.

This practical aims to walk you through the process of text searching DNA and protein databases for sequence entries. PRACTICAL 1: BLAST and Sequence Alignment The EBI and NCBI websites, two of the most widely used life science web portals are introduced along with some of the principal databases: the NCBI Protein database,

More information

Pre-Lab Questions. 1. Use the following data to construct a cladogram of the major plant groups.

Pre-Lab Questions. 1. Use the following data to construct a cladogram of the major plant groups. Pre-Lab Questions Name: 1. Use the following data to construct a cladogram of the major plant groups. Table 1: Characteristics of Major Plant Groups Organism Vascular Flowers Seeds Tissue Mosses 0 0 0

More information