LECTURE TOPICS 3) DNA SEQUENCING, RNA SEQUENCING, DNA SYNTHESIS 5) RECOMBINANT DNA CONSTRUCTION AND GENE CLONING

Size: px
Start display at page:

Download "LECTURE TOPICS 3) DNA SEQUENCING, RNA SEQUENCING, DNA SYNTHESIS 5) RECOMBINANT DNA CONSTRUCTION AND GENE CLONING"

Transcription

1 Page 1 of 25 Chapter 5 Notes Biochemistry 461 Fall 2010 CHAPTER 5, EXPLORING GENES: LECTURE TOPICS 1) RESTRICTION ENZYMES 2) GEL ELECTROPHORESIS OF DNA 3) DNA SEQUENCING, RNA SEQUENCING, DNA SYNTHESIS 4) POLYMERASE CHAIN REACTION (PCR) 5) RECOMBINANT DNA CONSTRUCTION AND GENE CLONING 6) DNA CLONING VECTORS 7) GENE LIBRARIES: MAKING AND SCREENING THEM 8) CHROMOSOME MAPPING 9) EXPRESSION OF CLONED GENES 10) ENGINEERING NOVEL PROTEINS

2 Page 2 of 25 Recombinant DNA technology (started in late 1970's)! An incredibly powerful set of tool for gene manipulation.! Methods associated with this "technology" make genetic engineering a reality.! DNA (genes), RNA, and protein structure and function can be altered by design for beneficial (or detrimental -biological warfare/terrorism?) results. KEY TOOLS and METHODS OF GENE EXPLORATION! ENZYMES to cut, join and replicate DNA in test tubes (in vitro) a) restriction enzymes are DNA cutters b) DNA ligases are DNA joiners c) DNA replication requires DNA polymerases! GEL ELECTROPHORESIS to separate and isolate specific DNAs! BLOTTING METHODS based on hybridization (BASE-PAIRING) of complementary DNA and/or RNA! SOLID PHASE methods to sequence and synthesize DNA! POLYMERASE CHAIN REACTION for gene detection and amplification.

3 Page 3 of 25 RESTRICTION ENZYMES (ENDONUCLEASES)! DNA scissors - hundreds of restriction enzymes are known! Recognition sequences - different lengths (often 4-8bp), palindromic (2 -fold rotational axis of symmetry), specific cleavage sites (Fig. 6.1)! They can leave overhanging ends or blunt ends! Named (ex: HindIII) for source bacterial strain: H = Haemophilus in = influenzae d = strain d III = third one identified! Number of cuts in a specific DNA ranges from few (if long recognition site) to many (short or ambiguous recognition site)! patterns of fragments are diagnostic of a given DNA species and physical maps of whole chromosomes can be made. (Fig.6.-2)

4 Page 4 of 25 GEL ELECTROPHORESIS OF DNA! Agarose gels separate DNA restriction fragments! Visualize DNA by staining or autoradiography! even differences of one base pair can be detected on gels.! Hybridization - Base-pairing of DNA-DNA, DNA-RNA: Complementary singlestranded DNA and RNA molecules form base-paired structures even if only 2 or 3 bases can pair - like at ends of restriction fragments! [IMPORTANT: Hybridization (DNA-DNA, DNA-RNA) is almost always used in one or more ways to to detect particular DNA or RNA sequences and to construct new combinations of DNA fragments.] NUCLEIC ACID BLOTTING AND HYBRIDIZATION: DNA bands (and patterns) on gels

5 can be transferred to nitrocellulose filters (Southern blotting) and identified by hybridization with a specific gene probe. (Fig.6.3) Page 5 of 25! Southern (DNA), Northern (RNA), and Western (protein) blotting methods are all powerful probes of gene function.! Rest riction fragment length polymorphism (RFLP) gel analysis is a powerful diagnostic tool (ex. sickle-cell anemia genetic typing) MstI RFLP for Sickle-Cell Mutation Detection [Fig 7-52] Normal Sickle cell

6 Page 6 of 25 LANDMARK DNA SEQUENCES COMPLETED trna - (1964) (, complicated method) 5386 bases X174 DNA (1977) 155,844 bases tobacco chloroplast DNA (1986) 1.8 million bases H. influenzae (1995) 3 million bases E. coli (1997) bases human (2000!!) DNA SEQUENCING: ALL METHODS REQUIRE THE FOLLOWING*! reactions specific for each base! controlled random reactions! equimolar collection of reaction products (same frequency of stopping each time the same base occurs) DNA SEQUENCING BY CONTROLLED RANDOM CHAIN TERMINATION OF DNA SYNTHESIS METHOD (SANGER DIDEOXY METHOD) (Fig.6.4)! Use a template-primer complex, a DNA polymerase, dntps, and one 2'-3' dideoxynucleoside triphosphate (one for each base) in each of four reactions.! DNA synthesis occurs (specific for each base) until a dideoxy nucleoside phosphate is inserted into the nascent DNA - then the reaction stops! (no free 3'-OH group to attack the incoming dntp substrate).! Reaction is carried out under conditions (adjust ratio of dntp: ddntp) to give equal representation and distribution of products.! Run reaction products on gel bases can be easily read on one gel.

