Protein Folding Problem I400: Introduction to Bioinformatics

Size: px
Start display at page:

Download "Protein Folding Problem I400: Introduction to Bioinformatics"

Transcription

1 Protein Folding Problem I400: Introduction to Bioinformatics November 29, 2004

2 Protein biomolecule, macromolecule more than 50% of the dry weight of cells is proteins polymer of amino acids connected into linear chains strings of symbols machinery of life play central role in the structure and function of cells regulate and execute many biological functions a) amino acid b) peptide bond

3 Peptide bonds they are planar, nearly they are very strong a) Pauling s theoretical model (1951) b) experimentally determined bond lengths

4 Ramachandran plot 1. α region corresponds to the residues found typically in the alpha helices 2. β region corresponds to the residues found typically in the beta sheets 3. L region corresponds to the residues typically found in the left handed helices most angles are not allowed because of steric collisions between atoms of the same residue between atoms of the neighboring residues the allowed combinations can be calculated

5 Ramachandran plot a) observed Ramachandran angles for all residues except glycine b) observed Ramachandran angles for glycine

6 Levels of protein structure Native state (conformation) conformation at which protein shows its activity

7 Helical structure a) idealized diagram b) the same as a) but with approximate positions for main-chain atoms c) schematic diagram of an alpha helix d) a ball and stick model

8 Anti-parallel beta sheet

9 Anti-parallel beta sheet Typical length: 5-10 residues

10 Structural motifs - Hairpin loop a) histogram showing the frequency of hairpin loops of different lengths in 62 proteins b) the two most frequently occurring two-residue hairpin loops

11 Parallel beta sheet

12 Helix-loop-helix motif calmodulin helix-loop-helix motif with Ca 2+ atom attached

13 Four helix bundle hydrophobic residues tend to be on the inside polar residues tend to be on the outside of proteins a) four helix bundle red cylinders are helices while green parts are loops b) projection from above

14 Disulphide bonds (bridges) covalent bond between two cysteins (i.e. their sulfur atoms) require oxidative environment present in extracellular proteins stabilize proteins create so-called longrange interactions

15 Central dogma of molecular biology How do proteins fold?

16 Levinthal s calculation Cyrus Levinthal 1968 Q: do proteins explore all possible conformations before they adopt a specific 3-D structure? A: let s consider a simplified problem each residue can adopt one of the three discrete groups from the Ramachandran plot (alpha, beta, L) a switch between conformations can be done in seconds then, a protein with 150 residues would need to explore possible states, which is at the rate of a protein would need ~10 50 years we know that protein folds between 0.1s and 1000s

17 Protein folding problem How do proteins fold into a specific 3-D structure? How does the primary structure of a protein determine its secondary and tertiary structure? there are two conditions a protein needs to meet there must be a single, stable, folded conformation (thermodynamic condition) a protein must fold on an appropriate time scale (kinetic condition) thus, only a small amount of conformational space is explored also, there must exist a specific folding pathway the paradox how proteins quickly fold into specific 3-D conformations is called a protein folding problem

18 Anfinsen s experiment Urea: There is sufficient information contained in the protein sequence to guarantee correct folding from any of a large number of unfolded states.

19 Thermodynamic hypothesis native conformation of a protein is adopted spontaneously i.e. amino acid sequence 3-D structure Anfinsen s demonstration of this fundamental property of proteins opened the problem to a massive amount of experimental and theoretical effort. His summary of the experiments was presented as a Nobel Prize Lecture and published in: Anfinsen, C.B. (1973) "Principles that govern the folding of protein chains." Science

20 Structural features present in any folded globular protein most main chain hydrogen bonds are formed core is formed of hydrophobic residues, but not all hydrophobic residues are buried well-packed hydrophobic core secondary structural elements (helices, sheet) show a hydrophobic and hydrophilic face (amphipathic). Amhipathic helices have hydrophobic residues every third/fourth residue; amphipathic sheets alternate hydrophobic and hydrophilic residues along each strand most polar residues are found on the surface buried polar residues have H-bonded partners all (usually) charged residues are on the surface

21 Hierarchical folding model there is a major folding pathway that most proteins follow local neighborhoods interact and create folding hydrophobic units then, domains and entire proteins are created however, not all local neighborhoods show propensities towards one preferred conformations

22 Folding intermediates Molten Globule the first observable event in the protein folding pathway; partially organized ordered state resembles a liquid state but has most secondary structures formed

23 Can proteins misfold? the lack of function is not always the worst-case scenario the role of molecular chaperones (also proteins) is to assist folding of many proteins (so-called chaperone clients)

24 Fischer s experiment Hermann Emil Fischer 1894 An enzyme and a substrate have to fit each other like a lock and key in order to exert chemical effect on each other lock-and-key theory later, lock-and-key paradigm was expanded to contain socalled induced fit theory Lock-and-key is a structure-function paradigm!

