Name_BS50 Exam 3 Key (Fall 2005) Page 2 of 5

Size: px
Start display at page:

Download "Name_BS50 Exam 3 Key (Fall 2005) Page 2 of 5"

Transcription

1 Name_BS50 Exam 3 Key (Fall 2005) Page 2 of 5 Question 1. (14 points) Several Hfr strains derived from the same F + strain were crossed separately to an F - strain, giving the results indicated in the table below. Draw a chromosome map for the genes indicated. Include the location and orientation of the F factors. Define all symbols used Time elapsed before cells carrying markers were recovered Hfr strain 5min 10min 15min 20min 25min 30min 1 pro gal lac 2 pur ala leu lac 3 pro thy thr 4 pur ile thr Fertility Factor Origin (first to enter) Terminus (last to enter) Thr pro Hfr 3 Hfr 1 Thy 15 min gal lac (14 pts) Genes (order and mapping times): 8 pts; no deduction if a single mapping time in error; -1 pt. if mapping times listed, but not indicated on map. Hfr s: 6 pts; positions (2 pts); relative orientations (2 pts); details (2 pts). Position of Hfr s must be indicated as single sites: -1 pt if drawn as an extents. Details for Hfr s (any 2 of the following): absolute orientation; use of conventional symbol to indicate; precise localization (esp. for Hfr4 adjacent to ala). For aborted attempts, 1 pt if indicated as circular; if drawn as 4 linears, graded on the basis of one (2 pts for genes; 1 pt for Hfr). Question 2. (22 points). You are studying a fairly common human trait and have discovered a linked restriction fragment length polymorphism (RFLP). Use the pedigree from the following family along with the Southern blot analyzing inheritance of the RFLP to answer the following questions. Ile Hfr 2 5 min pur 5 min Hfr 4 ala leu

2 Name_BS50 Exam 3 Key (Fall 2005) Page 3 of 5 a) Just by looking at the pedigree (and ignoring the DNA data), what mode(s) of inheritance could account for the pedigree? Circle all possible answers. autosomal dominant autosomal recessive X-linked dominant X-linked recessive (4 pts) 1 pt for each correctly chosen or not b) Considering the DNA data as well, what is the mode of inheritance for this trait? (4 pts) X-linked recessive c) Give the genotypes of the following individuals are completely as possible. Define all symbols used. R 7 = 7kb RFLP A = dominant no trait R 6 = 6kb RFLP a = recessive trait R = 4kb+3kb RFLP Y = Y chromosome Individual A: R 6 a/ R 7 A Individual B: R a/ Y Individual E: R 7 A/ R a (8 pts) 2 pts for each (1 pt for each chromosome); 2 pts for correct nomenclature; -3 pts if correct linkage not indicated. d) Individual E marries a phenotypically normal male. Their son is found to have only a 4 kb and 3 kb band when analyzed with the same probe used above. Assuming the RFLP is actually 10 cm from the trait for this gene, what is the probability that their son will have this trait? Show your reasoning. (6 pts) 90 % (3 pts if no further explanation); son carries 4+3 RFLP marker from mother (3 pts; OK if implicit, deducted if misunderstood) and Y from father (1 pt; OK if implicit); 10 % chance that a recombination event occurred between the RFLP marker and the disease allele from mother (2 pts; must explicitly mention recombination, cross-over, or linkage, or show in a diagram). -2 pts if assumed E has 90% chance of carrying the disease allele; -2 to 3 pts for other extraneous factors. If answer to b/c incorrect, could receive up to 5 pts if consistent. Question 3. (18 points) a) The following lists a number of genotypes for the Lac operon (including partial diploids). In each case, say whether the genotype listed will show activity of β-galactosidase (lacz) and lactose permease (lacy) when the inducer (allolactose) is added and in the absence of inducer: Genotype β-galactosidase (lacz) lactose permease (lacy) Not induced Induced Not induced Induced I + P + O + Z + Y I s P + O + Z + Y