7 Strategy for Chain termination DNA sequencing: (Fig.6.4) Page 7 of 25

8 Page 8 of 25 Current methods for DNA/RNA sequence determination:! Use fluorescent-labelled nucleotides (makes each base reaction mix flouresce a different color); mix all 4 reaction products, and detect all with automated fluorometers to detect DNA reaction products and analyze by computer immediately.(fig. 6.5) [Can sequence whole genomes (ex. Fig bacterial)! Can also sequence DNA by detecting hybridization signals on arrays of short DNA sequences bound to microchips.! RNA SEQUENCING - RNA can be sequenced directly, but now it is done by dideoxy method, using reverse transcriptase with a synthetic DNA primer.

9 CHEMICAL SYNTHESIS OF DNA (SOLID PHASE, AUTOMATED METHODS) Page 9 of 25! oligodeoxynucleotide chain (short DNA, parts of genes for probes and primers)! aid DNA/RNA sequencing, cloning, and gene probing by hybridization! easy to make DNA 100 nucleotides long (18-20 used most often)! Chemically synthesized DNAs are key to protein engineering by site-directed mutagenesis.! Start with blocked nucleotide linked to a solid support (glass bead).! protected nucleotides added stepwise (but 3' to 5' - reverse of DNA polymerase)! Stepwise linking of activated monomers (deoxyribonucleoside 3'- phosphoramidites) that are blocked at 5'-P (and have protected amino groups) Chemical synthesis of DNA: (Fig.6.7)

10 Page 10 of 25 POLYMERASE CHAIN REACTION (PCR) Discovered in 1984! [K.B. Mullis,Scientific American,1990, 262:56-65)]! Incredibly powerful method to amplify (synthesize) DNA starting with as little as one copy of a DNA molecule. (Figs.6.8 and 6.9)! PCR CONCEPT (Fig.6.8): Two oligonucleotides spanning a gene of interest and on opposite strands are used to prime multiple cycles of DNA synthesis catalyzed by a heat stable DNA polymerase (ex., Taq polymerase from a thermophilic bacterium). Ex:PCR starting with one of 2 strands of DNA. **See Fig 6.9 for drawing of three cycles of PCR

11 Page 11 of 25! PCR RESULT: In replication cycles, enough DNA is synthesized to clone or to sequencedirectly.

12 Page 12 of 25! PCR USES: Forensics, diagnosis of genetic defects in utero, sequencing DNA from fossils, detecting small amounts of bacteria (ex; anthrax), etc.! FORENSICS EXAMPLE: Bloodstain analysis of victim (V) and clothing of defendant (D - apparently guilty!). (Fig.6.10)

13 Page 13 of 25 CONSTRUCTION, CLONING AND EXPRESSION OF DNA: Novel combinations of genes can be constructed, cloned, amplified and expressed in foreign environments. KEY STEPS/PROCEDURES/TOOLS [Fig.6.11, 4 th Ed.]! Construct recombinant molecule (link DNA insert with a vector).! Amplify and clone DNA - Introduce DNA into host cells as naked DNA or as DNA incorporated into virus particle. DNA must be replicated autonomously in a host cell.! Selection by antibiotic resistance, gene probing, antibody reaction

14 CONSTRUCT RECOMBINANT MOLECULE - link a DNA insert with a vector. (Figs.6.11,12) Page 14 of 25 CUT AND JOIN DIFFERENT DNA MOLECULES: Restriction enzymes and DNA ligase.! Restriction enzymes that give cohesive ends (short complementary ends that can base pair) cut unique cloning sites in vectors.[ex: Eco RI (Fig.6.11)] The vector and insert are covalently linked with DNA ligase.! Restriction enzymes that give blunt ends need linkers added by T4 DNA ligase to get cohesive ends for cloning. [Ex: Eco RI linker (Fig.6.12)]

15 Page 15 of 25 Amplify and clone DNA: Introduce DNA into host cells as naked DNA [See illustration page 13] or as DNA incorporated into virus particle. DNA must be replicated autonomously in a host cell. Selection of recombinant DNA-containing host cells - antibiotic resistance, gene probing, antibody reactions, etc. SOME CLONING VECTORS (autonomously replicating) Plasmids: Insertional inactivation of antibiotic resistance often used. Use for small DNAs. Lambda phages (Larger DNA pieces tha plasmids. Especially useful for libraries of cdna or eucaryotic genomic DNA) YACs and BACs (yeast and bacterial artificial chromosomes) - for long DNA, especially big pieces of chromosomes.

16 Page 16 of 25 CLONING VECTORS! Plasmids (accessory chromosomes which replicate autonomously) are excellent vectors for cloning DNA of 2-6 kb in E. coli. Antibiotic resistances are used for selection of recombinant plasmids. Insertional inactivation signals the presence of a DNA insert in an antibiotic resistance gene. (See page 15 and Fig.6.13)! Special lambda ( ) phages (they work a lot like T2 bateriophage) used to clone large pieces (10-20kb) of DNA between each end of lambda DNA. Especially suitable for cloning of libraries of cdna or eucaryotic genomic DNA. (Fig.6.14,15) lambda ( ) phage lifecycle Cloning DNA between each end of lambda ( ) DNA

17 ! Yeast artificial chromosomes (YACs) - Can clone large pieces of DNA (100,000 to a million base pairs). (Fig.6.21) Page 17 of 25 GENE LIBRARIES: What are they?? Genomic library. Made from all restriction fragments of a cell's DNA. A collection of cloned sequences which represents a whole genome.! Genomic library vectors: Bacteriophage lambda, YACs and BACs cdna library. Made from mix of all of a cell s mrnas. Use reverse transcriptase to get DNA. A cdna library is a mix of DNAs complementary to ALL genes that are being expressed as mrna s.! CDNA library vectors: lambda phage, plasmids

18 Page 18 of 25 Constructing a genomic library in bacteriophage. Made from all restriction fragments of a cell's DNA. A collection of cloned DNA sequences which represents a whole genome. Constructing a cdna library from a cell s mrnas. Use reverse transcriptase to get DNA. A cdna library is a mix of DNAs that represents all of the cell s mrnas.

