Dr. Jeffrey P. Thompson bio350

Size: px
Start display at page:

Download "Dr. Jeffrey P. Thompson bio350"

Transcription

1 Chapter 8 Enzymes

2

3 Green light GFP Blue light

4 Modern day catalysis Catalysis (reaction promotion) may have gotten its beginning g in an RNA- dominated world. Most catalysis today has evolved into using PROTEIN enzymes to do the job. The capacity to specifically bind toavery wide range of molecules.

5 What do enzymes do Catalyze (accelerate) chemical reactions Maybe by a factor of more than a million Biological reactions require fast responses in the absence of enzymes, these reactions don t proceed at a perceivable rate. Carbonic anhydrase Hydrates 1 million CO2/sec 7,00, times faster than the uncatalyzed rate!

6

7

8 Protein break down is catalyzed by enzymes called PROTEASES.

9 Many proteases are also ESTERASES.

10 Trypsin specificity Thrombin specificity

11

12

13 What is so special about enzymes? The are specific. They enhance reactions. They minimize unwanted side reactions The specificity of an enzyme is due to the precise interaction of the substrate with the enzyme. This precision is a result of the intricate three-dimensional structure of the enzyme protein.

14 Many enzymes require Cofactors for activity Our discussion of the RNA-world mentioned that accessory molecules (peptides) may have enhance RNA s ability to do its many functions Today Some enzymes require accessory molecules to enhance their activity. cofactors Apoenzyme + cofactor = holoenzyme

15 Types of cofactors Metal ions Zn, Mg, Cu, Fe Small organic molecules Coenzymes (separate helpers ) vitamins i Prosthetic groups (physically attached helpers )

16

17 Enzyme classification Based on the TYPE OF REACTION THEY CATALYZE 1964 International Union of Biochemistry established an Enzyme Commission for categorization of enzymes. Like taxonomy for organisms A systematic way of identifying enzymes

18 Here are the major groups This is what they do

19 Thermodynamics and Enzymes Remember spontaneous reactions occur when G changes are negative. Spontaneous, products have less energy than reactants, EXERGONIC. Positive G changes are nonspontaneous, products have more energy than reactants, ENDERGONIC THE G OF A REACTION IS INDEPENDENT OF THE PATH OF THE TRANSFORMATION!

20 Thermodynamics and Enzymes The Standard free energy change of a reaction is related to the equilibrium constant G o Huh? In biology, reactions occur in different environments G OF A REACTION DEPENDS ON THE NATURE AND CONCENTRATIONS OF THE MOLECULES INVOLVED!!!!!

21 What do enzymes do? Important to note.. Enzymes alter only the REACTION RATE and not the Reaction equilibrium A B Forward rate constant t is 100 time that t of reverse reaction At equilibrium there is always a going to be 100 times more B than A Enzymes only help to reach equilibrium faster!

22 How do enzymes do this? Accelerate reactions by facilitating the formation of the transition state of the reaction. Enzymes decrease the Activation Energy, aka the free energy of activation. The essence of catalysis is SPECIFIC BINDING of the transition state inside the active site of the enzyme!

23

24 First step Formation of the Enzyme-substrate complex What is the evidence? SATURATION CURVES SUGGEST PHYSICAL CONTACT BETWEEN ENZYME AND SUBSTRATE. BIOPHYSICAL EVIDENCE FLUORESCENCE QUENCHING EXPERIMENTS NMR analysis

25

26

27

28 Common feature of Active Sites.. Catalytic groups (atoms from amino acids or cofactors in the active site that promote the reaction) Interaction of the enzyme and substrate at the active site promotes the FORMATION OF THE TRANSITION STATE!

29 Common features of Active Sites D cleft that is formed from groups that come from different parts of the amino acid sequence. 2. active sites take up a relatively small part of the total volume of the enzyme. 3. Active sites are clefts or crevices. 4. Substrates are bound to enzymes by multiple weak attractions. Why not covalent (strong) bonding? 5. Atoms in the active site give the specific binding.

30 Lysozyme active Site amino acids

31

32 Lock and Key

33 Induced fit

34 The observable kinetic properties can be described mathematically! Kinetic math models can explain the data Michaelis-Menten Model explains the data. Their model will describe the current model of enzyme reactions: E + S ES E + P Reaction velocity vs. Substrate conc. Vmax and Km values for enzymes

35

36

37

38 Km values reflect efficiency To get a reaction to proceed, substrate must bind Km values are the concentration of the substrate to give you half of the maximum velocity Smaller the Km value (concentration) the quicker the enzyme binds to the substrate Equals best efficiency (even binding efficiency of Enzyme to substrate)

39

40 Vmax values indicate speed Also called the Turnover number How many products are produced per second. Which enzyme on the next page has the greatest productivity?

41 AKA A.K.A K cat

42 Probing for information Testing the SAME ENZYME with DIFFERENT SUBSTRATES can give you some insight to the preferences of the active site. Calculate Km values for the different experiments and compare Look at the protease chymotrypsin for example.