3 Name_BS50 Exam 3 Key (Fall 2005) Page 4 of 5 I + P + O c Z + Y I + P + O + Z Y + / I + P + O c Z + Y I + P O c Z Y + / I + P + O + Z + Y I + P O + Z + Y / I P + O + Z Y (15 pts) -1 pt for each incorrect; >3 incorrect scaled (eg: -11pts. given 7/15). b) For the lac operon, what would be the phenotype of a mutation that prevents CAP from binding camp. (3 pts) Genes of the lac operon would never be transcribed at high level; or basal level of transcription only, even in presence of inducer. 1-2 pts if indicate no activity, depending upon detail of explanation. Question 4. (18 points) A plant has been discovered that has two different true breeding strains, each one homozygous for a different allele of the gene "Height". One strain is homozygous for the dominant, wild-type allele H and the plants are very tall. The other strain is homozygous for the recessive, mutant h allele and the plants are all very short. Below are the DNA coding regions for the two different alleles. Both alleles have three exons, although Exon 2 of the h allele is longer and contains an in-frame stop codon (UAA). Exon 3 can encode a DNA binding motif (a homeodomain). The presence of a homeodomain is characteristic of a transcriptional regulator. A) Which allele produces a longer processed mrna? Which allele produces a longer protein? Explain. (Assume all in-frame stop codons are shown.) (8 pts) h produces longer mrna (2 pts) because exon 2 is longer (2 pts); H produces longer protein (2 pts), because h has a premature stop (2 pts). B) Based on the information given above, what do you think Height protein does in the plant? Why is the H allele dominant? (5 pts) Functions as a transcription factor (1 pt); regulates genes that affect height or growth (2 pts); is dominant because one copy of the gene is sufficient (2 pts). Partial credit for explanation of dominance: trans-acting (1 pt); produces functional product and h does not (1 pt). If additional incorrect explanation offered, -1 pt. Compensatory credit: described as haplo-sufficient (1 pt); the h allele product has no deleterious effect

4 Name_BS50 Exam 3 Key (Fall 2005) Page 5 of 5 (1 pt); if detailed explanation of transcriptional regulation, but did not address phenotype (1 pt). C) Another mutant of the H allele is discovered. It has all the Height coding DNA, but no trace of Height mrna. Suggest what the molecular nature of this mutation might be, and predict its phenotype. (5 pts) Mutation in the promoter (2 pts); phenotype (3 pts): short (2 pts), recessive (1 pt), OR equivalent to h/h (3 pts). Compensatory credit: if detailed explanation of promoter/polymerase, but did not address phenotype (1 pt). Alternative explanations, such as mutation that affects local chromatin structure, accepted if adequately explained. Question 5. (22 points) A fragment of mouse DNA digested with EcoR1 carries the gene M. This DNA fragment, which is 8 kb long, is inserted into a bacterial plasmid at an EcoR1 site. The recombinant plasmid is then digested with different restriction enzymes. The size of these fragments after digestion are described below: EcoR1: 6kb, 8kb BamH1: 3kb, 11kb EcoR1 & BamH1: 1kb, 2kb, 4kb, 7kb Pst1: 14kb Pst1 & EcoR1: 4kb, 6kb A) Draw a restriction map of this circular plasmid. PstI 3 kb 4 kb BamHI 1 kb EcoRI Gene M 4 kb EcoRI 2 kb (8 pts) Sites in correct relative order (4 pts); correct map distances (4 pts). B) If a Southern blot is prepared from EcoR1 digested DNA, BamH1 digested DNA, and EcoR1 & BamH1 digested DNA, which fragments will hybridize to a probe containing only plasmid DNA? EcoR1: _6kb BamH1: _3kb, 11kb BamHI

5 Name_BS50 Exam 3 Key (Fall 2005) Page 6 of 5 EcoR1 & BamH1: _2kb, 4kb (6 pts; 2 pts each). If one of two bands indicated, 1pt; no credit if extra bands indicated. C) What fragment sizes do you expect from a Pst1, BamH1 double digest? (8 pts) 3kb (2 pts) and 8kb (2 pts) Two different 3kb fragments are produced (not required for full credit) D) You wish to express the mouse protein in bacteria. What problem(s) might you encounter, and how could you solve it? (4 pts) If the mouse gene has introns (1 pt) they would not be spliced out (1 pt); can avoid this problem by using a cdna of the mouse gene (2 pts). OR Prokaryotic promoters and transcription differ from eukaryotic (2 pts); include a bacterial promoter in construct (2 pts). If missed the point, but described transformation process (1 pt). Question 6. (6 points) Histone acetyltransferase (HAT) is the enzyme responsible for adding acetyl groups to histones (particularly H4). What would be the consequence of having a low activity HAT enzyme? (6 pts) Would result in more tightly packed nucleosomes (4 pts) and thus lower levels of transcription (2 pts). Mention of nucleosomes required for full credit. Partial credit for more condensed chromatin structure (3 pts for first component); more heterochromatin or chromatin remodeling (2 pts for first component).

