Chapter 7 Outline. Microbial Physiology Introduction 5/22/2011

Size: px
Start display at page:

Download "Chapter 7 Outline. Microbial Physiology Introduction 5/22/2011"

Transcription

1 Chapter 7 Outline Microbial Physiology Introduction Microbial Nutritional Requirements Categorizing Microorganisms According to Their Energy and Carbon Sources Metabolic Enzymes Biologic Catalysts Factors That Affect the Efficiency of Enzymes Metabolism Catabolism Anabolism Bacterial Genetics Mutations Ways in Which Bacteria Acquire New Genetic Information Genetic Engineering Gene Therapy Microbial Physiology Introduction Physiology is the study of the vital life processes of organisms. Microbial physiology is very much chemical reactions (metabolism) 1

2 Microbial Physiology Nutritional Requirements All living protoplasm contains 6 major chemical elements: carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur. Combinations of these and other elements make up vital macromolecules of life, including carbohydrates, lipids, proteins, and nucleic acids, vitamins, etc. Essential Nutrients: materials that organisms are unable to synthesize, but are required for building macromolecules and sustaining life, e.g., certain essential amino acids and essential fatty acids. Categorizing Microorganisms by Energy and Carbon Sources Terms relating to an organism s energy source. Phototrophs use light as an energy source. organic Chemotrophs use either inorganic or organic chemicals as an energy source. Chemolithotrophs use inorganic chemicals as an energy source. Chemoorganotrop hs use organic chemicals as an energy source. 2

3 Microbial Physiology Categorizing Microorganisms According to Their Energy and Carbon Sources, cont. Terms relating to an organism s carbon source: Autotrophs use carbon dioxide (CO 2 ) as their sole source of carbon. Heterotrophs use organic compounds other than CO 2 as carbon sources. Terms that combine both energy and carbon source: Photoautotrophs use light as a carbon source and CO 2 as an energy source. Chemoautotrophs use chemicals as a carbon source and CO 2 as an energy source. Chemoheterotrophs use chemicals as a carbon source and organic compounds other than CO 2 as an energy source. Categorizing Microorganisms According to Their Energy and Carbon Sources, cont. Ecology is the study of the interactions between living organisms and the world around them. Ecosystem refers to the interactions between living organisms and their nonliving environment. Interrelationships among the different nutritional types are important in the functioning of the ecosystem. Example: Phototrophs, such as algae and plants, are the producers of food and oxygen for chemoheterotrophs, such as animals. 3

4 Metabolic Enzymes Metabolism refers to all the chemical reactions that occur in a cell. The chemical reactions are referred to as metabolic reactions. Metabolic reactions are carried out by enzymes. Biologic Catalysts Enzymes are biologic catalysts; they are proteins that cause a particular chemical reaction to occur or accelerate it. Metabolic Enzymes Biologic Catalysts, cont. Enzymes are specific, they only catalyze one particular chemical reaction. An enzyme only affects one particular substance, known as the substrate for that enzyme. The unique 3-dimensional shape of an enzyme enables it to fit the substrate like a key fits into a lock. An enzyme does not become altered during the chemical reaction it catalyzes. (They don t last forever!) 4

5 Factors That Affect the Efficiency of Enzymes ph - extreme acidity for example Temperature - heat can denature enzymes by breaking bonds Concentration of enzyme and/or substrate may be too high or too low Inhibitors, for example heavy metals like lead, zinc, mercury and arsenic Metabolism Metabolism refers to all of the chemical reactions within a cell A metabolite is any molecule that is a nutrient, an intermediary product, or an end product in a metabolic reaction. Metabolic reactions fall into 2 categories: catabolism and anabolism. Catabolism refers to all catabolic reactions in a cell. Anabolism refers to all anabolic reactions in a cell. 5

6 Metabolism, cont. Catabolic reactions involve the breaking down of larger molecules into smaller ones. Energy is released. Catabolic reactions are a cell s major source of energy. Anabolic reactions involve the assembly of smaller molecules into larger molecules, requiring the formation of bonds. The bonds are stored energy. Much of the energy released during catabolic reactions is used to build molecules in anabolic reactions. Metabolism, cont. Energy is temporarily stored in bonds in adenosine triphosphate (ATP). When ATP is used as an energy source, it is hydrolyzed (split) to adenosine diphosphate (ADP). ADP can be used as an energy source by hydrolysis to adenosine monophosphate (AMP). 6

7 Interrelationships among ATP, ADP, and AMP molecules. Metabolism, cont. a Marine dinoflagellates use energy for bioluminescence. Energy is required for metabolic pathways, growth, reproduction, sporulation, and movement of the organism, and active transport of substances across membranes. 7