25 Sequence-structure-function paradigm Standard protein structure/function paradigm (Fischer, 1894, Anfinsen 1973) Amino Acid Sequence 3-D Structure Protein Function Classification: Gene Transfer EC Number: Dominant view: 3-D structure is prerequisite for protein function

26 Calcineurin-calmodulin counter example Calcineurin: Kissinger et al., 1995 CALMODULIN calcium-dependent phosphatase regulated by calmodulin (calcium-binding protein) induces conformational change of calmodulin upon binding may be involved in human hart failure when calcium concentration is chronically increased disorder is important for the binding mechanism

27 How calmodulin works? calmodulin (CaM) wraps around an autoinhibitory helix and pulls it away this exposes an active site of the kinase activity is shown only in the presence of calcium (with exceptions) binding is driven by hydrophobic and electrostatic interactions

28 Intrinsically disordered proteins Proteins with regions that have no stable 3-D conformation have regions absent in protein crystal structures exist as ensembles of conformations Ramachandran angles vary widely in time Detected by x-ray crystallography NMR spectroscopy other methods (limited proteolysis, circular dichroism...) Found in all 3 kingdoms more often in higher eukaryotes Have function and required for function cell signaling transcription regulation

29 Major areas of research Prediction of secondary structure, fold, and function Identification of targets for high-throughput experimental studies Molecular simulation (docking) Evolutionary analyses System sciences (developing models of cells)

Protein Structure Databases, cont. 11/09/05

Protein Structure Databases, cont. 11/09/05 11/9/05 Protein Structure Databases (continued) Prediction & Modeling Bioinformatics Seminars Nov 10 Thurs 3:40 Com S Seminar in 223 Atanasoff Computational Epidemiology Armin R. Mikler, Univ. North Texas

More information

Introduction to Proteins

Introduction to Proteins Introduction to Proteins Lecture 4 Module I: Molecular Structure & Metabolism Molecular Cell Biology Core Course (GSND5200) Matthew Neiditch - Room E450U ICPH matthew.neiditch@umdnj.edu What is a protein?

More information

BETA STRAND Prof. Alejandro Hochkoeppler Department of Pharmaceutical Sciences and Biotechnology University of Bologna

BETA STRAND Prof. Alejandro Hochkoeppler Department of Pharmaceutical Sciences and Biotechnology University of Bologna Prof. Alejandro Hochkoeppler Department of Pharmaceutical Sciences and Biotechnology University of Bologna E-mail: a.hochkoeppler@unibo.it C-ter NH and CO groups: right, left, right (plane of the slide)

More information

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München Structure formation and association of biomolecules Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München Motivation Many biomolecules are chemically synthesized

More information

Proteins Higher Order Structures

Proteins Higher Order Structures Proteins Higher Order Structures Dr. Mohammad Alsenaidy Department of Pharmaceutics College of Pharmacy King Saud University Office: AA 101 msenaidy@ksu.edu.sa Previously on PHT 426!! Protein Structures

More information

Nucleic Acids, Proteins, and Enzymes

Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004 CSE 397-497: Computational Issues in Molecular Biology Lecture 19 Spring 2004-1- Protein structure Primary structure of protein is determined by number and order of amino acids within polypeptide chain.