BS 50 Genetics and Genomics Week of Nov 29

BS 50 Genetics and Genomics Week of Nov 29 BS 50 Genetics and Genomics Week of Nov 29 Additional Practice Problems for Section Problem 1. A linear piece of DNA is digested with restriction enzymes EcoRI and HinDIII, and the products are separated

More information

R1 12 kb R1 4 kb R1. R1 10 kb R1 2 kb R1 4 kb R1

R1 12 kb R1 4 kb R1. R1 10 kb R1 2 kb R1 4 kb R1 Bcor101 Sample questions Midterm 3 1. The maps of the sites for restriction enzyme EcoR1 (R1) in the wild type and mutated cystic fibrosis genes are shown below: Wild Type R1 12 kb R1 4 kb R1 _ _ CF probe

More information

DO NOT OPEN UNTIL TOLD TO START

DO NOT OPEN UNTIL TOLD TO START DO NOT OPEN UNTIL TOLD TO START BIO 312, Section 1, Spring 2011 February 21, 2011 Exam 1 Name (print neatly) Instructor 7 digit student ID INSTRUCTIONS: 1. There are 11 pages to the exam. Make sure you

More information

CHAPTER 13 LECTURE SLIDES

CHAPTER 13 LECTURE SLIDES CHAPTER 13 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

Bio 311 Learning Objectives

Bio 311 Learning Objectives Bio 311 Learning Objectives This document outlines the learning objectives for Biol 311 (Principles of Genetics). Biol 311 is part of the BioCore within the Department of Biological Sciences; therefore,

More information

Concepts: What are RFLPs and how do they act like genetic marker loci?

Concepts: What are RFLPs and how do they act like genetic marker loci? Restriction Fragment Length Polymorphisms (RFLPs) -1 Readings: Griffiths et al: 7th Edition: Ch. 12 pp. 384-386; Ch.13 pp404-407 8th Edition: pp. 364-366 Assigned Problems: 8th Ch. 11: 32, 34, 38-39 7th

More information

DO NOT OPEN UNTIL TOLD TO START

DO NOT OPEN UNTIL TOLD TO START DO NOT OPEN UNTIL TOLD TO START BIO 312, Section 1: Fall 2012 December 4 th, 2012 Exam 3 Name (print neatly) Signature 7 digit student ID INSTRUCTIONS: 1. There are 12 pages to the exam. Make sure you

More information

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Chapter 18: Regulation of Gene Expression 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Gene Regulation Gene regulation refers to all aspects of controlling

More information

Genomes summary. Bacterial genome sizes

Genomes summary. Bacterial genome sizes Genomes summary 1. >930 bacterial genomes sequenced. 2. Circular. Genes densely packed. 3. 2-10 Mbases, 470-7,000 genes 4. Genomes of >200 eukaryotes (45 higher ) sequenced. 5. Linear chromosomes 6. On

More information

7 Gene Isolation and Analysis of Multiple

7 Gene Isolation and Analysis of Multiple Genetic Techniques for Biological Research Corinne A. Michels Copyright q 2002 John Wiley & Sons, Ltd ISBNs: 0-471-89921-6 (Hardback); 0-470-84662-3 (Electronic) 7 Gene Isolation and Analysis of Multiple

More information

7.1 The lac Operon 7-1

7.1 The lac Operon 7-1 7.1 The lac Operon The lac operon was the first operon discovered It contains 3 genes coding for E. coli proteins that permit the bacteria to use the sugar lactose Galactoside permease (lacy) which transports

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

Answers to additional linkage problems.

Answers to additional linkage problems. Spring 2013 Biology 321 Answers to Assignment Set 8 Chapter 4 http://fire.biol.wwu.edu/trent/trent/iga_10e_sm_chapter_04.pdf Answers to additional linkage problems. Problem -1 In this cell, there two copies

More information

BIOLOGY. Chapter 16 GenesExpression

BIOLOGY. Chapter 16 GenesExpression BIOLOGY Chapter 16 GenesExpression CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 18 Gene Expression 2014 Pearson Education, Inc. Figure 16.1 Differential Gene Expression results

More information

Regulation of Gene Expression

Regulation of Gene Expression Slide 1 Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

GENE REGULATION IN PROKARYOTES

GENE REGULATION IN PROKARYOTES GENE REGULATION IN PROKARYOTES Prepared by Brenda Leady, University of Toledo Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gene regulation refers to