8 Metabolism Catabolism Catabolic reactions release energy (by breaking bonds) and are a cell s major source of energy. Some energy is lost as heat in catabolic reactions. Biochemical pathways are a series of linked biochemical reactions, with a starting chemical and an end product (chemical). Think of nutrients as energy sources for organisms and think of chemical bonds as stored energy. Glucose, for example, can be catabolized by either aerobic respiration or fermentation. Glycolysis is shared by both: A biochemical pathway with 4 steps. Compound A is ultimately converted to compound E. Four enzymes are required in this biochemical pathway. Compound A is the substrate for Enzyme 1, Compound B for Enzyme 2, etc. 8

9 Metabolism Catabolism, cont. Catabolism of glucose by aerobic respiration occurs in 3 phases (each is a biochemical pathway): Glycolysis w The Krebs cycle The electron transport chain The 1 st phase (glycolysis) is anaerobic, but the other 2 phases are aerobic. So, the whole process is considered aerobic. Glycolysis is a 9-step biochemical pathway. Each step requires a specific enzyme. Aerobic Respiration of Glucose: First Step = Glycolysis. 9

10 Catabolism Aerobic Respiration of Glucose, cont. The Krebs Cycle, aka citric acid cycle and TCA cycle: A biochemical pathway consisting of 8 separate reactions, each controlled by a different enzyme. Only 2 ATP molecules are produced, but NADH, H +, FADH 2 are formed, which enter the electron transport chain. In eucaryotes, the Krebs/TCA cycle and the electron transport chain occur in mitochondria. In procaryotes, both occur at the inner surface of the cell membrane. Catabolism Aerobic Respiration of Glucose, cont. The electron transport chain: A series of oxidation-reduction reactions, where energy is released as electrons which are transferred from one compound to another. Many enzymes are involved in the electron transport chain, including cytochrome oxidase, which transfers electrons to oxygen (the electron final acceptor). A large number of ATP molecules are produced by oxidative phosphorylation in the electron transport chain. Aerobic respiration is very efficient! 10

11 Catabolism Fermentation of Glucose Fermentation reactions do not involve oxygen. They take place in anaerobic (no oxygen) environments. First step is glycolysis (anaerobic). The next step is conversion of pyruvic acid into an end product. The end product varies from one organism to another. Example: yeasts are used to make wine and beer; the end product is ethanol. Fermentation reactions produce very little energy, ~ 2 ATP molecules. Catabolism Oxidation-Reducton (Redox) Reactions Oxidation-reduction reactions are paired reactions in which electrons are transferred from one compound to another. Oxidation occurs whenever an atom, ion, or molecule loses one or more electrons in a reaction; in which case, the molecule is said to be oxidized. The gain of one or more electrons by a molecule is called reduction and the molecule is said to be reduced. Within a cell, an oxidation reaction is always paired with a reduction reaction; hence the term, oxidation-reduction reaction. 11

12 Catabolism Oxidation-Reduction (Redox) Reactions, cont. In a redox reaction, the electron donor (compound A) is the reducing agent, and the electron acceptor (compound B) is the oxidizing agent. Many biologic oxidations are referred to as dehydrogenation reactions because hydrogen ions, as well as electrons, are removed. Anabolism Anabolic reactions require energy because chemical bonds are being formed. The energy that is used comes from catabolic reactions, which are occurring simultaneously. Biosynthesis of organic compounds requires energy. The energy may be obtained through photosynthesis (from light) or chemosynthesis (from chemicals). Photosynthetic reactions trap the radiant energy of light and convert it into chemical bond energy in ATP and carbohydrates (e.g., glucose). 12

13 Bacterial Genetics Genetics = the study of heredity. An organism s genotype is its complete collection of genes. An organism s phenotype refers to its physical traits (e.g., includes hair and eye color in humans). An organism s phenotype is the manifestation of that organism s genotype because genes control all functions of the cell. Gene: a particular segment of the chromosome. Bacterial Genetics Mutations A change in a DNA molecule (genetic alteration) that is transmissible to offspring is called a mutation. 3 categories of mutations: Beneficial mutations Harmful mutations (some are lethal mutations) Silent mutations Mutation rate (the rate at which mutations occur) can be increased by exposing cells to physical or chemical agents called mutagens. The organism containing the mutation is called a mutant. 13

14 Bacterial Genetics Ways in Which Bacteria Acquire New Genetic Information Ways in which bacteria acquire new genetic information (i.e., acquire new genes): Lysogenic Conversion Transduction Transformation Conjugation An extrachromosomal DNA molecule is called a plasmid. An organism that acquires a plasmid acquires new genes. (A) A disrupted E. coli cell, in which the DNA has spilled out. A plasmid can be seen slightly to the left of top center (arrow). (B) Enlargement of plasmid. Copyright 2011 Wolters Kluwer Health Lippincott Williams & Wilkins 14