19 SCREENING GENE LIBRARIES: searching for a needle in phagestack!! screen 500,000 clones for a specific sequence in a genomic library! Easier for abundant mrna molecules in a cdna library.! Hybridization screening with gene probe! Synthetic DNA probes (predict sequence by reverse translation of protein sequence to a DNA sequence)! Immunochemical (antibody) screening of an expression library! Chromosome walking to connect long pieces fo chromosomes! Can map whole chromosomes - use lambda or YACs for cloning Page 19 of 25 Screening for a specific gene with a radioactive gene probe. (Or antibodies or fluorescence) Screening a cdna library.

20 Page 20 of 25 REVERSE TRANSLATION: Make a gene probe from a known protein sequence.! Predict DNA base sequence from amino acid sequence, using Genetic Code! Synthesize DNA probes from the predicted gene sequences! This example (Fig.6.20) requires a mix of 256 different oligonucleotides to guarantee a perfect match. (These mixtures really work!!) CHROMOSOME WALKING: Use to map/explore long regions of chromosomes by iterative hybridization, subcloning, and rescreening.! DNA fragments near ends of one clone are used to identify longer clones which contain their sequence and adjacent sequences extending past the original DNAs ends. (Fig.6.22)

21 Page 21 of 25 EXPRESSION OF CLONED GENES DNA vector delivery to cells.! calcium phosphate precipitated DNA! microinjection! virus vectors(sv40), vaccinia, retroviruses (ex: Maloney murine leukemia virus)! GENE GUN" (microprojectiles coated with DNA)! liposomes! electroporation Expression vectors:! Designed to give efficient transcription and translation by cloning a gene near a strong promoter.! The gene must be cloned in the correct reading frame with a properly spaced ribosome binding site.! Immunochemical screening will identify clones, if an antibody to the cloned protein is available. SOME EXAMPLES! Proinsulin cdna was cloned in a plasmid and the proinsulin was made by E. coli cells. This is a standard method to express cloded genes as proteins, and is the basis for much of the biotechnology industry. (Fig.6.23)

22 Page 22 of 25! Genetically engineered giant mice result from injection of somatotropin gene into male pronucleus of a fertilized mouse egg. Cd ++ controls expression of this gene by its placement under control of the metallothionein gene. [Fig. 6-32]! Plant Genetic Engineering. Genes are cloned into the Ti-plasmid of Agrobacterium tumefaciens. Part of this plasmid (the T-DNA) is incorporated into plant chromosomes after Agrobacterium infection. DNA which is cloned between the right and left ends of the T-DNA can be expressed by "transformed" plant cells after integration in a chromosome. (Figs.6.33,34)

23 Page 23 of 25 Ti-plasmid of Agrobacterium tumefaciens Gene disruption/replacement. Genes can be inactivated ( knockout mutant) or replaced by a modified or completely new gene by homologous recombination

24 Page 24 of 25 ENGINEERING NOVEL PROTEINS:! Modify DNA coding information to get protein with different amino acid sequence.! These are really novel combinations which would not occur in nature.! Solid phase synthesis of whole genes of any type is now possible. Site-specific mutagenesis - Hybridize synthetic oligonucleotide with a mismatched base (Fig.6.36) Cassette Mutagenesis: (Fig.6.37)! Use restriction fragments to combine parts of genes coding for different domains of different proteins.! introduce a DNA fragment with one or more changes from normal gene.

25 Page 25 of 25 SUMMARY: Recombinant DNA technology Roadmap! Can start with a DNA sequence and ultimately isolate an unknown protein. Also can start with a known protein and isolate its gene. (Fig. 6-38) CURRENT AND FUTURE APPLICATIONS OF RECOMBINANT DNA TECHNOLOGY! Chromosome mapping and sequencing! Discovery of molecular bases of development, evolutionary relationships! New proteins with new functions (or old proteins with new functions!)! human hormone synthesis in bacteria! antiviral agents! AIDS vaccine development! new pharmacological agents (proteins, RNA, DNA)! antisense RNA therapy! medical diagnostic reagents (gene probes) for detection of genetic diseases, infections and cancers! gene delivery with disarmed viruses to alleviate diseases caused by known gene defects.! agricultural revolution with animals having altered traits, more nutritious plants, heat/drought resistant crops, etc.! forensics - molecular detectives

2054, Chap. 14, page 1

2054, Chap. 14, page 1 2054, Chap. 14, page 1 I. Recombinant DNA technology (Chapter 14) A. recombinant DNA technology = collection of methods used to perform genetic engineering 1. genetic engineering = deliberate modification

More information

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology?