43

44 Enzymatic Perfection

45 Many Biochemical Reactions Include Multiple Substrates 2 classes of multiple substrate reactions Sequential Displacement reactions Ordered sequential substrates bind in a defined sequence Random sequential No defined sequence. Double Displacement reactions Also called a ping pong reaction

46 Ordered SequentialDisplacement Rx LDH (h (the enzyme) Ternary Complex forms = Enzyme+ substrate 1+ substrate 2

47 Ordered Sequential Displacement Rx Cofactor adds first and leaves last Cleland Notation- method to represent An enzymatic reaction.

48 Random Sequential Displacement Rx Addition of substrates and leaving of products shows no order. Creatine kinase (the enzyme)

49 Sequential Random Displacement Rx Cleland Notation diagram is a little messier reflecting the different possibilities.

50 Double Displacement Rx AKA Ping-Pong reactions common for transferase enzymes Marked kdby a substituted enzyme complex (the enzyme is modified in the middle of the reactions) The two substrates take turns binding to active site-like watching A ping-pong match.

51 Double Displacement Rx Steps for this example: 1. enzyme binds aspartate (S) 2. enzyme removes amino group (holds onto it) 3. enzyme releases product (oxaloacetate)(p) 4. enzyme binds -ketoglutarate (S) 5. enzyme transfers amino group to -ketoglutarate 6. enzyme releases product glutamate(p) Marked by a substituted t enzyme complex

52 Allosteric Enzymes don t follow Michaelis-Menten Menten Kinetics Key Regulatory Enzymes

53 Enzyme Inhibitors Molecules that prevent the enzyme from working as normal They can cause changes in Vmax and Km Types Reversible inhibitors Noncovalently binds enzyme (bind and release) Irreversible inhibitors Covalently l bind enzyme (permanently attached)

54 Reversible inhibitors- Bound by noncovalent attachment Like the desired substrate both types of inhibitors can bind and release

55 These types of inhibitors Are Kinetically Discernable! They affect the kinetics curves Differently. The difference can be a Diagnostic tool to determine What kind of inhibitor is at work! Competitive=cause i Km values To increase, Vmax changes very Little! Noncompetitive=Km changes Very little but Vmax decreases Significantly!

56 A competitive Inhibitor it Resembles the Natural cofactor so it Can take its place! A cofactor For many enzymes

57 Lineweaver - Burk Plot

58

59

60 Irreversible inhibitors bind covalently to functional groups in enzymes. If the modified functional group is in an active site, the enzyme is permanently inactivated.

61 Another example.

62 Suicide Inhibition- inhibitor irreversibly binds to enzyme Only after being worked on by the enzyme! The enzyme is responsible for its own activation!

63 Remembering Transition States t

64 Transition state analogs are potent inhibitors of enzymes. 1. Remember what a transition state is? 2. Remember that enzymes catalyze reactions by promoting the formation of the transition state? t

65 Transition state analogs (molecules that resemble the transition State structure as the substrate is turning into product) are POTENT inhibitors. Do you think they would be competitive or noncompetitive? This is the hypothetical Transition state structure. This molecule, that resembles The transition state structure, Is a potent inhibitor of the enzyme used to turn L-proline Into its D form!

66 Generating a Man-made enzyme Proteins can be developed to catalyze reactions (like an enzyme) REMEMBER!! Enzyme function by promoting the formation of the transition state (this enhances the rate) If other proteins can be developed to bind to and stabilize a reaction s transition state, then they should serve as catalysts t as well! ABZYMES DO THIS!

67 ABZYMES - CATALYTIC ANTIBODIES How do antibodies work? Proteins in the immune system that naturally bind tightly to antigens to clear them from your body. Inject antigen in an animal = antibody production flu shot = anti-flu antibodies = protection against flu anti-flu antibodies bind to flu virus to immobilize it Inject a reaction s transition state analog (the antigen) develop antibodies that bind to the transition state These antibodies now CATALYZE THE REACTION!!

68 An Example Ferrochelatase enzyme needed d to add metal ions into Prosthetic groups needs to bend the group in the transition state. Use this antigen instead

69

70

71

Enzyme kinetics. Irreversible inhibition inhibitor is bound tightly to enzyme - very slow dissociation can be covalent or non covalently bound

Enzyme kinetics. Irreversible inhibition inhibitor is bound tightly to enzyme - very slow dissociation can be covalent or non covalently bound Enzymes can be regulated by acceleration and inhibition inhibition very common - several different mechanisms competitive / non competitive reversible / irreversible Irreversible inhibition inhibitor is

More information

ENZYMES. Unit 3 - Energy

ENZYMES. Unit 3 - Energy ENZYMES Unit 3 - Energy What is an enzyme? What do they do? What is an enzyme? What do they do? Key Things to remember: They are proteins They are catalysts They are reusable - not consumed in reaction

More information

Paper No.: 01. Paper Title: FOOD CHEMISTRY. Module 22: Enzymes: General nature and Kinetics of. enzyme reactions

Paper No.: 01. Paper Title: FOOD CHEMISTRY. Module 22: Enzymes: General nature and Kinetics of. enzyme reactions Paper No.: 01 Paper Title: FOOD CHEMISTRY Module 22: Enzymes: General nature and Kinetics of enzyme reactions Enzymes: General nature and kinetics of enzyme reactions INTRODUCTION Enzymes are defined as

More information

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation I Dr. Mamoun Ahram Summer, 2017 Mechanisms of regulation Expression of isoenzymes Regulation of enzymatic activity Inhibitors Conformational changes Allostery Modulators Reversible