15 Ways in Which Bacteria Acquire New Genetic Information, cont. Lysogenic Conversion Temperate phages (or lysogenic phages) inject their DNA into a bacterial cell. The phage DNA integrates into the bacterial chromosome, but does not cause the lytic cycle to occur this is known as lysogeny. This is the opposite of a lytic cycle, that causes the lytic cycle TO occur, resulting in the lysis (rupturing) of the host cell. A phage is called a prophage (early or first phage/virus) when all that remains of it is its DNA. The bacterial cell containing the prophage is referred to as a lysogenic cell. The bacterial cell exhibits new properties, directed by the viral genes this is referred to as lysogenic conversion. 15

16 how Bacteria Acquire New Genetic Information, cont. Transduction ( to carry across ): Also involves bacteriophages. In transduction, bacterial genetic material is carried across from one bacterial cell to another by a bacterial virus; thus, in transduction, bacteria acquire new bacterial genes. Note how this differs from lysogenic conversion, wherein bacteria acquire new genetic information in the form of viral genes. How Bacteria Acquire New Genetic Information, cont. Transformation A bacterial cell becomes genetically transformed following the uptake of DNA fragments ( naked DNA ) from its environment. The ability to absorb naked DNA into the cell is called competence and bacteria capable of absorbing naked DNA are said to be competent bacteria. 16

17 How Bacteria Acquire New Genetic Information, cont. Conjugation Involves a specialized type of pilus called a sex pilus. A bacterial cell with a sex pilus (called the donor cell) attaches by means of the sex pilus to another bacterial cell (called the recipient cell). Some genetic material (usually a plasmid) is transferred through the hollow sex pilus from the donor cell to the recipient cell. A plasmid that contains multiple genes for antibiotic resistance is known as a resistance factor or R-factor. A bacterial cell that receives a R-factor becomes a superbug. Conjugation in Escherichia coli. Sex pilus Copyright 2011 Wolters Kluwer Health Lippincott Williams & Wilkins 17

18 Genetic Engineering Genetic engineering or recombinant DNA technology involves techniques to transfer eucaryotic genes (particularly human genes) into easily cultured cells to manufacture important gene products (mostly proteins). Plasmids are frequently used as vehicles for inserting genes into cells. There are many industrial and medical benefits from genetic engineering. Examples: synthesis of antibodies, antibiotics, drugs and vaccines; also, for synthesis of important enzymes and hormones for treatment of diseases. Gene Therapy Gene therapy of human diseases involves the insertion of a normal gene into cells to correct a specific genetic disorder caused by a defective gene. Viral delivery is the most common method for inserting genes into cells; specific viruses are selected to target the DNA of specific cells. Genes may someday be regularly prescribed as drugs in the treatment of diseases (e.g., autoimmune diseases, sickle cell anemia, cancer, cystic fibrosis, heart disease, etc.) 18

Chapter 5: Microbial Metabolism (Part I)

Chapter 5: Microbial Metabolism (Part I) Chapter 5: Microbial Metabolism (Part I) Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living organism. These chemical reactions are generally of two types: Catabolic:

More information

2054, Chap. 13, page 1

2054, Chap. 13, page 1 2054, Chap. 13, page 1 I. Microbial Recombination and Plasmids (Chapter 13) A. recombination = process of combining genetic material from 2 organisms to produce a genotype different from either parent

More information

number Done by Corrected by Doctor Hamed Al Zoubi

number Done by Corrected by Doctor Hamed Al Zoubi number 3 Done by Neda a Baniata Corrected by Waseem Abu Obeida Doctor Hamed Al Zoubi Note: it is important to refer to slides. Bacterial genetics *The main concepts we will talk about in this lecture:

More information

Hole s Essentials of Human Anatomy & Physiology

Hole s Essentials of Human Anatomy & Physiology Hole s Essentials of Human Anatomy & Physiology David Shier Jackie Butler Ricki Lewis Created by Dr. Melissa Eisenhauer Head Athletic Trainer/Assistant Professor Trevecca Nazarene University Amended by

More information

Viruses and Prokaryotes

Viruses and Prokaryotes Viruses and Prokaryotes Viruses Are they living things? Viruses can reproduce, however, they cannot reproduce without a host cell. They also do not contain cytoplasmic materials and they do not have a

More information

Frequency of Keyword Totals - (All LE Regents Exams)

Frequency of Keyword Totals - (All LE Regents Exams) Frequency of Keyword Totals - (All LE Regents Exams) KEYWORD COUNT KEYWORD COUNT ecosystem 58 DNA 48 energy pyramid 19 graph 19 scientific method 19 photosynthesis 43 decomposer 18 human impact 42 clone

More information

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010 2010 Aerobic and Anaerobic Biodegradation Danny Clark ENSO Bottles LLC 06/29/2010 Aerobic and Anaerobic Biodegradation A look into aerobic and anaerobic biodegradation By Danny Clark ENSO Bottles, LLC

More information

Aerobic and Anaerobic Biodegradation

Aerobic and Anaerobic Biodegradation Polimernet Plastik San.Tic.Ltd.Şti. Tel:+90 216 393 77 46 / Email: info@polimernet.com www.polimernet.com 1 Aerobic and Anaerobic Biodegradation This document provides an in depth explanation, detailing