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Lecture Four. Molecular Approaches I: Nucleic Acids

Lecture Four. Molecular Approaches I: Nucleic Acids Lecture Four. Molecular Approaches I: Nucleic Acids I. Recombinant DNA and Gene Cloning Recombinant DNA is DNA that has been created artificially. DNA from two or more sources is incorporated into a single

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Multiple choice questions (numbers in brackets indicate the number of correct answers) 1 Multiple choice questions (numbers in brackets indicate the number of correct answers) February 1, 2013 1. Ribose is found in Nucleic acids Proteins Lipids RNA DNA (2) 2. Most RNA in cells is transfer

More information

Genetic Engineering & Recombinant DNA

Genetic Engineering & Recombinant DNA Genetic Engineering & Recombinant DNA Chapter 10 Copyright The McGraw-Hill Companies, Inc) Permission required for reproduction or display. Applications of Genetic Engineering Basic science vs. Applied

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Lecture 5 Notes: Genetic manipulation & Molecular Biology techniques Broad Overview of: Enzymatic tools in Molecular Biology Gel electrophoresis Restriction mapping DNA

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

CHAPTER 9 DNA Technologies

CHAPTER 9 DNA Technologies CHAPTER 9 DNA Technologies Recombinant DNA Artificially created DNA that combines sequences that do not occur together in the nature Basis of much of the modern molecular biology Molecular cloning of genes

More information

M Keramatipour 2. M Keramatipour 1. M Keramatipour 4. M Keramatipour 3. M Keramatipour 5. M Keramatipour

M Keramatipour 2. M Keramatipour 1. M Keramatipour 4. M Keramatipour 3. M Keramatipour 5. M Keramatipour Molecular Cloning Methods Mohammad Keramatipour MD, PhD keramatipour@tums.ac.ir Outline DNA recombinant technology DNA cloning co Cell based PCR PCR-based Some application of DNA cloning Genomic libraries

More information

CHAPTER 08: RECOMBINANT DNA TECHNOLOGY Pearson Education, Inc.

CHAPTER 08: RECOMBINANT DNA TECHNOLOGY Pearson Education, Inc. CHAPTER 08: RECOMBINANT DNA TECHNOLOGY The Role of Recombinant DNA Technology in Biotechnology Biotechnology the use of microorganisms to make practical products Recombinant DNA technology Intentionally

More information

DNA Technology. B. Using Bacteria to Clone Genes: Overview:

DNA Technology. B. Using Bacteria to Clone Genes: Overview: DNA Technology A. Basic Vocabulary: is DNA from 2 different sources that is combined. is the direct manipulation of genes for practical purposes. literally means or in a test tube or flask. is the manipulation

More information

Learning Objectives :

Learning Objectives : Learning Objectives : Understand the basic differences between genomic and cdna libraries Understand how genomic libraries are constructed Understand the purpose for having overlapping DNA fragments in

More information

Chapter 8 Recombinant DNA Technology. 10/1/ MDufilho

Chapter 8 Recombinant DNA Technology. 10/1/ MDufilho Chapter 8 Recombinant DNA Technology 10/1/2017 1 MDufilho The Role of Recombinant DNA Technology in Biotechnology Biotechnology? Recombinant deoxyribonucleic acid (DNA) technology Intentionally modifying

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY.

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY. BIOTECHNOLOGY Biotechnology can be defined as the use of micro-organisms, plant or animal cells or their components or enzymes from organisms to produce products and processes (services) useful to human

More information

Lecture 25 (11/15/17)

Lecture 25 (11/15/17) Lecture 25 (11/15/17) Reading: Ch9; 328-332 Ch25; 990-995, 1005-1012 Problems: Ch9 (study-guide: applying); 1,2 Ch9 (study-guide: facts); 7,8 Ch25 (text); 1-3,5-7,9,10,13-15 Ch25 (study-guide: applying);

More information

Contents... vii. List of Figures... xii. List of Tables... xiv. Abbreviatons... xv. Summary... xvii. 1. Introduction In vitro evolution...

Contents... vii. List of Figures... xii. List of Tables... xiv. Abbreviatons... xv. Summary... xvii. 1. Introduction In vitro evolution... vii Contents Contents... vii List of Figures... xii List of Tables... xiv Abbreviatons... xv Summary... xvii 1. Introduction...1 1.1 In vitro evolution... 1 1.2 Phage Display Technology... 3 1.3 Cell surface

More information

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg DNA Technology Asilomar 1973. Singer, Zinder, Brenner, Berg DNA Technology The following are some of the most important molecular methods we will be using in this course. They will be used, among other

More information

1. A brief overview of sequencing biochemistry

1. A brief overview of sequencing biochemistry Supplementary reading materials on Genome sequencing (optional) The materials are from Mark Blaxter s lecture notes on Sequencing strategies and Primary Analysis 1. A brief overview of sequencing biochemistry

More information

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Lesson Overview 14.3 Studying the Human Genome Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Nucleic acids are chemically different from other macromolecules

More information

Chapter 20: Biotechnology

Chapter 20: Biotechnology Name Period The AP Biology exam has reached into this chapter for essay questions on a regular basis over the past 15 years. Student responses show that biotechnology is a difficult topic. This chapter

More information

Recombinant DNA Technology

Recombinant DNA Technology History of recombinant DNA technology Recombinant DNA Technology (DNA cloning) Majid Mojarrad Recombinant DNA technology is one of the recent advances in biotechnology, which was developed by two scientists