More information

Overview. Secondary Structure. Tertiary Structure

Overview. Secondary Structure. Tertiary Structure Protein Structure Disclaimer: All information and images were taken from outside sources and the author claims no legal ownership of any material. Sources for images are linked on each slide and the information

More information

The mechanism(s) of protein folding. What is meant by mechanism. Experimental approaches

The mechanism(s) of protein folding. What is meant by mechanism. Experimental approaches The mechanism(s) of protein folding What is meant by mechanism Computational approaches Experimental approaches Questions: What events occur and in what time sequence when a protein folds Is there a specified

More information

STRUCTURAL BIOLOGY. α/β structures Closed barrels Open twisted sheets Horseshoe folds

STRUCTURAL BIOLOGY. α/β structures Closed barrels Open twisted sheets Horseshoe folds STRUCTURAL BIOLOGY α/β structures Closed barrels Open twisted sheets Horseshoe folds The α/β domains Most frequent domain structures are α/β domains: A central parallel or mixed β sheet Surrounded by α

More information

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1 Bi 8 Lecture 7 PROTEIN STRUCTURE, Functional analysis, and evolution Ellen Rothenberg 26 January 2016 Reading: Ch. 3, pp. 109-134; panel 3-1 (end with free amine) aromatic, hydrophobic small, hydrophilic

More information

All Rights Reserved. U.S. Patents 6,471,520B1; 5,498,190; 5,916, North Market Street, Suite CC130A, Milwaukee, WI 53202

All Rights Reserved. U.S. Patents 6,471,520B1; 5,498,190; 5,916, North Market Street, Suite CC130A, Milwaukee, WI 53202 Secondary Structure In the previous protein folding activity, you created a hypothetical 15-amino acid protein and learned that basic principles of chemistry determine how each protein spontaneously folds

More information

Final exam. Please write your name on the exam and keep an ID card ready.

Final exam. Please write your name on the exam and keep an ID card ready. Biophysics of Macromolecules Prof. R. Jungmann and Prof. J. Lipfert SS 2017 Final exam Final exam First name: Last name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an

More information

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 5 7.24/7.88J/5.48J The Protein Folding and Human Disease Packing of Secondary Structures Packing of Helices against sheets Packing of sheets against sheets Parallel Orthogonal Table:

More information

Diversity of proteins

Diversity of proteins BCMB 3100: Partial notes Chapter 4 (Part 1) Diversity of proteins 3D structure of proteins Fibrous vs globular proteins Conformation vs configuration 1, 2, 3 and 4 structure Peptide groups in polypeptide

More information

Structural Bioinformatics (C3210) DNA and RNA Structure

Structural Bioinformatics (C3210) DNA and RNA Structure Structural Bioinformatics (C3210) DNA and RNA Structure Importance of DNA/RNA 3D Structure Nucleic acids are essential materials found in all living organisms. Their main function is to maintain and transmit

More information

Structural bioinformatics

Structural bioinformatics Structural bioinformatics Why structures? The representation of the molecules in 3D is more informative New properties of the molecules are revealed, which can not be detected by sequences Eran Eyal Plant

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final. Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 50% midterm, 50% final Midterm: 5/15 History Atom Earth, Air, Water Fire SEM: 20-40 nm Silver 66.2% Gold

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics http://1.51.212.243/bioinfo.html Dr. rer. nat. Jing Gong Cancer Research Center School of Medicine, Shandong University 2011.10.19 1 Chapter 4 Structure 2 Protein Structure

More information

Lecture 2: Central Dogma of Molecular Biology & Intro to Programming

Lecture 2: Central Dogma of Molecular Biology & Intro to Programming Lecture 2: Central Dogma of Molecular Biology & Intro to Programming Central Dogma of Molecular Biology Proteins: workhorse molecules of biological systems Proteins are synthesized from the genetic blueprints

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Spring 2012 Class 6 February 9, 2012 Backbone and Sidechain Rotational Degrees of Freedom Protein 3-D Structure The 3-dimensional fold of a protein is called a tertiary structure. Many proteins consist

More information

BIOINFORMATICS Introduction

BIOINFORMATICS Introduction BIOINFORMATICS Introduction Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a 1 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu What is Bioinformatics? (Molecular) Bio -informatics One idea

More information

Τάσος Οικονόµου ιαλεξη 8. Kινηση, λειτουργια, ελεγχος.

Τάσος Οικονόµου ιαλεξη 8. Kινηση, λειτουργια, ελεγχος. Τάσος Οικονόµου ιαλεξη 8 Kινηση, λειτουργια, ελεγχος http://ecoserver.imbb.forth.gr/bio321.htm εν ξεχνω. Cell The peptide bond Polypeptides are stabilized by: 1. Covalent bonds= amide bond 2. Noncovalent,

More information

Nucleic Acid Structure. Nucleic Acid Sequence Abbreviations. Sequence Abbreviations, con t.