More information

BACTERIA. NO or membrane bound WHAT ARE THE TWO TYPES OF PROKARYOTES? TYPES EUBACTERIA ARCHAEBACTERIA. bilayer embedded with

BACTERIA. NO or membrane bound WHAT ARE THE TWO TYPES OF PROKARYOTES? TYPES EUBACTERIA ARCHAEBACTERIA. bilayer embedded with Bacteria and Virus Notes WHAT ARE PROKARYOTES? ALWAYS organisms BACTERIA NO or membrane bound Very compared to cells WHAT ARE THE TWO TYPES OF PROKARYOTES? TYPES EUBACTERIA ARCHAEBACTERIA MAJOR DIFFERENCES

More information

Lectures of Dr.Mohammad Alfaham. The Bacterial Genetics

Lectures of Dr.Mohammad Alfaham. The Bacterial Genetics Lectures of Dr.Mohammad Alfaham The Bacterial Genetics is the total collection of genes carried by a bacterium both on its chromosome and on its extrachromosomal genetic elements (plasmids) A Gene A gene

More information

QUESTIONS 16 THROUGH 30 FROM EXAM 3 OF FALL, 2010

QUESTIONS 16 THROUGH 30 FROM EXAM 3 OF FALL, 2010 BISC403 Genetic and Evolutionary Biology Spring, 2011 April 19, 2011 Summary of requirements for Exam 3 (to be given on April 26 plus third exam from fall, 2010) The primary responsibility is for any topic

More information

Cell Growth and DNA Extraction- Technion igem HS

Cell Growth and DNA Extraction- Technion igem HS Growing Cells and DNA Extraction Goals 1. Become familiar with the process of growing bacteria 2. Get to know the DNA extraction process 3. Perform miniprep in the lab Keywords 1. Growth stages 6. Techniques

More information

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 - Genetics: Progress from Mendel to DNA: Gregor Mendel, in the mid 19 th century provided the

More information

Biochemistry study of the molecular basis of life

Biochemistry study of the molecular basis of life Biochemistry : An Introduction Biochemistry study of the molecular basis of life n Study of the chemistry of living organisms Studies organic molecules & organic reactions in living organisms n Living

More information

Microbial Biotechnology agustin krisna wardani

Microbial Biotechnology agustin krisna wardani Microbial Biotechnology agustin krisna wardani 1. The Structure of Microbes Microbes (microorganisms) are tiny organisms that are too small to be seen individually by the naked eye and must be viewed with

More information

Higher Human Biology. Unit 1: Human Cells

Higher Human Biology. Unit 1: Human Cells Calderglen High School Higher Human Biology Unit 1: Human Cells Homework Questions Contents Page Sub-Topic 1: Differentiation and stem cells 3-5 Sub-Topic 2: DNA and its replication 6-10 Sub-Topic 3: RNA,

More information

Bacteria. Bacteria. Chapter 27. Bacteria 7/18/2016

Bacteria. Bacteria. Chapter 27. Bacteria 7/18/2016 Chapter 27 Prokaryotes Most numerous organisms on earth Earliest life forms (fossils: 2.5 billion years old) Contain ribosomes Surrounded by protective cell wall containing peptidoglycan (protein-carbohydrate)

More information

Unit 2 Review: DNA, Protein Synthesis & Enzymes

Unit 2 Review: DNA, Protein Synthesis & Enzymes 1. One of the functions of DNA is to A. secrete vacuoles.. make copies of itself.. join amino acids to each other. D. carry genetic information out of the nucleus. 2. Two sugars found in nucleic acids

More information

Viruses & Bacteria. One is the ultimate bad guy. One is an ultimate good guy Gone bad guy. But still good guy.

Viruses & Bacteria. One is the ultimate bad guy. One is an ultimate good guy Gone bad guy. But still good guy. Viruses & Bacteria One is the ultimate bad guy. One is an ultimate good guy Gone bad guy. But still good guy. Viruses A virus is a non-cellular particle made up of genetic material (DNA or RNA) and protein

More information

Bacterial Antibiotic Resistance from Chapter 9. Microbiology: A Systems Approach 1 st Edition Cowan & Talaro

Bacterial Antibiotic Resistance from Chapter 9. Microbiology: A Systems Approach 1 st Edition Cowan & Talaro Bacterial Antibiotic Resistance from Chapter 9 Microbiology: A Systems Approach 1 st Edition Cowan & Talaro Types of intermicrobial exchange conjugation transformation requires the attachment of two related

More information

Biology Test Review Microorganisms

Biology Test Review Microorganisms Name: Period: Biology Test Review Microorganisms Use your booklet, notes, & quizzes to complete this review. 1. Define the following terms using a few key words: a. Host cell - victim of the virus b. Retrovirus

More information

FARM MICROBIOLOGY 2008 PART 2: BASIC STRUCTURE AND GENETICS OF BACTERIA. 1. Epulopiscium fishelsoni and Thiomargarita namibiensis.