More information

Biotechnology. Chapter 13

Biotechnology. Chapter 13 Biotechnology Chapter 13 Genetic Changes Humans have been changing the genetics of other species for thousands of years Artificial selection of plants and animals Tomato plants look nothing like their

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome. Key Terms Chapter 32: Genetic Engineering Cloning describes propagation of a DNA sequence by incorporating it into a hybrid construct that can be replicated in a host cell. A cloning vector is a plasmid

More information

Chapter 17. PCR the polymerase chain reaction and its many uses. Prepared by Woojoo Choi

Chapter 17. PCR the polymerase chain reaction and its many uses. Prepared by Woojoo Choi Chapter 17. PCR the polymerase chain reaction and its many uses Prepared by Woojoo Choi Polymerase chain reaction 1) Polymerase chain reaction (PCR): artificial amplification of a DNA sequence by repeated

More information

Biotechnology and Genomics in Public Health. Sharon S. Krag, PhD Johns Hopkins University

Biotechnology and Genomics in Public Health. Sharon S. Krag, PhD Johns Hopkins University This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Practice Test #3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test #3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test #3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An application of using DNA technology to help environmental scientists would be _. a.

More information

Gene Expression Technology

Gene Expression Technology Gene Expression Technology Bing Zhang Department of Biomedical Informatics Vanderbilt University bing.zhang@vanderbilt.edu Gene expression Gene expression is the process by which information from a gene

More information

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329.

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329. Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, 240-245; 286-87; 330 PCR, 270-274; 329. Take Home Lesson(s) from Lecture 2: 1. DNA is a double helix of complementary

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

Bacterial DNA replication

Bacterial DNA replication Bacterial DNA replication Summary: What problems do these proteins solve? Tyr OH attacks PO4 and forms a covalent intermediate Structural changes in the protein open the gap by 20 Å! 1 Summary: What problems

More information

Molecular Biology: DNA sequencing

Molecular Biology: DNA sequencing Molecular Biology: DNA sequencing Author: Prof Marinda Oosthuizen Licensed under a Creative Commons Attribution license. SEQUENCING OF LARGE TEMPLATES As we have seen, we can obtain up to 800 nucleotides

More information

AP Biology. Chapter 20. Biotechnology: DNA Technology & Genomics. Biotechnology. The BIG Questions. Evolution & breeding of food plants

AP Biology. Chapter 20. Biotechnology: DNA Technology & Genomics. Biotechnology. The BIG Questions. Evolution & breeding of food plants What do you notice about these phrases? radar racecar Madam I m Adam Able was I ere I saw Elba a man, a plan, a canal, Panama Was it a bar or a bat I saw? Chapter 20. Biotechnology: DNA Technology & enomics

More information

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms No. 1 of 10 1. The mouse gene knockout is based on. (A) Homologous recombination (B) Site-specific recombination

More information

Chapter 15 Gene Technologies and Human Applications

Chapter 15 Gene Technologies and Human Applications Chapter Outline Chapter 15 Gene Technologies and Human Applications Section 1: The Human Genome KEY IDEAS > Why is the Human Genome Project so important? > How do genomics and gene technologies affect

More information

3 Designing Primers for Site-Directed Mutagenesis

3 Designing Primers for Site-Directed Mutagenesis 3 Designing Primers for Site-Directed Mutagenesis 3.1 Learning Objectives During the next two labs you will learn the basics of site-directed mutagenesis: you will design primers for the mutants you designed

More information

DNA & Protein Synthesis UNIT D & E

DNA & Protein Synthesis UNIT D & E DNA & Protein Synthesis UNIT D & E How this Unit is broken down Chapter 10.1 10.3 The structure of the genetic material Chapter 10.4 & 10.5 DNA replication Chapter 10.6 10.15 The flow of genetic information

More information

Synthetic Biology for

Synthetic Biology for Synthetic Biology for Plasmids and DNA Digestion Plasmids Plasmids are small DNA molecules that are separate from chromosomal DNA They are most commonly found as double stranded, circular DNA Typical plasmids

More information

7 Gene Isolation and Analysis of Multiple

7 Gene Isolation and Analysis of Multiple Genetic Techniques for Biological Research Corinne A. Michels Copyright q 2002 John Wiley & Sons, Ltd ISBNs: 0-471-89921-6 (Hardback); 0-470-84662-3 (Electronic) 7 Gene Isolation and Analysis of Multiple

More information

DNA Structure and Analysis. Chapter 4: Background

DNA Structure and Analysis. Chapter 4: Background DNA Structure and Analysis Chapter 4: Background Molecular Biology Three main disciplines of biotechnology Biochemistry Genetics Molecular Biology # Biotechnology: A Laboratory Skills Course explorer.bio-rad.com

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still

More information

Lecture 18. PCR Technology. Growing PCR Industry

Lecture 18. PCR Technology. Growing PCR Industry Lecture 18 PCR Technology Growing PCR Industry Basic PCR, Cloning of PCR product, RT-PCR, RACE, Quantitative PCR, Multiplex PCR, Hot start PCR, Touchdown PCR,PCR sequencing.. How PCR started The DNA duplex