Nucleic Acid Structure. Nucleic Acid Sequence Abbreviations. Sequence Abbreviations, con t. BC 4054 Spring 2001 Chapter 11 & 12 Review Lecture otes Slide 1 ucleic Acid Structure Linear polymer of nucleotides Phosphodiester linkage between 3 and 5 positions See Figure 11.17 Slide 2 ucleic Acid

More information

Chem 465 Biochemistry II

Chem 465 Biochemistry II Chem 465 Biochemistry II Name: 2 points Multiple choice (4 points apiece): 1. Which of the following is not true of trna molecules? A) The 3'-terminal sequence is -CCA. B) Their anticodons are complementary

More information

Understanding DNA Structure

Understanding DNA Structure Understanding DNA Structure I619 Structural Bioinformatics Molecular Biology Basics + Scale total length of DNA in a human cell is about 2m DNA is compacted in length by a factor of 10000 the compaction

More information

Structure/function relationship in DNA-binding proteins

Structure/function relationship in DNA-binding proteins PHRM 836 September 22, 2015 Structure/function relationship in DNA-binding proteins Devlin Chapter 8.8-9 u General description of transcription factors (TFs) u Sequence-specific interactions between DNA

More information

RNA Structure Prediction and Comparison. RNA Biology Background

RNA Structure Prediction and Comparison. RNA Biology Background RN Structure Prediction and omparison Session 1 RN Biology Background Robert iegerich Faculty of Technology robert@techfak.ni-bielefeld.de October 13, 2013 Robert iegerich Overview of lecture topics The

More information

Homology Modelling. Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen

Homology Modelling. Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen Homology Modelling Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen Why are Protein Structures so Interesting? They provide a detailed picture of interesting biological features,

More information

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs 1. Helix-turn-helix proteins 2. Zinc finger proteins 3. Leucine zipper proteins 4. Beta-scaffold factors 5. Others λ-repressor AND CRO

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

Molecular Forces in Antibody Maturation*

Molecular Forces in Antibody Maturation* Molecular Forces in Antibody Maturation* Melik Demirel 1,2 1 Allen Pearce Assistant Professor, College of Engineering, The Pennsylvania State University, University Park, PA, USA, E-mail: mcd18@psu.edu

More information

MATH 5610, Computational Biology

MATH 5610, Computational Biology MATH 5610, Computational Biology Lecture 2 Intro to Molecular Biology (cont) Stephen Billups University of Colorado at Denver MATH 5610, Computational Biology p.1/24 Announcements Error on syllabus Class

More information

Investigating Protein Stability with the Optical Tweezer

Investigating Protein Stability with the Optical Tweezer Investigating Protein Stability with the Optical Tweezer I. Introduction. Various experimental and computational techniques have been developed to study the process by which proteins go from a linear sequence

More information

How Do You Clone a Gene?

How Do You Clone a Gene? S-20 Edvo-Kit #S-20 How Do You Clone a Gene? Experiment Objective: The objective of this experiment is to gain an understanding of the structure of DNA, a genetically engineered clone, and how genes are

More information

Protein Synthesis Notes

Protein Synthesis Notes Protein Synthesis Notes Protein Synthesis: Overview Transcription: synthesis of mrna under the direction of DNA. Translation: actual synthesis of a polypeptide under the direction of mrna. Transcription

More information

Parallel Ant Colony Optimization for 3D Protein Structure Prediction using the HP Lattice Model

Parallel Ant Colony Optimization for 3D Protein Structure Prediction using the HP Lattice Model Parallel Ant Colony Optimization for 3D Protein Structure Prediction using the HP Lattice Model D. Chu, M. Till, A. Zomaya School of Information Technologies Madsen Building, F09 The University of Sydney

More information

Tropomyosin and S-peptide

Tropomyosin and S-peptide 7.88 Lecture Notes - 7 7.24/7.88J/5.48J The Protein Folding and Human Disease Tropomyosin and S-peptide Sequence determinants of Coiled Coil Structure Tropomyosin Circular Dichroism Tropomyosin thermal

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Secondary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Secondary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Secondary Structure Prediction Secondary Structure Annotation Given a macromolecular structure Identify the regions of secondary structure