FARM MICROBIOLOGY 2008 PART 2: BASIC STRUCTURE AND GENETICS OF BACTERIA. 1. Epulopiscium fishelsoni and Thiomargarita namibiensis. FARM MICROBIOLOGY 2008 PART 2: BASIC STRUCTURE AND GENETICS OF BACTERIA I. Basic Morphology (Shape) of Vegetative Cells. A. Microscopic. Example Escherichia coli (aka E. coli) is 1.3 µm (= 0.000052 inch)

More information

BIOL 455 GENERAL MICROBIOLOGY Final Exam FALL 2002 MAKE SURE THAT YOU MARK YOUR SOCIAL SECURITY NUMBER CORRECTLY!

BIOL 455 GENERAL MICROBIOLOGY Final Exam FALL 2002 MAKE SURE THAT YOU MARK YOUR SOCIAL SECURITY NUMBER CORRECTLY! 1 BIOL 455 GENERAL MICROBIOLOGY Final Exam FALL 2002 MAKE SURE THAT YOU MARK YOUR SOCIAL SECURITY NUMBER CORRECTLY! EXAM VERSION " 1 " EXAM VERSION " 1 " EXAM VERSION " 1 " MARK THE APPROPRIATE CIRCLE

More information

Chapter 2 Molecules to enzymes - Short answer [72 marks]

Chapter 2 Molecules to enzymes - Short answer [72 marks] Chapter 2 Molecules to enzymes - Short answer [72 marks] 1a. Outline primary and quaternary protein structures. Primary protein structure: Quaternary protein structure: a. (primary structure) is sequence

More information

Cell Biology Homework

Cell Biology Homework Cell Biology Homework NAME: CLASS: 1 1. The diagram below shows two cells. Cell Structure a) Complete the table below to give the name and functions of the parts labelled A, B and C. (2) Letter Part Function

More information

Reinforcement. Cells and Life CHAPTER 1 LESSON 1

Reinforcement. Cells and Life CHAPTER 1 LESSON 1 Reinforcement Cells and Life LESSON 1 Directions: In numbers 1 through 4 below, a code letter has been substituted for each letter of the alphabet. To find out what the sentence says, use the following

More information

THE BENEFITS AND USES OF MICROBES

THE BENEFITS AND USES OF MICROBES MODULE 4 MICROBES AND MICROBIAL BIOTECHNOLOGY U N I T 2 THE BENEFITS AND USES OF MICROBES A. MICROBIAL BIOTECHNOLOGY 1 Read What is biotechnology? and decide which of the words below can be used instead

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Enzymes. 13. Explain the active site theory to examine enzyme function

Enzymes. 13. Explain the active site theory to examine enzyme function Name: 2.2 Cell Metabolism Objectives At the end of this sub section students should be able to: 2.2.1 Metabolism 1. Define the term: metabolism. 2.2.2 Sources of energy 2. State that solar energy is source

More information

The Regulation of Bacterial Gene Expression

The Regulation of Bacterial Gene Expression The Regulation of Bacterial Gene Expression Constitutive genes are expressed at a fixed rate Other genes are expressed only as needed Inducible genes Repressible genes Catabolite repression Pre-transcriptional

More information

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology.

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology. Name: 1117 1 Page 1 1) A small amount of DNA was taken from a fossil of a mammoth found frozen in glacial ice. Genetic technology can be used to produce a large quantity of identical DNA from this mammoth's

More information

test 7 3. What is the main function of a vacuole in a cell?

test 7 3. What is the main function of a vacuole in a cell? test 7 Name: Date: 1. ase your answer(s) to the following question(s) on the diagram below and on your knowledge of biology. The diagram represents a model cell setup. The locations of three different

More information

Gene Transfer 11/4/13. Fredrick Griffith in the 1920s did an experiment. Not until 1944 was DNA shown to be the moveable element

Gene Transfer 11/4/13. Fredrick Griffith in the 1920s did an experiment. Not until 1944 was DNA shown to be the moveable element Gene Transfer Fredrick Griffith in the 1920s did an experiment. Not until 19 was DN shown to be the moveable element Dead pathogen cells able to make a capsule were able to pass this ability to the live

More information

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved. CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? 35 INTRODUCTION In the Program Introduction, you learned that the increase in diabetes in the United States has resulted in a great demand for its treatment,

More information

BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY (BBMB)

BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY (BBMB) Biochemistry, Biophysics, and Molecular Biology (BBMB) 1 BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY (BBMB) Courses primarily for undergraduates: BBMB 101: Introduction to Biochemistry (1-0) Cr. 1.