More information

STRUCTURE AND DIAGNOSTIC APPLICATIONS OF DNA

STRUCTURE AND DIAGNOSTIC APPLICATIONS OF DNA STRUCTURE AND DIAGNOSTIC APPLICATIONS OF DNA UNIVERSITY OF PAPUAN NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY LECTURE

More information

Manipulation of Purified DNA

Manipulation of Purified DNA Manipulation of Purified DNA To produce the recombinant DNA molecule, the vector, as well as the DNA to be cloned, must be cut at specific points and then joined together in a controlled manner by DNA

More information

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist Objective of PCR To provide a solution to one of the most pressing

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

Enzymatic assembly of DNA molecules up to several hundred kilobases

Enzymatic assembly of DNA molecules up to several hundred kilobases nature methods Enzymatic assembly of DNA molecules up to several hundred kilobases Daniel G Gibson, Lei Young, Ray-Yuan Chuang, J Craig Venter, Clyde A Hutchison III & Hamilton O Smith Supplementary figures

More information

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this DNA 1. Evidence for DNA as the genetic material. a. Until the 1940s, proteins were believed to be the genetic material. b. In 1944, Oswald Avery, Maclyn McCarty, and Colin MacLeod announced that the transforming

More information

The Polymerase Chain Reaction. Chapter 6: Background

The Polymerase Chain Reaction. Chapter 6: Background The Polymerase Chain Reaction Chapter 6: Background Invention of PCR Kary Mullis Mile marker 46.58 in April of 1983 Pulled off the road and outlined a way to conduct DNA replication in a tube Worked for

More information

BS 50 Genetics and Genomics Week of Nov 29

BS 50 Genetics and Genomics Week of Nov 29 BS 50 Genetics and Genomics Week of Nov 29 Additional Practice Problems for Section Problem 1. A linear piece of DNA is digested with restriction enzymes EcoRI and HinDIII, and the products are separated

More information

Sequence Analysis Lab Protocol

Sequence Analysis Lab Protocol Sequence Analysis Lab Protocol You will need this handout of instructions The sequence of your plasmid from the ABI The Accession number for Lambda DNA J02459 The Accession number for puc 18 is L09136

More information

Microbiology 微生物学 Spring-Summer

Microbiology 微生物学 Spring-Summer Microbiology 微生物学 2017 Spring-Summer Relevant Information and Resources Course slides can be found at http://mypage.zju.edu.cn/haichun 教学工作 Course-related questions will be answered through emails. Textbook:

More information

2 Gene Technologies in Our Lives

2 Gene Technologies in Our Lives CHAPTER 15 2 Gene Technologies in Our Lives SECTION Gene Technologies and Human Applications KEY IDEAS As you read this section, keep these questions in mind: For what purposes are genes and proteins manipulated?

More information

HiPer RT-PCR Teaching Kit

HiPer RT-PCR Teaching Kit HiPer RT-PCR Teaching Kit Product Code: HTBM024 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 4 hours Agarose Gel Electrophoresis: 45 minutes Storage Instructions: The

More information

Gene Cloning & DNA Analysis

Gene Cloning & DNA Analysis CSS451 CSS/HRT 451 Gene Cloning & DNA Analysis Chapter 4-5 T-DNA LB auxin cytokin opine Oncogenic genes RB vir genes ori opine catabolism Guo-qing Song Part 1 Basic principles Gene Cloning & DNA Analysis

More information

DNA sequencing. Course Info

DNA sequencing. Course Info DNA sequencing EECS 458 CWRU Fall 2004 Readings: Pevzner Ch1-4 Adams, Fields & Venter (ISBN:0127170103) Serafim Batzoglou s slides Course Info Instructor: Jing Li 509 Olin Bldg Phone: X0356 Email: jingli@eecs.cwru.edu

More information

Introduction to Molecular Biology

Introduction to Molecular Biology Introduction to Molecular Biology Bioinformatics: Issues and Algorithms CSE 308-408 Fall 2007 Lecture 2-1- Important points to remember We will study: Problems from bioinformatics. Algorithms used to solve

More information

Chapter 20: Biotechnology

Chapter 20: Biotechnology Chapter 20: Biotechnology 1. DNA Sequencing 2. DNA Cloning 3. Studying Gene Expression 4. Manipulating Genomes 5. herapeutic & Diagnostic echniques 1. DNA Sequencing Chapter Reading pp. 409-412 DNA Sequencing

More information

Chapter 4. The Genomic Biologist s Toolkit

Chapter 4. The Genomic Biologist s Toolkit Chapter 4. The Genomic Biologist s Toolkit Contents 4. Genomic Biologists tool kit 4.1. Restriction Endonucleases making sticky ends 4.2. Cloning Vectors 4.2.1. Simple Cloning Vectors 4.2.2. Expression

More information

Unit 6: Gene Activity and Biotechnology

Unit 6: Gene Activity and Biotechnology Chapter 16 Outline The Molecular Basis of Inheritance Level 1 Items students should be able to: 1. Recognize scientists and the experiments that lead to the understanding of the molecular basis of inheritance.

More information

How Do You Clone a Gene?