More information

Folding simulation: self-organization of 4-helix bundle protein. yellow = helical turns

Folding simulation: self-organization of 4-helix bundle protein. yellow = helical turns Folding simulation: self-organization of 4-helix bundle protein yellow = helical turns Protein structure Protein: heteropolymer chain made of amino acid residues R + H 3 N - C - COO - H φ ψ Chain of amino

More information

Homology Modelling. Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen

Homology Modelling. Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen Homology Modelling Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen Why are Protein Structures so Interesting? They provide a detailed picture of interesting biological features,

More information

UV Fluorescence Polarization as a Means to Investigate Protein Conformational and Mass Change

UV Fluorescence Polarization as a Means to Investigate Protein Conformational and Mass Change A p p l i c a t i o n N o t e UV Fluorescence Polarization as a Means to Investigate Protein Conformational and Mass Change Using Intrinsic Tryptophan Fluorescence in Conjunction with UV-capable Polarizers

More information

Ab Initio SERVER PROTOTYPE FOR PREDICTION OF PHOSPHORYLATION SITES IN PROTEINS*

Ab Initio SERVER PROTOTYPE FOR PREDICTION OF PHOSPHORYLATION SITES IN PROTEINS* COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 9(1-2) 93-100 (2003/2004) Ab Initio SERVER PROTOTYPE FOR PREDICTION OF PHOSPHORYLATION SITES IN PROTEINS* DARIUSZ PLEWCZYNSKI AND LESZEK RYCHLEWSKI BiolnfoBank

More information

Comments. polyproline ( PXXP ) motif for SH3 binding RGD motif for integrin binding GXXXG motif within the TM domain of membrane protein

Comments. polyproline ( PXXP ) motif for SH3 binding RGD motif for integrin binding GXXXG motif within the TM domain of membrane protein Comments Structural motif v sequence motif polyproline ( PXXP ) motif for SH3 binding RGD motif for integrin binding GXXXG motif within the TM domain of membrane protein Most common type I beta turn sequences:

More information

Nucleic acids and protein synthesis

Nucleic acids and protein synthesis THE FUNCTIONS OF DNA Nucleic acids and protein synthesis The full name of DNA is deoxyribonucleic acid. Every nucleotide has the same sugar molecule and phosphate group, but each nucleotide contains one

More information

Structure & Function. Ulf Leser

Structure & Function. Ulf Leser Proteins: Structure & Function Ulf Leser This Lecture Introduction Structure Function Databases Predicting Protein Secondary Structure Many figures from Zvelebil, M. and Baum, J. O. (2008). "Understanding

More information

Regulation of gene expression. (Lehninger pg )

Regulation of gene expression. (Lehninger pg ) Regulation of gene expression (Lehninger pg. 1072-1085) Today s lecture Gene expression Constitutive, inducible, repressible genes Specificity factors, activators, repressors Negative and positive gene

More information

nanodsf 2bind: Your service provider for biophysical characterization of proteins Precisely revealing protein folding and stability

nanodsf 2bind: Your service provider for biophysical characterization of proteins Precisely revealing protein folding and stability nanodsf Precisely revealing protein folding and stability 2bind: Your service provider for biophysical characterization of proteins This booklet was written and designed by 2bind 08 2015 Any reproduction

More information

Protocol S1: Supporting Information

Protocol S1: Supporting Information Protocol S1: Supporting Information Basis for the specificity of the kinase domain of Abl for peptide substrates The crystal structures reported in this work were obtained using two different ATP analog-peptide

More information

Learning to Use PyMOL (includes instructions for PS #2)

Learning to Use PyMOL (includes instructions for PS #2) Learning to Use PyMOL (includes instructions for PS #2) To begin, download the saved PyMOL session file, 4kyz.pse from the Chem 391 Assignments web page: http://people.reed.edu/~glasfeld/chem391/assign.html

More information

RNA Secondary Structure Prediction

RNA Secondary Structure Prediction RNA Secondary Structure Prediction Outline 1) Introduction: RNA structure basics 2) Dynamic programming for RNA secondary structure prediction The Central Dogma of Molecular Biology DNA CCTGAGCCAACTATTGATGAA