More information

2012 GENERAL [5 points]

2012 GENERAL [5 points] GENERAL [5 points] 2012 Mark all processes that are part of the 'standard dogma of molecular' [ ] DNA replication [ ] transcription [ ] translation [ ] reverse transposition [ ] DNA restriction [ ] DNA

More information

while Bacilli is the class to which the order Lactobacillales belongs to.

while Bacilli is the class to which the order Lactobacillales belongs to. Interactive Questions Question 1: Lactic acid bacteria belong to which order? Lactobacillaceae Lactobacillales Lactobacillales is the correct order. Lactobacillaceae is one family within this order, while

More information

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration Respiration Worksheet Respiration is the controlled release of energy from food! The food involved in respiration is usually! Internal respiration is controlled by which allow energy to be released in!

More information

Genes and Proteins in Health. and Disease

Genes and Proteins in Health. and Disease Genes and Health and I can describe the structure of proteins All proteins contain the chemical elements Carbon, Hydrogen, Oxygen and Nitrogen. Some also contain sulphur. Proteins are built from subunits

More information

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this DNA 1. Evidence for DNA as the genetic material. a. Until the 1940s, proteins were believed to be the genetic material. b. In 1944, Oswald Avery, Maclyn McCarty, and Colin MacLeod announced that the transforming

More information

Regents Biology REVIEW 5: GENETICS

Regents Biology REVIEW 5: GENETICS Period Date REVIEW 5: GENETICS 1. Chromosomes: a. Humans have chromosomes, or homologous pairs. Homologous: b. Chromosome pairs carry genes for the same traits. Most organisms have two copies of the gene

More information

Name Block Desk # BACTERIA AND VIRUSES. 1. What are prokaryotes? They are -celled organisms with no

Name Block Desk # BACTERIA AND VIRUSES. 1. What are prokaryotes? They are -celled organisms with no Name Block Desk # BACTERIA AND VIRUSES Identifying Bacteria: 1. What are prokaryotes? They are -celled organisms with no - bound organelles. 2. True or false: prokaryotes are much larger that eukaryotes.

More information

The Mosaic Nature of Genomes

The Mosaic Nature of Genomes The Mosaic Nature of Genomes n DNA sequence is not static Mutations of single bases Large deletions Large insertions of sequence n Transferred from other species n New functions useful in particular situations

More information

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes 1.1 Division and Differentiation in Human Cells I can state that cellular differentiation is the process by which a cell develops more

More information

Discuss the ethical considerations that must be taken into account when using embryonic stem cells for research.

Discuss the ethical considerations that must be taken into account when using embryonic stem cells for research. Revised Higher Human Biology Unit 1 Revision Summary STEM CELLS, DIFFERENTATION & CANCER CELLS Stem cells are undifferentiated biological cells, that can differentiate into specialized cells and can divide

More information

Chapter 11: Regulation of Gene Expression

Chapter 11: Regulation of Gene Expression Chapter Review 1. It has long been known that there is probably a genetic link for alcoholism. Researchers studying rats have begun to elucidate this link. Briefly describe the genetic mechanism found

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

Name Per AP: CHAPTER 27: PROKARYOTES (Bacteria) p559,

Name Per AP: CHAPTER 27: PROKARYOTES (Bacteria) p559, AP: CHAPTER 27: PROKARYOTES (Bacteria) p559, 561-564 1. How does the bacterial chromosome compare to a eukaryotic chromosome? 2. What is a plasmid? 3. How fast can bacteria reproduce? 4. What is a bacterial

More information

BCH 462 Competent Cells Formation and Transformation of Competent Cells with plasmid DNA.

BCH 462 Competent Cells Formation and Transformation of Competent Cells with plasmid DNA. Lab#2 BCH 462 Competent Cells Formation and Transformation of Competent Cells with plasmid DNA. Outlines: 1-Insertion of foreign gene to the plasmid. 2-Competent cell. 3-Transformation of bacterial cell.

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics AP Biology What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron microscope size smaller than ribosomes ~20 50 nm

More information

Practice Test #3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test #3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test #3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An application of using DNA technology to help environmental scientists would be _. a.

More information

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules بسمه تعالی کارشناسی ارشد بیوشیمی و بیولوژي سلول آنزیم ابراهیم قاسمی Enzyme Proteins with catalytic properties A small group of catalytic RNA molecules Catalyze reactions (degrade, conserve and transform

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *1053462426* BIOLOGY 9700/43 Paper 4 Structured Questions A2 October/November 2010 2 hours Candidates

More information

Chapter 6: Microbial Growth

Chapter 6: Microbial Growth Chapter 6: Microbial Growth 1. Requirements for Growth 2. Culturing Microorganisms 3. Patterns of Microbial Growth 1. Requirements for Growth Factors that affect Microbial Growth Microbial growth depends

More information

Central Dogma. 1. Human genetic material is represented in the diagram below.