More information

Gene mutation and DNA polymorphism

Gene mutation and DNA polymorphism Gene mutation and DNA polymorphism Outline of this chapter Gene Mutation DNA Polymorphism Gene Mutation Definition Major Types Definition A gene mutation is a change in the nucleotide sequence that composes

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes 12 Regulation of Gene Expression in Eukaryotes WORKING WITH THE FIGURES 1. In Figure 12-4, certain mutations decrease the relative transcription rate of the -globin gene. Where are these mutations located,

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a GENETICS I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide 1. 2. 3. chains wrap around each other to form a Chains run in opposite direction known as Type of bond between the

More information

Q1 (1 point): Explain why a lettuce leaf wilts when it is placed in a concentrated salt solution.

Q1 (1 point): Explain why a lettuce leaf wilts when it is placed in a concentrated salt solution. Short questions 1 point per question. Q1 (1 point): Explain why a lettuce leaf wilts when it is placed in a concentrated salt solution. Answer: Water is sucked out of the cells by osmosis (this reduces

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol claus.schwechheimer@wzw.tum.de

More information

Regulation of gene expression. (Lehninger pg )

Regulation of gene expression. (Lehninger pg ) Regulation of gene expression (Lehninger pg. 1072-1085) Today s lecture Gene expression Constitutive, inducible, repressible genes Specificity factors, activators, repressors Negative and positive gene

More information

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce Genetic Variability Biology 102 Lecture 9: Genetic Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic hybrids Tendency

More information

GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s

GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s 2007-2008 Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP GO if they have

More information

Differential Gene Expression

Differential Gene Expression Biology 4361 Developmental Biology Differential Gene Expression September 28, 2006 Chromatin Structure ~140 bp ~60 bp Transcriptional Regulation: 1. Packing prevents access CH 3 2. Acetylation ( C O )

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Twitter: @PlantDevTUM, #genetiktum FB: Plant Development TUM Prof. Dr. Claus Schwechheimer

More information

Lecture 9 Controlling gene expression

Lecture 9 Controlling gene expression Lecture 9 Controlling gene expression BIOLOGY Campbell, Reece and Mitchell Chapter 18 334- (352-356) Every cell in your body contains the same number of genes approximately 35, 000 DNA is wound around

More information

four chromosomes ` four chromosomes correct markers (sister chromatids identical!)

four chromosomes ` four chromosomes correct markers (sister chromatids identical!) Name KEY total=107 pts 1. Genes G and H are on one chromosome; gene F is on another chromosome. Assume the organism is diploid and that there is no crossing over in this species. You are examining the

More information

Genetics Final Exam Summer 2012 VERSION B. Multiple Choice (50 pts. possible) IF you completed the in-class workshop put a CHECK MARK HERE --->

Genetics Final Exam Summer 2012 VERSION B. Multiple Choice (50 pts. possible) IF you completed the in-class workshop put a CHECK MARK HERE ---> enetics Final Exam Summer 2012 VERSION B Name Multiple hoice (50 pts. possible) Problems (50 points possible) Total (100 points possible) KEY IF you completed the in-class workshop put a HEK MRK HERE --->

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Summary 12 1 DNA RNA and Protein Synthesis Chromosomes and DNA Replication. Name Class Date

Summary 12 1 DNA RNA and Protein Synthesis Chromosomes and DNA Replication. Name Class Date Chapter 12 Summary DNA and RNA 12 1 DNA To understand genetics, biologists had to learn the chemical structure of the gene. Frederick Griffith first learned that some factor from dead, disease-causing

More information

DO NOT OPEN UNTIL TOLD TO START

DO NOT OPEN UNTIL TOLD TO START DO NOT OPEN UNTIL TOLD TO START BIO 312, Section 1: Fall 2012 September 25 th, 2012 Exam 1 Name (print neatly) Signature 7 digit student ID INSTRUCTIONS: 1. There are 14 pages to the exam. Make sure you

More information

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome Lectures 30 and 31 Genome analysis I. Genome analysis A. two general areas 1. structural 2. functional B. genome projects a status report 1. 1 st sequenced: several viral genomes 2. mitochondria and chloroplasts

More information

CHAPTER 18 LECTURE NOTES: CONTROL OF GENE EXPRESSION PART B: CONTROL IN EUKARYOTES

CHAPTER 18 LECTURE NOTES: CONTROL OF GENE EXPRESSION PART B: CONTROL IN EUKARYOTES CHAPTER 18 LECTURE NOTES: CONTROL OF GENE EXPRESSION PART B: CONTROL IN EUKARYOTES I. Introduction A. No operon structures in eukaryotes B. Regulation of gene expression is frequently tissue specific.