More information

Protein Structure Prediction by Constraint Logic Programming

Protein Structure Prediction by Constraint Logic Programming MPRI C2-19 Protein Structure Prediction by Constraint Logic Programming François Fages, Constraint Programming Group, INRIA Rocquencourt mailto:francois.fages@inria.fr http://contraintes.inria.fr/ Molecules

More information

Bio-inspired Models of Computation. An Introduction

Bio-inspired Models of Computation. An Introduction Bio-inspired Models of Computation An Introduction Introduction (1) Natural Computing is the study of models of computation inspired by the functioning of biological systems Natural Computing is not Bioinformatics

More information

Prokaryotic Transcription

Prokaryotic Transcription Prokaryotic Transcription Transcription Basics DNA is the genetic material Nucleic acid Capable of self-replication and synthesis of RNA RNA is the middle man Nucleic acid Structure and base sequence are

More information

Genome Architecture Structural Subdivisons

Genome Architecture Structural Subdivisons Lecture 4 Hierarchical Organization of the Genome by John R. Finnerty Genome Architecture Structural Subdivisons 1. Nucleotide : monomer building block of DNA 2. DNA : polymer string of nucleotides 3.

More information

Biochemistry study of the molecular basis of life

Biochemistry study of the molecular basis of life Biochemistry : An Introduction Biochemistry study of the molecular basis of life n Study of the chemistry of living organisms Studies organic molecules & organic reactions in living organisms n Living

More information

Virtual bond representation

Virtual bond representation Today s subjects: Virtual bond representation Coordination number Contact maps Sidechain packing: is it an instrumental way of selecting and consolidating a fold? ASA of proteins Interatomic distances

More information

Unit title: Biochemistry: Theory and Laboratory Skills (SCQF level 7)

Unit title: Biochemistry: Theory and Laboratory Skills (SCQF level 7) Higher National Unit specification General information Unit code: H922 34 Superclass: RH Publication date: May 2015 Source: Scottish Qualifications Authority Version: 01 Unit purpose This Unit is designed

More information

Introduction to Bioinformatics Online Course: IBT

Introduction to Bioinformatics Online Course: IBT Introduction to Bioinformatics Online Course: IBT Multiple Sequence Alignment Building Multiple Sequence Alignment Lec6:Interpreting Your Multiple Sequence Alignment Interpreting Your Multiple Sequence

More information

Your Name: MID TERM ANSWER SHEET SIN: ( )

Your Name: MID TERM ANSWER SHEET SIN: ( ) MIDTERM EXAMINATION (October 23, 2008) BIOE150. Introduction to Bio-Nanoscience & Bio-Nanotechnology Professor Seung-Wuk Lee Fall Semester, 2008 0. Write down your name and the last digit of your SIN in

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Control of Eukaryotic Genes 2007-2008 The BIG Questions n How are genes turned on & off in eukaryotes? n How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

Scientific Method. Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel

Scientific Method. Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel Each question has a value of 4 points and there is a total of 156 points in the exam. However, the maximum score of this exam will be capped

More information

NUCLEIC ACIDS: DNA AND RNA. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University

NUCLEIC ACIDS: DNA AND RNA. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University NUCLEIC ACIDS: DNA AND RNA HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 BUILDING BLOCKS OF NUCLEIC ACIDS 2 Nucleic Acids are important for

More information

Astronomy picture of the day (4/21/08)

Astronomy picture of the day (4/21/08) Biol 205 Spring 2008 Astronomy picture of the day (4/21/08) http://antwrp.gsfc.nasa.gov/apod/ap080421.html Are viruses alive? http://serc.carleton.edu/microbelife/yellowstone/viruslive.html 1 Week 3 Lecture

More information

BME Engineering Molecular Cell Biology. The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament

BME Engineering Molecular Cell Biology. The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament BME 42-620 Engineering Molecular Cell Biology Lecture 09: The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament BME42-620 Lecture 09, September 27, 2011 1 Outline Overviewofcytoskeletal

More information

RNA secondary structure prediction and analysis

RNA secondary structure prediction and analysis RNA secondary structure prediction and analysis 1 Resources Lecture Notes from previous years: Takis Benos Covariance algorithm: Eddy and Durbin, Nucleic Acids Research, v22: 11, 2079 Useful lecture slides