Central Dogma. 1. Human genetic material is represented in the diagram below. Central Dogma 1. Human genetic material is represented in the diagram below. 4. If 15% of a DNA sample is made up of thymine, T, what percentage of the sample is made up of cytosine, C? A) 15% B) 35% C)

More information

BIOLOGY EOC STUDY GUIDE Answer Key and Content Focus Report

BIOLOGY EOC STUDY GUIDE Answer Key and Content Focus Report BIOLOGY EOC STUDY GUIDE Answer Key and Content Focus Report 2014-2015 Volusia County Schools 1 The Biology EOC The Biology 1 EOC assessment is delivered via computer-based test. The assessment is given

More information

BIOTECHNOLOGY. Course Syllabus. Section A: Engineering Mathematics. Subject Code: BT. Course Structure. Engineering Mathematics. General Biotechnology

BIOTECHNOLOGY. Course Syllabus. Section A: Engineering Mathematics. Subject Code: BT. Course Structure. Engineering Mathematics. General Biotechnology BIOTECHNOLOGY Subject Code: BT Course Structure Sections/Units Section A Section B Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Section C Section D Section E Topics Engineering Mathematics General

More information

BIOLOGY HIGHER LEVEL

BIOLOGY HIGHER LEVEL 2017. M44 Write your Examination Number here Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2017 BIOLOGY HIGHER LEVEL Tuesday, 13 June Afternoon, 2.00 5.00

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission BIOLOGY ORDINARY LEVEL

Coimisiún na Scrúduithe Stáit State Examinations Commission BIOLOGY ORDINARY LEVEL 2013. M43 Write your Examination Number here Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2013 BIOLOGY ORDINARY LEVEL TUESDAY, 11 JUNE AFTERNOON, 2.00 5.00

More information

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology?

More information

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. The difference between replication, transcription, and translation. How

More information

Immune System. Viruses vs. Bacteria

Immune System. Viruses vs. Bacteria Immune System Viruses vs. Bacteria Concept Map Section 19-1 Bacteria are classified into the kingdoms of Eubacteria Archaebacteria include a variety of lifestyles such as live in harsh environments such

More information

Virginia Western Community College BIO 205 General Microbiology

Virginia Western Community College BIO 205 General Microbiology Prerequisites BIO 205 General Microbiology One year of college biology and one year of college chemistry or divisional approval; an ENG 111 placement recommendation, co-enrollment in ENF 3/ENG 111, or

More information

DNA & Protein Synthesis UNIT D & E

DNA & Protein Synthesis UNIT D & E DNA & Protein Synthesis UNIT D & E How this Unit is broken down Chapter 10.1 10.3 The structure of the genetic material Chapter 10.4 & 10.5 DNA replication Chapter 10.6 10.15 The flow of genetic information

More information

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY.

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY. BIOTECHNOLOGY Biotechnology can be defined as the use of micro-organisms, plant or animal cells or their components or enzymes from organisms to produce products and processes (services) useful to human

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

SCI204: Honors Biology

SCI204: Honors Biology SCI204: Honors Biology This course provides students with a challenging honors-level biology curriculum, focusing on the chemistry of living things: the cell, genetics, evolution, the structure and function

More information

Viruses and Bacteria Notes

Viruses and Bacteria Notes Viruses and Bacteria Notes A. Virus Structure: Viruses are in contrast to bacteria. Viruses are (DNA or RNA) enclosed in a coat called a. Also some viruses have a that helps them infect their host. These

More information

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19 Chapter 19 Viruses Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 19 1. A virus consists of a nucleic acid surrounded by a protein coat. 2. Viruses replicate only in host

More information

4/7/2007. Key Concepts: Viruses, Bacteria and Diseases: Are We Ahead of Them? Objectives:

4/7/2007. Key Concepts: Viruses, Bacteria and Diseases: Are We Ahead of Them? Objectives: Viruses, Bacteria and Diseases: Are We Ahead of Them? Objectives: 1. To learn the basic structures of viruses. 2. To understand the life cycles of viruses. 3. To learn the differences between various species

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Biology Multiple Choice 016074 BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Test Code: 016074 Directions: Each of the questions or incomplete statements below is followed by five suggested

More information

Nucleotide Metabolism Biochemistry by Lippincott pp

Nucleotide Metabolism Biochemistry by Lippincott pp Nucleotide Metabolism Biochemistry by Lippincott pp 291-306 Metabolism: CONCEPT Ø Metabolism is the totality of an organism s chemical reactions. Ø A metabolic pathway begins with a specific molecule and

More information

Unit title: Biochemistry: Theory and Laboratory Skills (SCQF level 7)

Unit title: Biochemistry: Theory and Laboratory Skills (SCQF level 7) Higher National Unit specification General information Unit code: H922 34 Superclass: RH Publication date: May 2015 Source: Scottish Qualifications Authority Version: 01 Unit purpose This Unit is designed

More information

AP Biology. Scoring Guidelines

AP Biology. Scoring Guidelines 2017 AP Biology Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home for

More information

REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH

REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH EHRS Date Received: Reg. Doc. No.: REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH Principal Investigator: Penn ID#: Position Title: School: Department: Mailing Address: Mail Code: Telephone: FAX: E-mail:

More information

Alcoholic Fermentation in Yeast

Alcoholic Fermentation in Yeast Lab 5. Alcoholic Fermentation in Yeast Prelab Assignment Before coming to lab, read carefully the introduction and the procedures of this experiment, and then answer the prelab questions at the end of

More information

How Do You Clone a Gene?