More information

Nucleic Acids, Proteins, and Enzymes

Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules بسمه تعالی کارشناسی ارشد بیوشیمی و بیولوژي سلول آنزیم ابراهیم قاسمی Enzyme Proteins with catalytic properties A small group of catalytic RNA molecules Catalyze reactions (degrade, conserve and transform

More information

Enzymes II. Dr. Kevin Ahern

Enzymes II. Dr. Kevin Ahern Enzymes II Dr. Kevin Ahern E+S ES ES* EP E+P Michaelis- Menten Kinetics E+S ES ES* EP E+P Michaelis- Menten Kinetics Rate of Formation E+S ES ES* EP E+P

More information

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Chapter 5: Microbial Metabolism (Part I)

Chapter 5: Microbial Metabolism (Part I) Chapter 5: Microbial Metabolism (Part I) Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final. Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 50% midterm, 50% final Midterm: 5/15 History Atom Earth, Air, Water Fire SEM: 20-40 nm Silver 66.2% Gold

More information

TEKS and S.E.s. B.9C identify and investigate the role of enzymes

TEKS and S.E.s. B.9C identify and investigate the role of enzymes Enzymes TEKS and S.E.s B.9C identify and investigate the role of enzymes Vocabulary Enzyme Catalyst Substrate Active site Substrate-enzyme complex Activation energy Inhibitor Catabolic Anabolic Reactant

More information

Test Bank Cell and Molecular Biology Concepts and Experiments 7th Edition Karp

Test Bank Cell and Molecular Biology Concepts and Experiments 7th Edition Karp Test Bank Cell and Molecular Biology Concepts and Experiments 7th Edition Karp Completed downloadable package TEST BANK for Cell and Molecular Biology Concepts and Experiments 7th Edition by Gerald Karp

More information

COMPUTER SIMULATION OF ENZYME KINETICS

COMPUTER SIMULATION OF ENZYME KINETICS COMPUTER SIMULATION OF ENZYME KINETICS I. Introduction. Enzymes are biological catalysts. A catalyst alters the speed at which a chemical reaction reaches its completion or equilibrium point. It does not

More information

What can you tell me about this picture?

What can you tell me about this picture? What can you tell me about this picture? ENZYMES A protein with catalytic properties due to its power of specific activation 1. Anabolic reactions: Define the following terms: Reactions that build up molecules

More information

Biology Enzymes. Slide 1 / 64. Slide 2 / 64. Slide 3 / 64. Vocabulary Click on each word below to go to the definition

Biology Enzymes. Slide 1 / 64. Slide 2 / 64. Slide 3 / 64. Vocabulary Click on each word below to go to the definition Slide 1 / 64 Slide 2 / 64 iology Enzymes 2015-08-28 www.njctl.org Vocabulary lick on each word below to go to the definition. Slide 3 / 64 activation energy active site allosteric regulation catalyst coenzyme

More information

ENZYMES. A protein with catalytic properties due to its power of specific activation Paul Billiet ODWS

ENZYMES. A protein with catalytic properties due to its power of specific activation Paul Billiet ODWS ENZYMES A protein with catalytic properties due to its power of specific activation Chemical reactions Chemical reactions need an initial input of energy = THE ACTIVATION ENERGY During this part of the

More information

EXAM 2 PREP. 8 th Grade, Week 2, Day 3 July 3, 2013

EXAM 2 PREP. 8 th Grade, Week 2, Day 3 July 3, 2013 EXAM 2 PREP 8 th Grade, Week 2, Day 3 July 3, 2013 But first! POP QUIZ! (1) Name two factors that can affect enzyme activity. (2) An irreversible inhibitor binds to the enzyme. (3) Name one type of enzyme

More information

Biology Eighth Edition Neil Campbell and Jane Reece

Biology Eighth Edition Neil Campbell and Jane Reece BIG IDEA IV Biological systems interact, and these systems and their interactions possess complex properties. Enduring Understanding 4.B Competition and cooperation are important aspects of biological

More information

Unit title: Biochemistry: Theory and Laboratory Skills (SCQF level 7)

Unit title: Biochemistry: Theory and Laboratory Skills (SCQF level 7) Higher National Unit specification General information Unit code: H922 34 Superclass: RH Publication date: May 2015 Source: Scottish Qualifications Authority Version: 01 Unit purpose This Unit is designed

More information

S P E E D I N G U P C H E M I C A L R E AC T I O N S

S P E E D I N G U P C H E M I C A L R E AC T I O N S ENZYMES S P E E D I N G U P C H E M I C A L R E AC T I O N S TEKS 9C: Students will identify and investigate the role of enzymes WHAT ARE ENZYMES? Enzymes are proteins (what is their monomer?) These proteins

More information

Introduction to Enzymes

Introduction to Enzymes Introduction to Enzymes Enzyme Engineering What is enzymes? Life depends on well-orchestrated series of chemical reactions : E. coli has 4288 proteins, 2656 of which are characterized, and 64% (1701) of

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

Combinatorial RNA libraries

Combinatorial RNA libraries SELEX and Artificial Ribozymes Some definitions SELEX: Systematic Evolution of Ligands by EXponential Enrichment (alternatively: in vitro selection, in vitro evolution) Aptamer: nucleic acid ligand (from