More information

Nucleic Acids and the RNA World. Pages Chapter 4

Nucleic Acids and the RNA World. Pages Chapter 4 Nucleic Acids and the RNA World Pages 74-89 Chapter 4 RNA vs. Protein Chemical Evolution stated that life evolved from a polymer called a protein. HOWEVER, now many scientists question this. There is currently

More information

DNA Structure and Properties Basic Properties Predicting Melting Temperature. Dinesh Yadav

DNA Structure and Properties Basic Properties Predicting Melting Temperature. Dinesh Yadav DNA Structure and Properties Basic Properties Predicting Melting Temperature Dinesh Yadav Nucleic Acid Structure Question: Is this RNA or DNA? Molecules of Life, pp. 15 2 Nucleic Acid Bases Molecules of

More information

Supplementary materials. Computational study of β-n-acetylhexosaminidase from. Talaromyces flavus, a glycosidase with high substrate flexibility

Supplementary materials. Computational study of β-n-acetylhexosaminidase from. Talaromyces flavus, a glycosidase with high substrate flexibility Supplementary materials Computational study of β-n-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility Natallia Kulik 1,*, Kristýna Slámová 2, Rüdiger Ettrich 1,3,

More information

RNA Part I: Chemical Structure of RNA

RNA Part I: Chemical Structure of RNA RA Part I: Chemical Structure of RA Structural differences between RA and DA Resistance of phosphate esters to basic hydrolysis The 2 - group of RA facilitates chemical cleavage in aqueous a by forming

More information

ONLINE BIOINFORMATICS RESOURCES

ONLINE BIOINFORMATICS RESOURCES Dedan Githae Email: d.githae@cgiar.org BecA-ILRI Hub; Nairobi, Kenya 16 May, 2014 ONLINE BIOINFORMATICS RESOURCES Introduction to Molecular Biology and Bioinformatics (IMBB) 2014 The larger picture.. Lower

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Protein Folding October 23, 2017 The Protein Folding Problem Protein folding is the translation of primary sequence information into secondary, tertiary and quaternary structural information

More information

Biochemistry. Central dogma. Structure and Function of Biomolecules II

Biochemistry. Central dogma. Structure and Function of Biomolecules II . Paper : 03 Module : 07 Principal Investigator: Dr. Sunil Kumar Khare, Professor Dept. of Chemistry, I.I.T. Delhi Paper Coordinator: Content Writer: Dr. Sunil Kumar Khare and Prof. M. N. Gupta Dr. Sunil

More information

NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses)

NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses) NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses) Consist of chemically linked sequences of nucleotides Nitrogenous base Pentose-

More information

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review Enzyme that adds nucleotide subunits to an RNA primer during replication DNA polymerase III Another name for protein synthesis translation Sugar

More information

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology Friday, April 17 th Crash Course: DNA, Transcription and Translation Today I will 1. Review the component parts of a DNA molecule. 2. Describe the process of transformation. 3. Explain what is meant by

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

C. Tight Turns. = -30, φ 3. = 0, and type II approximately = 120, φ 3. = -60, ψ 2. = -90, ψ 3. = +90, ψ 3

C. Tight Turns. = -30, φ 3. = 0, and type II approximately = 120, φ 3. = -60, ψ 2. = -90, ψ 3. = +90, ψ 3 Tight turns (also known as reverse turns, β turns, β bends, hairpin bends, 310 bends, kinks, widgets, etc.) are the first and most prevalent type of nonrepetitive structure that has been recognized. While

More information

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein CHAPTER 17 FROM GENE TO PROTEIN Section C: The Synthesis of Protein 1. Translation is the RNA-directed synthesis of a polypeptide: a closer look 2. Signal peptides target some eukaryotic polypeptides to

More information

Modeling of Protein Production Process by Finite Automata (FA)

Modeling of Protein Production Process by Finite Automata (FA) Modeling of Protein Production Process by Finite Automata (FA) ISSAC BARJIS 1, JOE W. YEOL 2, YEONG SOON RYU 3 Physics and Biomedical Sciences 1, Mechanical Engineering Technology 3 City University of

More information

Answers to Module 1. An obligate aerobe is an organism that has an absolute requirement of oxygen for growth.