How Do You Clone a Gene? S-20 Edvo-Kit #S-20 How Do You Clone a Gene? Experiment Objective: The objective of this experiment is to gain an understanding of the structure of DNA, a genetically engineered clone, and how genes are

More information

Molecular Genetics Student Objectives

Molecular Genetics Student Objectives Molecular Genetics Student Objectives Exam 1: Enduring understanding 3.A: Heritable information provides for continuity of life. Essential knowledge 3.A.1: DNA, and in some cases RNA, is the primary source

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Spostiamo ora la nostra attenzione sui batteri, e batteriofagi

Spostiamo ora la nostra attenzione sui batteri, e batteriofagi Spostiamo ora la nostra attenzione sui batteri, e batteriofagi Bacteria Mutate Spontaneously and Grow at an Exponential Rate. Useful for genetics studies, development of genetic engineering Teoria dell'adattamento

More information

Recombination, Genetic Technology and Bacterial Diagnosis 8.4, 8.6 and 15

Recombination, Genetic Technology and Bacterial Diagnosis 8.4, 8.6 and 15 Recombination, Genetic Technology and Bacterial Diagnosis 8.4, 8.6 and 15 Genetic Recombination During meiosis of human gametes In bacteria, occurs when DNA is transferred between bacteria. Increases diversity

More information

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material PowerPoint Notes on Chapter 9 - DNA: The Genetic Material Section 1 Identifying the Genetic Material Objectives Relate Griffith s conclusions to the observations he made during the transformation experiments.

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Chapter 18 Review Page 1

Chapter 18 Review Page 1 hapter 18 Review Page 1 1 In this diagram of a virus, the pointer is indicating the virus's capsid. genome. envelope. mitochondria. microfilaments. 2 Viral N makes mrn by the process of lysis. infection.

More information

Biotechnology Unit: Viruses

Biotechnology Unit: Viruses Biotechnology Unit: Viruses What do you see here? What is the cause: bacteria or virus? In the late 1800 s Martinus Beijerinck performed this experiment and saw that something smaller than bacteria was

More information

autotroph an organism that uses the Sun s energy and raw materials to make its own food; a producer

autotroph an organism that uses the Sun s energy and raw materials to make its own food; a producer trophic level a category of living things defined by how it gains its energy; the first trophic level contains autotrophs, and each higher level contains heterotrophs autotroph an organism that uses the

More information

Safe Operating Procedure

Safe Operating Procedure Safe Operating Procedure RECOMBINANT OR SYNTHETIC NUCLEIC ACIDS IBC AND OTHER REVIEW REQUIREMENTS (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) (Revised

More information

5. Industrial Microbiology the roles of bacteria yeast in food and alcohol production

5. Industrial Microbiology the roles of bacteria yeast in food and alcohol production 5. Industrial Microbiology the roles of bacteria yeast in food and alcohol production Learning Outcomes - Fermentation - Food/beverage production with microbes - Industrial microbiology - Bioprospecting

More information

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein CHAPTER 17 FROM GENE TO PROTEIN Section C: The Synthesis of Protein 1. Translation is the RNA-directed synthesis of a polypeptide: a closer look 2. Signal peptides target some eukaryotic polypeptides to

More information

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype)

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Question#1: One-Gene, One-Polypeptide The figure below shows the results of feeding trials with one auxotroph strain of Neurospora

More information

3. A student performed a gel electrophoresis experiment. The results are represented in the diagram below.

3. A student performed a gel electrophoresis experiment. The results are represented in the diagram below. Base your answers to questions 1 and 2 on the statement below and on your knowledge of biology. Scientists have found a gene in the DNA of a certain plant that could be the key to increasing the amount

More information

Division Ave. High School Ms. Foglia AP Biology. Nucleic acids. AP Biology Nucleic Acids. Information storage

Division Ave. High School Ms. Foglia AP Biology. Nucleic acids. AP Biology Nucleic Acids. Information storage Nucleic acids 2006-2007 Nucleic Acids Information storage 2006-2007 1 DNA Nucleic Acids Function: u genetic material stores information w genes w blueprint for building proteins n DNA RNA proteins transfers

More information

Chapter 4: How Cells Work

Chapter 4: How Cells Work Chapter 4: How Cells Work David Shonnard Department of Chemical Engineering 1 Presentation Outline: l l l l l Introduction : Central Dogma DNA Replication: Preserving and Propagating DNA Transcription:

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information