More information

(b) Draw a genetic linkage map showing map distances between met, thi, and pur.

(b) Draw a genetic linkage map showing map distances between met, thi, and pur. Botany 132 Final exam 2002 Name Please show all of your work in answering the questions below. 1. F- bacterial cells of genotype met - thi - pur - were conjugated with F+ cells with the genotype met +

More information

REGULATION OF GENE EXPRESSION

REGULATION OF GENE EXPRESSION REGULATION OF GENE EXPRESSION Each cell of a living organism contains thousands of genes. But all genes do not function at a time. Genes function according to requirements of the cell. Genes control the

More information

The Regulation of Bacterial Gene Expression

The Regulation of Bacterial Gene Expression The Regulation of Bacterial Gene Expression Constitutive genes are expressed at a fixed rate Other genes are expressed only as needed Inducible genes Repressible genes Catabolite repression Pre-transcriptional

More information

DNA Structure and Properties Basic Properties Predicting Melting Temperature. Dinesh Yadav

DNA Structure and Properties Basic Properties Predicting Melting Temperature. Dinesh Yadav DNA Structure and Properties Basic Properties Predicting Melting Temperature Dinesh Yadav Nucleic Acid Structure Question: Is this RNA or DNA? Molecules of Life, pp. 15 2 Nucleic Acid Bases Molecules of

More information

RNA and PROTEIN SYNTHESIS. Chapter 13

RNA and PROTEIN SYNTHESIS. Chapter 13 RNA and PROTEIN SYNTHESIS Chapter 13 DNA Double stranded Thymine Sugar is RNA Single stranded Uracil Sugar is Ribose Deoxyribose Types of RNA 1. Messenger RNA (mrna) Carries copies of instructions from

More information

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Multiple choice questions (numbers in brackets indicate the number of correct answers) 1 Multiple choice questions (numbers in brackets indicate the number of correct answers) February 1, 2013 1. Ribose is found in Nucleic acids Proteins Lipids RNA DNA (2) 2. Most RNA in cells is transfer

More information

Basic Concepts of Human Genetics

Basic Concepts of Human Genetics Basic Concepts of Human Genetics The genetic information of an individual is contained in 23 pairs of chromosomes. Every human cell contains the 23 pair of chromosomes. One pair is called sex chromosomes

More information

CHAPTERS , 17: Eukaryotic Genetics

CHAPTERS , 17: Eukaryotic Genetics CHAPTERS 14.1 14.6, 17: Eukaryotic Genetics 1. Review the levels of DNA packing within the eukaryote nucleus. Label each level. (A similar diagram is on pg 188 of your textbook.) 2. How do the coding regions

More information

Unit 6: Gene Activity and Biotechnology

Unit 6: Gene Activity and Biotechnology Chapter 16 Outline The Molecular Basis of Inheritance Level 1 Items students should be able to: 1. Recognize scientists and the experiments that lead to the understanding of the molecular basis of inheritance.

More information

Prokaryotic Transcription

Prokaryotic Transcription Prokaryotic Transcription Contents 1 The Lactose Intolerance of Bacteria 2 The Lac Operon 3 Lac Operon Simulation 4 LacZ as a reporter gene The Lactose Intolerance of Bacteria The standard growth kinetics

More information

I. Prokaryotic Gene Regulation. Figure 1: Operon. Operon:

I. Prokaryotic Gene Regulation. Figure 1: Operon. Operon: I. Prokaryotic Gene Regulation Figure 1: Operon Operon: a) Regulatory Elements consist of an Operator that serves as the on-off switch for the genes of the operon. Also contains a promoter for the Structural

More information

Genetics Lecture Notes Lectures 17 19

Genetics Lecture Notes Lectures 17 19 Genetics Lecture Notes 7.03 2005 Lectures 17 19 Lecture 17 Gene Regulation We are now going to look at ways that genetics can be used to study gene regulation. The issue is how cells adjust the expression

More information

Bio 121 Practice Exam 3

Bio 121 Practice Exam 3 The material covered on Exam 3 includes lecture since the last exam and text chapters 13-21. Be sure that you read chapter 19, which was not represented in the notes. 1. Which of the following is an enveloped

More information

CHAPTER 9 DNA Technologies

CHAPTER 9 DNA Technologies CHAPTER 9 DNA Technologies Recombinant DNA Artificially created DNA that combines sequences that do not occur together in the nature Basis of much of the modern molecular biology Molecular cloning of genes