Answers to Module 1. An obligate aerobe is an organism that has an absolute requirement of oxygen for growth. Answers to Module 1 Short Answers 1) What is an obligate aerobe? An obligate aerobe is an organism that has an absolute requirement of oxygen for growth. What about facultative anaerobe? 2) Distinguish

More information

The DNA Molecule: The Molecular Basis of Inheritance

The DNA Molecule: The Molecular Basis of Inheritance Slide hapter 6 he DN Molecule: he Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil ampbell and Jane Reece Lectures by hris Romero, updated by Erin Barley

More information

Chapter 8 Lecture Outline. Transcription, Translation, and Bioinformatics

Chapter 8 Lecture Outline. Transcription, Translation, and Bioinformatics Chapter 8 Lecture Outline Transcription, Translation, and Bioinformatics Replication, Transcription, Translation n Repetitive processes Build polymers of nucleotides or amino acids n All have 3 major steps

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 History of DNA Late 1800 s scientists discovered that DNA is in the nucleus of the cell 1902 Walter Sutton proposed that hereditary material resided in the chromosomes in the nucleus

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein This is also known as: The central dogma of molecular biology Protein Proteins are made

More information

Advanced Level Biology BRIDGING WORK

Advanced Level Biology BRIDGING WORK Advanced Level Biology BRIDGING WORK The bridging work MUST be completed for each of your Advanced Level subjects by the time you start your course. Your work will be assessed in September. Anyone not

More information

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase DNA and Replication TEKS (6) Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: (A)

More information

DNA replication: Enzymes link the aligned nucleotides by phosphodiester bonds to form a continuous strand.

DNA replication: Enzymes link the aligned nucleotides by phosphodiester bonds to form a continuous strand. DNA replication: Copying genetic information for transmission to the next generation Occurs in S phase of cell cycle Process of DNA duplicating itself Begins with the unwinding of the double helix to expose

More information

Macromolecular Modeling with Rosetta

Macromolecular Modeling with Rosetta ANNUAL REVIEWS Further Click here for quick links to Annual Reviews content online, including: Other articles in this volume Top cited articles Top downloaded articles Our comprehensive search Annu. Rev.

More information

RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds.

RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds. The Versatility of RNA Primary structure of RNA RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds. Each nucleotide subunit is composed of a ribose sugar,

More information

Topic 7: Nucleic acids and proteins

Topic 7: Nucleic acids and proteins Topic 7: Nucleic acids and proteins Topic 7: Nucleic acids and proteins 7.1 DNA structure Assessment Statement IBO Notes Student Notes 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 Describe the structure of DNA, including

More information

Method for Folding of Recombinant Prion Protein to Soluble β-sheet Secondary Structure

Method for Folding of Recombinant Prion Protein to Soluble β-sheet Secondary Structure Chapter 2 Method for Folding of Recombinant Prion Protein to Soluble β-sheet Secondary Structure Laura J. Ellett Abstract A key event in the pathogenesis of prion diseases is the change in structure of

More information

Structures of Biomolecules by NMR Spectroscopy

Structures of Biomolecules by NMR Spectroscopy Structures of Biomolecules by NMR Spectroscopy HanudattaSAtreya NMR spectroscopy has the unique ability to probe both structure and dynamics of biomolecules with high resolution. This has rendered it a

More information

Solution Structure of the DNA-binding Domain of GAL4 from Saccharomyces cerevisiae

Solution Structure of the DNA-binding Domain of GAL4 from Saccharomyces cerevisiae Vol. 14, No. 1-4 175 Solution Structure of the DNA-binding Domain of GAL4 from Saccharomyces cerevisiae James D. Baleja, V. Thanabal, Ted Mau, and Gerhard Wagner Department of Biological Chemistry and

More information

The Central Dogma of Molecular Biology

The Central Dogma of Molecular Biology The Central Dogma of Molecular Biology In the Central Dogma of Molecular Biology, this process occurs when mrna is made from DNA? A. TranscripBon B. TranslaBon C. ReplicaBon 1 DNA: The ultimate instruction

More information

CHAPTER 21 LECTURE SLIDES

CHAPTER 21 LECTURE SLIDES CHAPTER 21 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

LE STRUTTURE β Antiparallel A residue in an antiparallel beta strand has values of -139 and +135 degrees for the backbone dihedral angles F and Y respectively. Antiparallel beta sheets are thought

More information