More information

Tyrosine Kinase Assay Kit, Red*

Tyrosine Kinase Assay Kit, Red* Rh Tyrosine Kinase Assay Kit, Red* 1.0 INTRODUCTION Part # P2882, P2883 Lit. # L0531 Rev. 11/02 Page 1 of 6 The phosphorylation of proteins by protein tyrosine kinases (PTKs) is critical to the normal

More information

Application of Biacore Technology

Application of Biacore Technology Principles and typical results Application of Biacore Technology Common types of Biacore analyses Specificity analysis Is my molecule of interest specific for its target? Multiple binding analysis In which

More information

RNA synthesis/transcription I Biochemistry 302. February 6, 2004 Bob Kelm

RNA synthesis/transcription I Biochemistry 302. February 6, 2004 Bob Kelm RNA synthesis/transcription I Biochemistry 302 February 6, 2004 Bob Kelm Overview of RNA classes Messenger RNA (mrna) Encodes protein Relatively short half-life ( 3 min in E. coli, 30 min in eukaryotic

More information

Final exam. Please write your name on the exam and keep an ID card ready.

Final exam. Please write your name on the exam and keep an ID card ready. Biophysics of Macromolecules Prof. R. Jungmann and Prof. J. Lipfert SS 2017 Final exam Final exam First name: Last name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an

More information

Metabolomics in Systems Biology

Metabolomics in Systems Biology Metabolomics in Systems Biology Basil J. Nikolau W.M. Keck Metabolomics Research Laboratory Iowa State University February 7, 2008 Outline What is metabolomics? Why is metabolomics important? What are

More information

Metabolic Networks. Ulf Leser and Michael Weidlich

Metabolic Networks. Ulf Leser and Michael Weidlich Metabolic Networks Ulf Leser and Michael Weidlich This Lecture Introduction Systems biology & modelling Metabolism & metabolic networks Network reconstruction Strategy & workflow Mathematical representation

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

Nucleic Acids and the RNA World. Pages Chapter 4

Nucleic Acids and the RNA World. Pages Chapter 4 Nucleic Acids and the RNA World Pages 74-89 Chapter 4 RNA vs. Protein Chemical Evolution stated that life evolved from a polymer called a protein. HOWEVER, now many scientists question this. There is currently

More information

The effect of temperature on the rate of an enzyme catalyzed reaction. Subtitle

The effect of temperature on the rate of an enzyme catalyzed reaction. Subtitle The effect of temperature on the rate of an enzyme catalyzed reaction Subtitle In this experiment, we will continue to study acid phosphatase kinetics. Acid phosphatase kinetics Time Enzyme concentration

More information

STRUCTURAL BIOLOGY. α/β structures Closed barrels Open twisted sheets Horseshoe folds

STRUCTURAL BIOLOGY. α/β structures Closed barrels Open twisted sheets Horseshoe folds STRUCTURAL BIOLOGY α/β structures Closed barrels Open twisted sheets Horseshoe folds The α/β domains Most frequent domain structures are α/β domains: A central parallel or mixed β sheet Surrounded by α

More information

Transition States: Substrateinduced. Transitions. Introduction. Secondary article. Carol B Post, Purdue University, West Lafayette, Indiana, USA

Transition States: Substrateinduced. Transitions. Introduction. Secondary article. Carol B Post, Purdue University, West Lafayette, Indiana, USA Transition States: Substrateinduced Conformational Transitions Carol B Post, Purdue University, West Lafayette, Indiana, USA Secondary article Article Contents. Introduction. Conformational Changes of

More information

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA LECTURE-06 PROTEIN PURIFICATION AND PEPTIDE ISOLATION USING CHROMATOGRAPHY TRANSCRIPT Welcome to the proteomics course. Today, we will talk about protein purification and peptide isolation using chromatography

More information

2013 W. H. Freeman and Company. 5 Function of Globular Proteins

2013 W. H. Freeman and Company. 5 Function of Globular Proteins 2013 W. H. Freeman and Company 5 Function of Globular Proteins CHAPTER 5: Function of Globular Proteins Key topics in protein function: Reversible binding of ligands is essential Specificity of ligands

More information

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1 Bi 8 Lecture 7 PROTEIN STRUCTURE, Functional analysis, and evolution Ellen Rothenberg 26 January 2016 Reading: Ch. 3, pp. 109-134; panel 3-1 (end with free amine) aromatic, hydrophobic small, hydrophilic

More information

MOLECULAR RECOGNITION

MOLECULAR RECOGNITION MOLECULAR RECOGNITION Bioanalytical Methods Classification 1. Biassay: molecular recognition, signal generation and detection in solution or on inert solid phase 2. Biosensor: molecular recognition system

More information

Biophysical characterization of proteinprotein

Biophysical characterization of proteinprotein Biophysical characterization of proteinprotein interactions Rob Meijers EMBL Hamburg EMBO Global Exchange Lecture Course Hyderabad 2012 Bottom up look at protein-protein interactions Role of hydrogen bonds

More information

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 29 September 2005

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 29 September 2005 Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 9 September 005 Focus concept Purification of a novel seed storage protein allows sequence analysis and

More information

Notes to accompany the slidecast on theory of SDS PAGE and Western blotting

Notes to accompany the slidecast on theory of SDS PAGE and Western blotting S317 Biological science: from genes to species Notes to accompany the slidecast on theory of SDS PAGE and Western blotting SDS PAGE SDS PAGE is a standard technique for determining the molecular size of

More information

Τάσος Οικονόµου ιαλεξη 8. Kινηση, λειτουργια, ελεγχος.