More information

Differential Gene Expression

Differential Gene Expression Biology 4361 Developmental Biology Differential Gene Expression June 19, 2008 Differential Gene Expression Overview Chromatin structure Gene anatomy RNA processing and protein production Initiating transcription:

More information

AP Biology. Chapter 20. Biotechnology: DNA Technology & Genomics. Biotechnology. The BIG Questions. Evolution & breeding of food plants

AP Biology. Chapter 20. Biotechnology: DNA Technology & Genomics. Biotechnology. The BIG Questions. Evolution & breeding of food plants What do you notice about these phrases? radar racecar Madam I m Adam Able was I ere I saw Elba a man, a plan, a canal, Panama Was it a bar or a bat I saw? Chapter 20. Biotechnology: DNA Technology & enomics

More information

encodes a sigma factor to modify the recognition of the E.coli RNA polymerase (Several other answers would also be acceptable for each phage)

encodes a sigma factor to modify the recognition of the E.coli RNA polymerase (Several other answers would also be acceptable for each phage) Name Student ID# Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Final Exam 1.) Different bacteriophage utilize different mechanisms to ensure that their own genes (and not host s genes) are transcribed

More information

Confirming the Phenotypes of E. coli Strains

Confirming the Phenotypes of E. coli Strains Confirming the Phenotypes of E. coli Strains INTRODUCTION Before undertaking any experiments, we need to confirm that the phenotypes of the E. coli strains we intend to use in the planned experiments correspond

More information

Learning Objectives :

Learning Objectives : Learning Objectives : Understand the basic differences between genomic and cdna libraries Understand how genomic libraries are constructed Understand the purpose for having overlapping DNA fragments in

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

BC2004 Review Sheet for Lab Exercises 7-11 Spring Semester 2005

BC2004 Review Sheet for Lab Exercises 7-11 Spring Semester 2005 BC2004 Review Sheet for Lab Exercises 7-11 Spring Semester 2005 Lab Exercise 7 Drosophila crosses, three weeks Vocabulary: phenotype, genotype, gene, allele, locus (loci), sex chromosomes, autosomes, homozygous,

More information

Solutions to Quiz II

Solutions to Quiz II MIT Department of Biology 7.014 Introductory Biology, Spring 2005 Solutions to 7.014 Quiz II Class Average = 79 Median = 82 Grade Range % A 90-100 27 B 75-89 37 C 59 74 25 D 41 58 7 F 0 40 2 Question 1

More information

GENE EXPRESSION AT THE MOLECULAR LEVEL. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

GENE EXPRESSION AT THE MOLECULAR LEVEL. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. GENE EXPRESSION AT THE MOLECULAR LEVEL Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gene expression Gene function at the level of traits Gene function

More information

Biology Lecture 2 Genes

Biology Lecture 2 Genes Genes Definitions o Gene: DNA that codes for a single polypeptide/mrna/rrna/trna o Euchromatin: region of DNA containing genes being actively transcribed o Heterochromatin: region of DNA containing genes

More information

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping Sept 2. Structure and Organization of Genomes Today: Genetic and Physical Mapping Assignments: Gibson & Muse, pp.4-10 Brown, pp. 126-160 Olson et al., Science 245: 1434 New homework:due, before class,

More information

EUKARYOTIC REGULATION C H A P T E R 1 3

EUKARYOTIC REGULATION C H A P T E R 1 3 EUKARYOTIC REGULATION C H A P T E R 1 3 EUKARYOTIC REGULATION Every cell in an organism contains a complete set of DNA. But it doesn t use all of the DNA it receives Each cell chooses different DNA sequences

More information

Problem set questions from Exam 1 Unit Basic Genetic Tests, Setting up and Analyzing Crosses, and Genetic Mapping

Problem set questions from Exam 1 Unit Basic Genetic Tests, Setting up and Analyzing Crosses, and Genetic Mapping Problem set questions from Exam 1 Unit Basic Genetic Tests, Setting up and Analyzing Crosses, and Genetic Mapping Basic genetic tests for complementation and/or dominance 1. You have isolated 20 new mutant

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS GENERAL GENETICS BIOL 2120 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Revised Spring 2017 Catalog Course Description Prerequisites Corequisites

More information

Rapid Learning Center Presents. Teach Yourself AP Biology in 24 Hours

Rapid Learning Center Presents. Teach Yourself AP Biology in 24 Hours Rapid Learning Center Chemistry :: Biology :: Physics :: Math Rapid Learning Center Presents Teach Yourself AP Biology in 24 Hours 1/35 *AP is a registered trademark of the College Board, which does not

More information

1a. What is the ratio of feathered to unfeathered shanks in the offspring of the above cross?

