Mendel and the Gene Idea

Size: px
Start display at page:

Download "Mendel and the Gene Idea"

Transcription

1 Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

2 Overview: Drawing from the Deck of Genes What genetic principles account for the passing of traits from parents to offspring? The blending hypothesis the idea that genetic material from the two parents blends together (like blue and yellow paint blend to make green) In a freely mating population, a uniform population of individuals would eventually arise

3 Fig. 4-

4 Overview: Drawing from the Deck of Genes What genetic principles account for the passing of traits from parents to offspring? The blending hypothesis the idea that genetic material from the two parents blends together (like blue and yellow paint blend to make green) In a freely mating population, a uniform population of individuals would eventually arise The particulate hypothesis the idea that parents pass on discrete heritable units (genes) Genes retain their separate identities in offspring Mendel documented a particulate mechanism through his experiments with garden peas

5 Fig. 4-

6 Concepts in this Chapter. Mendel used the scientific approach to identify two laws of inheritance 2. The laws of probability govern Mendelian inheritance 3. Inheritance patterns are often more complex than predicated by simple Mendelian genetics 4. Many human traits follow Mendelian patterns of inheritance

7 CONCEPT 4.: MENDEL USED THE SCIENTIFIC APPROACH TO IDENTIFY TWO LAWS OF INHERITANCE

8 Concept 4.: Mendel used the scientific approach to identify two laws of inheritance Mendel discovered the basic principles of heredity by breeding garden peas in carefully planned experiments Mendel grew up on a small farm and received agricultural training in school Joined a monastery in 843, failed teaching exam Went to University of Vienna (85-853) Influenced by a physicist to do experimental study and a botanist to study variations in plants Returned to the monastery, taught school, started breeding peas for study in 857

9 Mendel s Experimental, Quantitative Approach Advantages of pea plants for genetic study: There are many varieties with distinct heritable features, or characters (such as flower color) character variants (such as purple or white flowers) are called traits Have a short generation time and produce many offspring per mating Mating of plants can be controlled Each pea plant has male (stamens) and female (carpels) sexual organs Self-fertilize in nature Cross-pollination (fertilization between different plants) can be achieved by dusting one plant with pollen from another

10 Mendel s Experimental, Quantitative Approach Mendel chose to track only those characters that varied in an either-or manner Eg purple vs white flowers Avoided traits that varied on a continuum He also used varieties that were true-breeding Plants that produce offspring of the same variety when they self-pollinate

11 Fig. 4-2a TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4

12 Fig. 4-2b RESULTS First filial generation offspring (F ) 5

13 Mendel s Experimental, Quantitative Approach In a typical experiment, Mendel mated two contrasting, true-breeding varieties, a process called hybridization The true-breeding parents are the P generation The hybrid offspring of the P generation are called the F generation When F individuals self-pollinate, the F 2 generation is produced

14 Fig. 4-2a TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4

15 Fig. 4-2b RESULTS First filial generation offspring (F ) 5

16 The Law of Segregation When Mendel crossed contrasting, true-breeding white and purple flowered pea plants, all of the F hybrids were purple If the blending model were correct, he d have seen pale purple flowers When Mendel crossed the F hybrids, many of the F 2 plants had purple flowers, but some had white Mendel discovered a ratio of about three to one, purple to white flowers, in the F 2 generation

17 Fig EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers

18 Fig EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids) All plants had purple flowers

19 Fig EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids) All plants had purple flowers F 2 Generation 705 purple-flowered plants 224 white-flowered plants

20 Mendel s Experimental, Quantitative Approach Mendel reasoned that only the purple flower factor was affecting flower color in the F hybrids The white flower factor was not lost, just masked Mendel called the purple flower color a dominant trait and the white flower color a recessive trait Mendel observed the same pattern of inheritance in six other pea plant characters, each represented by two traits What Mendel called a heritable factor is what we now call a gene

21 Table 4-

22 Mendel s Model Mendel developed a hypothesis to explain the 3: inheritance pattern he observed in F 2 offspring Four related concepts make up this model These concepts can be related to what we now know about genes and chromosomes

23 Mendel s Model The first concept is that alternative versions of genes account for variations in inherited characters For example, the gene for flower color in pea plants exists in two versions, one for purple flowers and the other for white flowers These alternative versions of a gene are now called alleles Each gene resides at a specific locus on a specific chromosome

24 Fig. 4-4 Allele for purple flowers Locus for flower-color gene Homologous pair of chromosomes Allele for white flowers

25 Mendel s Model The second concept is that for each character an organism inherits two alleles, one from each parent Each diploid organism has a pair of homologous chromosomes and therefore two copies of each gene Mendel made this deduction without knowing about the role of chromosomes The two alleles at a locus on a chromosome may be identical, as in the true-breeding plants of Mendel s P generation Alternatively, the two alleles at a locus may differ, as in the F hybrids