Τάσος Οικονόµου ιαλεξη 8. Kινηση, λειτουργια, ελεγχος. Τάσος Οικονόµου ιαλεξη 8 Kινηση, λειτουργια, ελεγχος http://ecoserver.imbb.forth.gr/bio321.htm εν ξεχνω. Cell The peptide bond Polypeptides are stabilized by: 1. Covalent bonds= amide bond 2. Noncovalent,

More information

Kinetics Review. Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets)

Kinetics Review. Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets) Quiz 1 Kinetics Review Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets) I will post the problems with solutions on Toolkit for those that can t make

More information

Step-by-Step Description of ELISA

Step-by-Step Description of ELISA Step-by-Step Description of ELISA The protocols in this kit rely on indirect antibody capture ELISA. The steps in this assay are: Step 1: Antigen is added to the wells of the microplate strip and incubated

More information

Molecular Forces in Antibody Maturation*

Molecular Forces in Antibody Maturation* Molecular Forces in Antibody Maturation* Melik Demirel 1,2 1 Allen Pearce Assistant Professor, College of Engineering, The Pennsylvania State University, University Park, PA, USA, E-mail: mcd18@psu.edu

More information

HTRF KinEASE STK discovery kit

HTRF KinEASE STK discovery kit HTRF KinEASE STK discovery kit P R O T O C O L Part # 62ST0PEB Test size: 1,000 tests Revision: 06 (Dec. 2017) Assay volume: 20 µl Store at: 2-8 C This product is intended for research purposes only. The

More information

Optimizing Synthetic DNA for Metabolic Engineering Applications. Howard Salis Penn State University

Optimizing Synthetic DNA for Metabolic Engineering Applications. Howard Salis Penn State University Optimizing Synthetic DNA for Metabolic Engineering Applications Howard Salis Penn State University Synthetic Biology Specify a function Build a genetic system (a DNA molecule) Genetic Pseudocode call producequorumsignal(luxi

More information

The mechanism(s) of protein folding. What is meant by mechanism. Experimental approaches

The mechanism(s) of protein folding. What is meant by mechanism. Experimental approaches The mechanism(s) of protein folding What is meant by mechanism Computational approaches Experimental approaches Questions: What events occur and in what time sequence when a protein folds Is there a specified

More information

HTRF KinEASE-STK S3 kit

HTRF KinEASE-STK S3 kit HTRF KinEASE-STK S3 kit P R O T O C O L Part # 62ST3PEB, 62ST3PEC & 62ST3PEJ Test size: 1,000 tests (62ST3PEB), 20,000 tests (62ST3PEC), 100,000 tests (62ST3PEJ) Revision: 01 (Dec. 2017) Assay volume:

More information

Purification of (recombinant) proteins. Pekka Lappalainen, Institute of Biotechnology, University of Helsinki

Purification of (recombinant) proteins. Pekka Lappalainen, Institute of Biotechnology, University of Helsinki Purification of (recombinant) proteins Pekka Lappalainen, Institute of Biotechnology, University of Helsinki Physical properties of proteins that can be applied for purification -size -charge (isoelectric

More information

RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds.

RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds. The Versatility of RNA Primary structure of RNA RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds. Each nucleotide subunit is composed of a ribose sugar,

More information

The replication of DNA Kornberg 1957 Meselson and Stahl 1958 Cairns 1963 Okazaki 1968 DNA Replication The driving force for DNA synthesis. The addition of a nucleotide to a growing polynucleotide

More information

Chapter 8 Proteins and Bioprocesses

Chapter 8 Proteins and Bioprocesses Chapter 8 Proteins and Bioprocesses 8.1 Proteins and Biomolecules This introductory paragraph summarizes a few basic concepts of protein science required for the next paragraphs. The human body is composed

More information

D-Amino Acid Oxidase I. SPECTROPHOTOMETRIC STUDIES* (Received for publication, March 22, 1967)

D-Amino Acid Oxidase I. SPECTROPHOTOMETRIC STUDIES* (Received for publication, March 22, 1967) THE JOURNAL OF BOLOGCAL CHEWSTRY Vol. 242, No. 17, ssue of September 10, pp. 3957-3962,1967 Printed in U.S.A. D-Amino Acid Oxidase. SPECTROPHOTOMETRC STUDES* MARGARET L. FONDA AND BRUCE M. ANDERSON From

More information

RNA Structure Prediction and Comparison. RNA Biology Background

RNA Structure Prediction and Comparison. RNA Biology Background RN Structure Prediction and omparison Session 1 RN Biology Background Robert iegerich Faculty of Technology robert@techfak.ni-bielefeld.de October 13, 2013 Robert iegerich Overview of lecture topics The

More information

BME Engineering Molecular Cell Biology. The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament

BME Engineering Molecular Cell Biology. The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament BME 42-620 Engineering Molecular Cell Biology Lecture 09: The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament BME42-620 Lecture 09, September 27, 2011 1 Outline Overviewofcytoskeletal

More information

PURIFICATION, SUBUNIT DETERMINATION,

PURIFICATION, SUBUNIT DETERMINATION, 7/25/2008 UCLA CHEM 153L BIOCHEMICAL METHODS I SUMMER 2008 PROFESSOR STEVEN J. KIM TA MAURICE SECTION 1C GROUP MOO0OO PURIFICATION, SUBUNIT DETERMINATION, AND KINETICS OF LACTATE DEHYDROGENASE REPORT BY

More information

Serine Proteases and their Inhibitors

Serine Proteases and their Inhibitors ugo Kubinyi, www.kubinyi.de Serine Proteases and their Inhibitors ugo Kubinyi Germany E-Mail kubinyi@t-online.de omepage www.kubinyi.de ugo Kubinyi, www.kubinyi.de Serine Proteases of Physiological Importance

More information

Laboratory Inquiry: What Makes Enzymes Work?

Laboratory Inquiry: What Makes Enzymes Work? Laboratory Inquiry: What Makes Enzymes Work? One hallmark of effective scientific inquiry is focus on solving a problem, rather than on using a particular method to study a problem (1). You should already

More information

Announcements. Next week s discussion will have a quiz on Chapter 3fg and Chapter 11ab Computer Lab (Chapter 11ab): 10/17 10/22

Announcements. Next week s discussion will have a quiz on Chapter 3fg and Chapter 11ab Computer Lab (Chapter 11ab): 10/17 10/22 Announcements Next week s discussion will have a quiz on Chapter 3fg and Chapter 11ab Computer Lab (Chapter 11ab): 10/17 10/22 SCI 162 will be open for 2 hours of each lab section to finish Chapter 3 Chapters

More information

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004 CSE 397-497: Computational Issues in Molecular Biology Lecture 19 Spring 2004-1- Protein structure Primary structure of protein is determined by number and order of amino acids within polypeptide chain.

More information

Differential Gene Expression

Differential Gene Expression Biology 4361 Developmental Biology Differential Gene Expression September 28, 2006 Chromatin Structure ~140 bp ~60 bp Transcriptional Regulation: 1. Packing prevents access CH 3 2. Acetylation ( C O )

More information

Effect of Fibrinogen and Ca2+ on the Thrombin-Catalyzed Proteolytic Event That Triggers Activation of Factor XI11

Effect of Fibrinogen and Ca2+ on the Thrombin-Catalyzed Proteolytic Event That Triggers Activation of Factor XI11 Effect of Fibrinogen and Ca2+ on the Thrombin-Catalyzed Proteolytic Event That Triggers Activation of Factor XI11 JULES A. SHAFER,' SIDNEY D. LEWIS," TODD J. JAN US,^ AND LASZLO LOR AND^ 'Department of

More information

UV Fluorescence Polarization as a Means to Investigate Protein Conformational and Mass Change

UV Fluorescence Polarization as a Means to Investigate Protein Conformational and Mass Change A p p l i c a t i o n N o t e UV Fluorescence Polarization as a Means to Investigate Protein Conformational and Mass Change Using Intrinsic Tryptophan Fluorescence in Conjunction with UV-capable Polarizers

More information

Human TGF-beta1 ELISA

Human TGF-beta1 ELISA K-ASSAY Human TGF-beta1 ELISA For the quantitative determination of TGF-beta1 in human cell culture supernates, serum, plasma (EDTA) and urine Cat. No. KT-1471 For Research Use Only. Not for diagnostic

More information

Pharmacokinetic & Pharmacodynamic Data Analysis

Pharmacokinetic & Pharmacodynamic Data Analysis Pharmacokinetic & Pharmacodynamic Data Analysis CONCEPTS AND APPLICATIONS 4TH EDITION REVISED AND EXPANDED Table of Contents 1. 1.1 1.2 1.3 1.4 1.5 2. 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7

More information

ACCREDITATION PROGRAM FOR BACHELOR S DEGREES IN BIOCHEMISTRY & MOLECULAR BIOLOGY. Accreditation Application Guide

ACCREDITATION PROGRAM FOR BACHELOR S DEGREES IN BIOCHEMISTRY & MOLECULAR BIOLOGY. Accreditation Application Guide ACCREDITATION PROGRAM FOR BACHELOR S DEGREES IN BIOCHEMISTRY & MOLECULAR BIOLOGY Accreditation Application Guide March 2017 TABLE OF CONTENTS ASBMB degree-accreditation program in biochemistry & molecular

More information

Human Plasmin Activity Assay ELISA Kit

Human Plasmin Activity Assay ELISA Kit Human Plasmin Activity Assay ELISA Kit Catalog No. CSI12527A 1 x 96 tests CSI12527B 5 x 96 tests Intended Use: Background: Assay Principle: Reagents Provided: This human plasmin activity assay is for the

More information

ASPARTATE AMINOTRANSFERASE SUBSTRATE SPECIFICITY ALTERATION

ASPARTATE AMINOTRANSFERASE SUBSTRATE SPECIFICITY ALTERATION ASPARTATE AMINOTRANSFERASE SUBSTRATE SPECIFICITY ALTERATION Cassandra A. Ricketts Capstone Advisor: Kathryn Muratore, Ph. D Capstone Completed Spring 2011 Graduating with University Honors in Biochemistry