1a. What is the ratio of feathered to unfeathered shanks in the offspring of the above cross? Problem Set 5 answers 1. Whether or not the shanks of chickens contains feathers is due to two independently assorting genes. Individuals have unfeathered shanks when they are homozygous for recessive

More information

1. DNA replication. (a) Why is DNA replication an essential process?

1. DNA replication. (a) Why is DNA replication an essential process? ame Section 7.014 Problem Set 3 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68120 by 5:00pm on Friday

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 Warm Up Exercise Test Corrections Make sure to indicate your new answer and provide an explanation for why this is the correct answer. Do this with a red pen in the margins of your

More information

2054, Chap. 14, page 1

2054, Chap. 14, page 1 2054, Chap. 14, page 1 I. Recombinant DNA technology (Chapter 14) A. recombinant DNA technology = collection of methods used to perform genetic engineering 1. genetic engineering = deliberate modification

More information

Exam 1 Answers Biology 210 Sept. 20, 2006

Exam 1 Answers Biology 210 Sept. 20, 2006 Exam Answers Biology 20 Sept. 20, 2006 Name: Section:. (5 points) Circle the answer that gives the maximum number of different alleles that might exist for any one locus in a normal mammalian cell. A.

More information

DNA Structure and Analysis. Chapter 4: Background

DNA Structure and Analysis. Chapter 4: Background DNA Structure and Analysis Chapter 4: Background Molecular Biology Three main disciplines of biotechnology Biochemistry Genetics Molecular Biology # Biotechnology: A Laboratory Skills Course explorer.bio-rad.com

More information

Using mutants to clone genes

Using mutants to clone genes Using mutants to clone genes Objectives 1. What is positional cloning? 2. What is insertional tagging? 3. How can one confirm that the gene cloned is the same one that is mutated to give the phenotype

More information

Today s lecture: Types of mutations and their impact on protein function

Today s lecture: Types of mutations and their impact on protein function Today s lecture: Types of mutations and their impact on protein function Mutations can be classified by their effect on the DNA sequence OR the encoded protein 1 From my Lecture 4 (10/1): Classification

More information

8/21/2014. From Gene to Protein

8/21/2014. From Gene to Protein From Gene to Protein Chapter 17 Objectives Describe the contributions made by Garrod, Beadle, and Tatum to our understanding of the relationship between genes and enzymes Briefly explain how information

More information

Lecture 25 (11/15/17)

Lecture 25 (11/15/17) Lecture 25 (11/15/17) Reading: Ch9; 328-332 Ch25; 990-995, 1005-1012 Problems: Ch9 (study-guide: applying); 1,2 Ch9 (study-guide: facts); 7,8 Ch25 (text); 1-3,5-7,9,10,13-15 Ch25 (study-guide: applying);

More information

Microbiology 微生物学 Spring-Summer

Microbiology 微生物学 Spring-Summer Microbiology 微生物学 2017 Spring-Summer Relevant Information and Resources Course slides can be found at http://mypage.zju.edu.cn/haichun 教学工作 Course-related questions will be answered through emails. Textbook:

More information

Basic Concepts of Human Genetics

Basic Concepts of Human Genetics Basic oncepts of Human enetics The genetic information of an individual is contained in 23 pairs of chromosomes. Every human cell contains the 23 pair of chromosomes. ne pair is called sex chromosomes

More information

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr.

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. MIT Department of Biology 7.01: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. Claudette Gardel iv) Would Xba I be useful for cloning? Why or why not?

More information

Biological information flow

Biological information flow BCMB 3100 Chapters 36-38 Transcription & RNA Processing Biological information flow Definition of gene RNA Polymerase Gene coding vs template strand Promoter Transcription in E. coli Transcription factors

More information

The information provided below may be useful in answering some questions.