How Do You Clone a Gene? S-20 Edvo-Kit #S-20 How Do You Clone a Gene? Experiment Objective: The objective of this experiment is to gain an understanding of the structure of DNA, a genetically engineered clone, and how genes are

More information

Sensitivity vs Specificity

Sensitivity vs Specificity Viral Detection Animal Inoculation Culturing the Virus Definitive Length of time Serology Detecting antibodies to the infectious agent Detecting Viral Proteins Western Blot ELISA Detecting the Viral Genome

More information

Chapter 13 - Concept Mapping

Chapter 13 - Concept Mapping Chapter 13 - Concept Mapping Using the terms and phrases provided below, complete the concept map showing the discovery of DNA structure. amount of base pairs five-carbon sugar purine DNA polymerases Franklin

More information

Molecular Scissors: Lambda Digest Student Materials

Molecular Scissors: Lambda Digest Student Materials Molecular Scissors: Lambda Digest Student Materials Introduction 2 Pre-Lab Questions. 5 Lab Protocol 6 Data Collection Worksheet. 9 Post-Lab Questions and Analysis.. 10 Plasmid Maps. 13 Last updated: August

More information

b. Genetic engineering techniques can manipulate the heritable information of DNA and, in special cases, RNA. To demonstrate student understanding of

b. Genetic engineering techniques can manipulate the heritable information of DNA and, in special cases, RNA. To demonstrate student understanding of b. Genetic engineering techniques can manipulate the heritable information of DNA and, in special cases, RNA. To demonstrate student understanding of this concept, make sure you can explain: Electrophoresis

More information

Chapter 11. Restriction mapping. Objectives

Chapter 11. Restriction mapping. Objectives Restriction mapping Restriction endonucleases (REs) are part of bacterial defense systems. REs recognize and cleave specific sites in DNA molecules. REs are an indispensable tool in molecular biology for

More information

Answers to Module 1. An obligate aerobe is an organism that has an absolute requirement of oxygen for growth.

Answers to Module 1. An obligate aerobe is an organism that has an absolute requirement of oxygen for growth. Answers to Module 1 Short Answers 1) What is an obligate aerobe? An obligate aerobe is an organism that has an absolute requirement of oxygen for growth. What about facultative anaerobe? 2) Distinguish

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

American Society of Cytopathology Core Curriculum in Molecular Biology

American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology Chapter 3 Molecular Techniques Alternatives to PCR, Part I

More information

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES Biotechnologydeals with techniques of using live organisms or enzymes from organisms to produce products and

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES Biotechnologydeals with techniques of using live organisms or enzymes from organisms to produce products and BIOTECHNOLOGY : PRINCIPLES AND PROCESSES Biotechnologydeals with techniques of using live organisms or enzymes from organisms to produce products and processes useful to humans. Traditional form based

More information

STUDY GUIDE SECTION 10-1 Discovery of DNA

STUDY GUIDE SECTION 10-1 Discovery of DNA STUDY GUIDE SECTION 10-1 Discovery of DNA Name Period Date Multiple Choice-Write the correct letter in the blank. 1. The virulent strain of the bacterium S. pneumoniae causes disease because it a. has

More information

Session 3 Cloning Overview & Polymerase Chain Reaction

Session 3 Cloning Overview & Polymerase Chain Reaction Session 3 Cloning Overview & Polymerase Chain Reaction Learning Objective: In this lab exercise, you will become familiar with the steps of a polymerase chain reaction, the required reagents for a successful

More information

Lecture 3 Mutagens and Mutagenesis. 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA

Lecture 3 Mutagens and Mutagenesis. 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA Lecture 3 Mutagens and Mutagenesis 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA 2. Mutagenesis A. Screen B. Selection C. Lethal mutations Read: 508-514 Figs:

More information

Biotechnology. terms. terms. Exam 2 In two weeks! Tuesday Nov. 3 rd. Genetic Engineering & molecular techniques

Biotechnology. terms. terms. Exam 2 In two weeks! Tuesday Nov. 3 rd. Genetic Engineering & molecular techniques Molecular Genetics and Genetic Engineering Review sessions wt Jackie: 3-5PM Thursdays, room 8 Illick Previous: www.esf.edu/efb/powell/gen_l8_3.pdf www.esf.edu/efb/powell/gen_l8_6.pdf www.esf.edu/efb/powell/gen_l9_3.pdf

More information

Genetic material must be able to:

Genetic material must be able to: Genetic material must be able to: Contain the information necessary to construct an entire organism Pass from parent to offspring and from cell to cell during cell division Be accurately copied Account

More information

UNIT 3: GENETICS Chapter 9: Frontiers of Biotechnology

UNIT 3: GENETICS Chapter 9: Frontiers of Biotechnology CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix Molecular Cloning Laboratories User Manual Version 3.3 Product name: Choo-Choo Cloning Kits Cat #: CCK-10, CCK-20, CCK-096, CCK-384 Description: Choo-Choo Cloning is a highly efficient directional PCR

More information

Gene Expression Transcription/Translation Protein Synthesis

Gene Expression Transcription/Translation Protein Synthesis Gene Expression Transcription/Translation Protein Synthesis 1. Describe how genetic information is transcribed into sequences of bases in RNA molecules and is finally translated into sequences of amino

More information

Bio 121 Practice Exam 3

Bio 121 Practice Exam 3 The material covered on Exam 3 includes lecture since the last exam and text chapters 13-21. Be sure that you read chapter 19, which was not represented in the notes. 1. Which of the following is an enveloped

More information

Polymerase Chain Reaction (PCR) and Its Applications

Polymerase Chain Reaction (PCR) and Its Applications Polymerase Chain Reaction (PCR) and Its Applications What is PCR? PCR is an exponentially progressing synthesis of the defined target DNA sequences in vitro. It was invented in 1983 by Dr. Kary Mullis,

More information

Rapid Learning Center Presents. Teach Yourself AP Biology in 24 Hours

Rapid Learning Center Presents. Teach Yourself AP Biology in 24 Hours Rapid Learning Center Chemistry :: Biology :: Physics :: Math Rapid Learning Center Presents Teach Yourself AP Biology in 24 Hours 1/35 *AP is a registered trademark of the College Board, which does not

More information

Cloning in bacteria. Presenter: Vito Baraka (BSc,MSc Cand.)