More information

THE LIMITS FOR LIFE DEFINE THE LIMITS FOR ENZYMES

THE LIMITS FOR LIFE DEFINE THE LIMITS FOR ENZYMES 2 THE LIMITS FOR LIFE DEFINE THE LIMITS FOR ENZYMES Summary There are natural constraints that limit enzyme concentrations between 10 nm and 10 µm. For signaling switches k cat s are very low, at 10 2

More information

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies Molecular Cell, Volume 35 Supplemental Data Single-Molecule Analysis Reveals Differential Effect of ssdna-binding Proteins on DNA Translocation by XPD Helicase Masayoshi Honda, Jeehae Park, Robert A. Pugh,

More information

Fuel Specificity of the Hepatitis C Virus NS3 Helicase

Fuel Specificity of the Hepatitis C Virus NS3 Helicase doi:10.1016/j.jmb.2009.03.059 J. Mol. Biol. (2009) 388, 851 864 Available online at www.sciencedirect.com Fuel Specificity of the Hepatitis C Virus NS3 Helicase Craig A. Belon and David N. Frick Department

More information

Affinity Chromatography. Teaching Kit Manual. GeNei TM. Cat No. New Cat No. KT Revision No.:

Affinity Chromatography. Teaching Kit Manual. GeNei TM. Cat No. New Cat No. KT Revision No.: Affinity Chromatography Teaching Kit Manual Cat No. New Cat No. KT41 106192 Revision No.: 00010905 CONTENTS Page No. Objective 3 Principle 3 Kit Description 4 Materials Provided 6 Procedure 7 Result 12

More information

Modeling of Protein Production Process by Finite Automata (FA)

Modeling of Protein Production Process by Finite Automata (FA) Modeling of Protein Production Process by Finite Automata (FA) ISSAC BARJIS 1, JOE W. YEOL 2, YEONG SOON RYU 3 Physics and Biomedical Sciences 1, Mechanical Engineering Technology 3 City University of

More information

Introduction of Biosensors

Introduction of Biosensors Introduction of Biosensors Lecture April 17 Jeff T.H.Wang website: http://pegasus.me.jhu.edu/~thwang/ New course : BioMEMS and BioSensing (Spring 04 ) What s is a biosensor? Target 4.22 Signal Signal Analtye

More information

GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s

GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s 2007-2008 Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP GO if they have

More information

Paul Bowyer. (Baker Lab, London School of Hygiene and Tropical Medicine)

Paul Bowyer. (Baker Lab, London School of Hygiene and Tropical Medicine) Evaluation of selective inhibitors of the malarial cyclic GMP dependent protein kinase (PKG) Paul Bowyer (Baker Lab, London School of Hygiene and Tropical Medicine) Talk summary An overview of the P. falciparum

More information

Suppl. Materials and methods

Suppl. Materials and methods Suppl. Materials and methods Amino acid sequences of recombinant Fc-fusion forms of the EGF1,2, EGF1, and EGF2 of FIX and FX Recombinant Fc-fusion form of the first and second epidermal growth factor (EGF)-like

More information

Characterization of Aptamer Binding using SensíQ SPR Platforms

Characterization of Aptamer Binding using SensíQ SPR Platforms Characterization of Aptamer Binding using SensíQ SPR Platforms APPLICATION NOTE INTRODUCTION Aptamers have the potential to provide a better solution in diagnostics and other research areas than traditional

More information

SURFACE PLASMON RESONANCE-BASED SYSTEMS

SURFACE PLASMON RESONANCE-BASED SYSTEMS SURFACE PLASMON RESONANCE-BASED SYSTEMS ADVANCED METHODS IN BIOENGINEERING LABORATORY 3/1/2011 1 Schedule Week 1: Introduction Reagents preparation Ligand immobilization of Protocol 1 Week 2: Kinetics

More information

Rapporto di Ricerca CS

Rapporto di Ricerca CS UNIVERSITÀ CA FOSCARI DI VENEZIA Dipartimento di Informatica Technical Report Series in Computer Science Rapporto di Ricerca CS-2006-8 Novembre 2006 Andrea Marin Biological Pathways representation using

More information

Blot: a spot or stain, especially of ink on paper.

Blot: a spot or stain, especially of ink on paper. Blotting technique Blot: a spot or stain, especially of ink on paper. 2/27 In molecular biology and genetics, a blot is a method of transferring proteins, DNA or RNA, onto a carrier (for example, a nitrocellulose,pvdf

More information

ELISA IMMUNOASSAY FOR HUMAN

ELISA IMMUNOASSAY FOR HUMAN Unit 6/ Module 1 /Version A pg. 1 California Lutheran University s Enriched Science (Clues) and California State University Program for Education and Research in Biotechnology (C-SUPERB) ELISA IMMUNOASSAY

More information

Store samples to be assayed within 24 hours at 2-8 C. For long-term storage, aliquot and freeze samples at -20 C. Avoid repeated freeze-thaw cycles.