The information provided below may be useful in answering some questions. Molecular Exam 1 More Tutorial at www.dumblittledoctor.com The information provided below may be useful in answering some questions. INFORMATION ON COMPONENTS OF RIBOSOMES I. Prokaryotes (e.g. E. coli)

More information

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology Table of Contents Chapter: Heredity Section 1: Genetics Section 2: Genetics Since Mendel Section 3: Biotechnology 1 Genetics Inheriting Traits Eye color, nose shape, and many other physical features are

More information

Regulatory Dynamics in Engineered Gene Networks

Regulatory Dynamics in Engineered Gene Networks Regulatory Dynamics in Engineered Gene Networks The Physico-chemical Foundation of Transcriptional Regulation with Applications to Systems Biology Mads Kærn Boston University Center for BioDynamics Center

More information

14 Gene Expression: From Gene to Protein

14 Gene Expression: From Gene to Protein CMPBELL BIOLOY IN FOCS rry Cain Wasserman Minorsky Jackson Reece 14 ene Expression: From ene to Protein Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Flow of enetic Information

More information

MOLECULAR BASIS OF INHERITANCE

MOLECULAR BASIS OF INHERITANCE CHAPTER 6 MOLECULAR BASIS OF INHERITANCE POINTS TO REMEMBER Anticodon : A sequence of three nitrogenous bases on trna which is complementary to the codon on mrna. Transformation : The phenomenon by which

More information

Biological information flow

Biological information flow BCMB 3100 Chapters 36-38 Transcription & RNA Processing Definition of gene RNA Polymerase Gene coding vs template strand Promoter Transcription in E. coli Transcription factors mrna processing Biological

More information

Human disease genes summary. Some examples of single-gene diseases

Human disease genes summary. Some examples of single-gene diseases Human disease genes summary 1. Goals: discover the basis for disease, understand key processes, and develop diagnostics and cures. 2. Finding human disease genes -- OMIM 3. Sickle Cell Anemia 4. Inheritance

More information

7.013 Practice Quiz

7.013 Practice Quiz MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. Claudette Gardel 7.013 Practice Quiz 2 2004 1 Question 1 A. The primer

More information

7.012 Final Exam

7.012 Final Exam 7.012 Final Exam 2006 You have 180 minutes to complete this exam. There are 19 pages including this cover page, the AMINO AID page, and the GENETI ODE page at the end of the exam. Please write your name

More information

From Gene to Protein. Chapter 17. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

From Gene to Protein. Chapter 17. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 17 From Gene to Protein PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Trasposable elements: Uses of P elements Problem set B at the end

Trasposable elements: Uses of P elements Problem set B at the end Trasposable elements: Uses of P elements Problem set B at the end P-elements have revolutionized the way Drosophila geneticists conduct their research. Here, we will discuss just a few of the approaches

More information

7.013 Problem Set 3 FRIDAY October 8th, 2004

7.013 Problem Set 3 FRIDAY October 8th, 2004 MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert. Weinberg, Dr. laudette ardel Name: T: 7.013 Problem Set 3 FRIDY October 8th, 2004 Problem

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

Problem Set 2B Name and Lab Section:

Problem Set 2B Name and Lab Section: Problem Set 2B 9-26-06 Name and Lab Section: 1. Define each of the following rearrangements (mutations) (use one phrase or sentence for each). Then describe what kind of chromosomal structure you might

More information

Regents Biology REVIEW 5: GENETICS

Regents Biology REVIEW 5: GENETICS Period Date REVIEW 5: GENETICS 1. Chromosomes: a. Humans have chromosomes, or homologous pairs. Homologous: b. Chromosome pairs carry genes for the same traits. Most organisms have two copies of the gene

More information

DNA RNA PROTEIN SYNTHESIS -NOTES-

DNA RNA PROTEIN SYNTHESIS -NOTES- DNA RNA PROTEIN SYNTHESIS -NOTES- THE COMPONENTS AND STRUCTURE OF DNA DNA is made up of units called nucleotides. Nucleotides are made up of three basic components:, called deoxyribose in DNA In DNA, there

More information

Bioinformatics of Transcriptional Regulation

Bioinformatics of Transcriptional Regulation Bioinformatics of Transcriptional Regulation Carl Herrmann IPMB & DKFZ c.herrmann@dkfz.de Wechselwirkung von Maßnahmen und Auswirkungen Einflussmöglichkeiten in einem Dialog From genes to active compounds

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Control of Eukaryotic Genes 2007-2008 The BIG Questions n How are genes turned on & off in eukaryotes? n How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016 CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016 Topics Genetic variation Population structure Linkage disequilibrium Natural disease variants Genome Wide Association Studies Gene

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs 1. Helix-turn-helix proteins 2. Zinc finger proteins 3. Leucine zipper proteins 4. Beta-scaffold factors 5. Others λ-repressor AND CRO

More information