Cloning in bacteria. Presenter: Vito Baraka (BSc,MSc Cand.) Cloning in bacteria Presenter: Vito Baraka (BSc,MSc Cand.) Introduction DNA cloning involves separating a specific gene or DNA segment from a larger chromosome, attaching it to a small molecule of carrier

More information

4) separates the DNA strands during replication a. A b. B c. C d. D e. E. 5) covalently connects segments of DNA a. A b. B c. C d. D e.

4) separates the DNA strands during replication a. A b. B c. C d. D e. E. 5) covalently connects segments of DNA a. A b. B c. C d. D e. 1) Chargaff's analysis of the relative base composition of DNA was significant because he was able to show that a. the relative proportion of each of the four bases differs from species to species. b.

More information

A Level. A Level Biology. DNA Technology Questions. AQA, OCR, Edexcel. Name: Total Marks: Page 1

A Level. A Level Biology. DNA Technology Questions. AQA, OCR, Edexcel. Name: Total Marks: Page 1 AQA, OCR, Edexcel A Level A Level Biology DNA Technology Questions Name: Total Marks: Page 1 Q1.(a) (i) A mutation of a tumour suppressor gene can result in the formation of a tumour. Explain how.........(2)

More information

MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien

MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien Introduction MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien The field of molecular genetics has resulted in a number of practical applications that have been of tremendous

More information

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Biology Multiple Choice 016074 BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Test Code: 016074 Directions: Each of the questions or incomplete statements below is followed by five suggested

More information

Reverse transcription-pcr (rt-pcr) Dr. Hani Alhadrami

Reverse transcription-pcr (rt-pcr) Dr. Hani Alhadrami Reverse transcription-pcr (rt-pcr) Dr. Hani Alhadrami hanialhadrami@kau.edu.sa www.hanialhadrami.kau.edu.sa Overview Several techniques are available to detect and analyse RNA. Examples of these techniques

More information

Genetic Fingerprinting

Genetic Fingerprinting Genetic Fingerprinting Introduction DA fingerprinting In the R & D sector: -involved mostly in helping to identify inherited disorders. In forensics: -identification of possible suspects involved in offences.

More information

The GeneEditor TM in vitro Mutagenesis System: Site- Directed Mutagenesis Using Altered Beta-Lactamase Specificity

The GeneEditor TM in vitro Mutagenesis System: Site- Directed Mutagenesis Using Altered Beta-Lactamase Specificity Promega Notes Magazine Number 62, 1997, p. 02 The GeneEditor TM in vitro Mutagenesis System: Site- Directed Mutagenesis Using Altered Beta-Lactamase Specificity By Christine Andrews and Scott Lesley Promega

More information

2054, Chap. 13, page 1

2054, Chap. 13, page 1 2054, Chap. 13, page 1 I. Microbial Recombination and Plasmids (Chapter 13) A. recombination = process of combining genetic material from 2 organisms to produce a genotype different from either parent

More information

Concepts: What are RFLPs and how do they act like genetic marker loci?

Concepts: What are RFLPs and how do they act like genetic marker loci? Restriction Fragment Length Polymorphisms (RFLPs) -1 Readings: Griffiths et al: 7th Edition: Ch. 12 pp. 384-386; Ch.13 pp404-407 8th Edition: pp. 364-366 Assigned Problems: 8th Ch. 11: 32, 34, 38-39 7th

More information

Sample Question Paper Session Class XII Biotechnology (045) Marking Scheme

Sample Question Paper Session Class XII Biotechnology (045) Marking Scheme Sample Question Paper Session 2015-16 Class XII Biotechnology (045) Marking Scheme SECTION-A 1. Methylation Student will add a methyl group to one or two bases within the sequence recognized by enzyme.

More information

Methods of Biomaterials Testing Lesson 3-5. Biochemical Methods - Molecular Biology -

Methods of Biomaterials Testing Lesson 3-5. Biochemical Methods - Molecular Biology - Methods of Biomaterials Testing Lesson 3-5 Biochemical Methods - Molecular Biology - Chromosomes in the Cell Nucleus DNA in the Chromosome Deoxyribonucleic Acid (DNA) DNA has double-helix structure The

More information

Synthetic Biology. Sustainable Energy. Therapeutics Industrial Enzymes. Agriculture. Accelerating Discoveries, Expanding Possibilities. Design.

Synthetic Biology. Sustainable Energy. Therapeutics Industrial Enzymes. Agriculture. Accelerating Discoveries, Expanding Possibilities. Design. Synthetic Biology Accelerating Discoveries, Expanding Possibilities Sustainable Energy Therapeutics Industrial Enzymes Agriculture Design Build Generate Solutions to Advance Synthetic Biology Research

More information