Store samples to be assayed within 24 hours at 2-8 C. For long-term storage, aliquot and freeze samples at -20 C. Avoid repeated freeze-thaw cycles. Human Retinol Binding Protein 4, RBP4 ELISA Kit Preparation Plate Washing Discard the solution in the plate without touching the side walls. Blot the plate onto paper towels or other absorbent material.

More information

Chem 465 Biochemistry II

Chem 465 Biochemistry II Chem 465 Biochemistry II Name: 2 points Multiple choice (4 points apiece): 1. Which of the following is not true of trna molecules? A) The 3'-terminal sequence is -CCA. B) Their anticodons are complementary

More information

Peptide libraries: applications, design options and considerations. Laura Geuss, PhD May 5, 2015, 2:00-3:00 pm EST

Peptide libraries: applications, design options and considerations. Laura Geuss, PhD May 5, 2015, 2:00-3:00 pm EST Peptide libraries: applications, design options and considerations Laura Geuss, PhD May 5, 2015, 2:00-3:00 pm EST Overview 1 2 3 4 5 Introduction Peptide library basics Peptide library design considerations

More information

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract Purification: Step 1 Lecture 11 Protein and Peptide Chemistry Cells: Break them open! Crude Extract Total contents of cell Margaret A. Daugherty Fall 2003 Big Problem: Crude extract is not the natural

More information

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open!

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open! Lecture 11 Protein and Peptide Chemistry Margaret A. Daugherty Fall 2003 Purification: Step 1 Cells: Break them open! Crude Extract Total contents of cell Big Problem: Crude extract is not the natural

More information

These handouts are only meant as a guide while you follow the presentation on the screen. Sometimes the speaker will change some of the slides.

These handouts are only meant as a guide while you follow the presentation on the screen. Sometimes the speaker will change some of the slides. These handouts are only meant as a guide while you follow the presentation on the screen. Sometimes the speaker will change some of the slides. If you would like the 1 slide per page handouts, please ask

More information

Enzyme unit definitions and assay design

Enzyme unit definitions and assay design Enzyme unit definitions and assay design Innova Biosciences Guide Innova Biosciences Ltd. Babraham Research Campus, Cambridge, UK, CB22 3AT +44 (0)1223 661000 info@innovabiosciences.com Enzyme unit definitions

More information

DENATURATION OF HEMOGLOBIN IN THE PRESENCE OF TANNIC ACID

DENATURATION OF HEMOGLOBIN IN THE PRESENCE OF TANNIC ACID PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY C h e m i s t r y a n d B i o l o g y 2014, 1, p. 23 27 C h emistr y DENATURATION OF HEMOGLOBIN IN THE PRESENCE OF TANNIC ACID K. R. GRIGORYAN, L. S. SARGSYAN

More information

Kinetic Mechanisms of I B-related Kinases (IKK) Inducible IKK and TBK-1 Differ from IKK-1/IKK-2 Heterodimer*

Kinetic Mechanisms of I B-related Kinases (IKK) Inducible IKK and TBK-1 Differ from IKK-1/IKK-2 Heterodimer* THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 277, No. 15, Issue of April 12, pp. 12550 12558, 2002 2002 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Kinetic Mechanisms

More information

Enzymes That Bind Nucleotides

Enzymes That Bind Nucleotides Enzymes That Bind Nucleotides Nucleotides play a central role in cellular metabolism, in which they are the major currency of energy exchange. They channel the energy released during the catabolism of

More information

Label-free interaction analysis in realtime using surface plasmon resonance

Label-free interaction analysis in realtime using surface plasmon resonance GE Healthcare Technology Note 23 Biacore systems Label-free interaction analysis in realtime using surface plasmon resonance Providing quantitative data on: report point Specificity sensorgram To what

More information

Chapter 2 Molecules to enzymes - Short answer [72 marks]

Chapter 2 Molecules to enzymes - Short answer [72 marks] Chapter 2 Molecules to enzymes - Short answer [72 marks] 1a. Outline primary and quaternary protein structures. Primary protein structure: Quaternary protein structure: a. (primary structure) is sequence

More information

Application Note Influence of coating buffer and incubation conditions on ELISA performance

Application Note Influence of coating buffer and incubation conditions on ELISA performance Application Note Influence of coating buffer and incubation conditions on ELISA performance 1. Introduction ELISA (Enzyme-Linked Immunosorbent Assay) is one of the most widely used techniques in both basic

More information

Astronomy picture of the day (4/21/08)

Astronomy picture of the day (4/21/08) Biol 205 Spring 2008 Astronomy picture of the day (4/21/08) http://antwrp.gsfc.nasa.gov/apod/ap080421.html Are viruses alive? http://serc.carleton.edu/microbelife/yellowstone/viruslive.html 1 Week 3 Lecture

More information

special offers from your protein biology resource

special offers from your protein biology resource special offers from your protein biology resource Pop open your cells, extract your proteins, purify, quantify and express them. Seeking knowledge about proteins with Thermo Scientific Protein Research

More information

INOS. Colorimetric Cell-Based ELISA Kit. Catalog #: OKAG00807

INOS. Colorimetric Cell-Based ELISA Kit. Catalog #: OKAG00807 INOS Colorimetric Cell-Based ELISA Kit Catalog #: OKAG00807 Please read the provided manual entirely prior to use as suggested experimental protocols may have changed. Research Purposes Only. Not Intended

More information