26 Mendel s Model The third concept is that if the two alleles at a locus differ, then one (the dominant allele) determines the organism s appearance, and the other (the recessive allele) has no noticeable effect on appearance In the flower-color example, the F plants had purple flowers because the allele for that trait is dominant

27 Mendel s Model The fourth concept, now known as the law of segregation, states that the two alleles for a heritable character separate (segregate) during gamete formation and end up in different gametes Thus, an egg or a sperm gets only one of the two alleles that are present in the somatic cells of an organism This segregation of alleles corresponds to the distribution of homologous chromosomes to different gametes in meiosis If different alleles are present 50% of the gametes will receive one allele and 50% the other.

28 Mendel s Model Mendel s segregation model accounts for the 3: ratio he observed in the F 2 generation of his numerous crosses The possible combinations of sperm and egg can be shown using a Punnett square, a diagram for predicting the results of a genetic cross between individuals of known genetic makeup A capital letter represents a dominant allele, and a lowercase letter represents a recessive allele

29 Fig P Generation Appearance: Purple flowers White flowers Genetic makeup: PP pp Gametes: P p

30 Fig P Generation Appearance: Purple flowers White flowers Genetic makeup: PP pp Gametes: P p F Generation Appearance: Genetic makeup: Gametes: Purple flowers Pp / 2 P / 2 p

31 Fig P Generation Appearance: Purple flowers White flowers Genetic makeup: PP pp Gametes: P p F Generation Appearance: Genetic makeup: Gametes: Purple flowers Pp / 2 P / 2 p F 2 Generation P Sperm p Eggs P p PP Pp Pp pp 3

32 Useful Genetic Vocabulary An organism with two identical alleles for a character is said to be homozygous for the gene controlling that character An organism that has two different alleles for a gene is said to be heterozygous for the gene controlling that character Unlike homozygotes, heterozygotes are not truebreeding

33 Useful Genetic Vocabulary Because of the different effects of dominant and recessive alleles, an organism s traits do not always reveal its genetic composition Therefore, we distinguish between an organism s Phenotype- physical appearance Genotype- genetic makeup In the example of flower color in pea plants, PP and Pp plants have the same phenotype (purple) but different genotypes

34 Fig. 4-6 Phenotype Genotype Purple PP (homozygous) 3 Purple Pp (heterozygous) 2 Purple Pp (heterozygous) White pp (homozygous) Ratio 3: Ratio :2:

35 The Testcross How can we tell the genotype of an individual with the dominant phenotype? Such an individual must have one dominant allele, but the individual could be either homozygous dominant or heterozygous The answer is to carry out a testcross breeding the mystery individual with a homozygous recessive individual If any offspring display the recessive phenotype, the mystery parent must be heterozygous

36 Fig. 4-7a TECHNIQUE Dominant phenotype, unknown genotype: PP or Pp? Recessive phenotype, known genotype: pp Predictions If PP If Pp or Sperm Sperm p p p p Eggs P Pp Pp Eggs P Pp Pp P Pp Pp p pp pp

37 Fig. 4-7b RESULTS All offspring purple or / 2 offspring purple and / 2 offspring white

38 Fig. 4-7 TECHNIQUE Dominant phenotype, unknown genotype: PP or Pp? Recessive phenotype, known genotype: pp Predictions If PP If Pp or Sperm Sperm p p p p P Eggs Pp Pp P Eggs Pp Pp P Pp Pp p pp pp RESULTS All offspring purple or / 2 offspring purple and / 2 offspring white

39 The Law of Independent Assortment Mendel derived the law of segregation by following a single character The F offspring produced in this cross were monohybrids individuals that are heterozygous for one character A cross between such heterozygotes is called a monohybrid cross

40 The Law of Independent Assortment Mendel identified his second law of inheritance by following two characters at the same time Crossing two true-breeding parents differing in two characters produces dihybrids in the F generation, heterozygous for both characters A dihybrid cross, a cross between F dihybrids, can determine whether two characters are transmitted to offspring as a package or independently

41 Fig. 4-8a EXPERIMENT P Generation YYRR yyrr Gametes YR yr F Generation Predictions Hypothesis of dependent assortment YyRr Hypothesis of independent assortment Predicted offspring of F 2 generation Eggs / 2 / 2 YR yr YR Sperm / 2 / 2 yr YYRR YyRr YyRr yyrr or Eggs / 4 / 4 / 4 YR Yr yr YR Yr Sperm yr / 4 / 4 / 4 / 4 yr YYRR YYRr YyRR YyRr YYRr YYrr YyRr Yyrr YyRR YyRr yyrr yyrr 3 / 4 / 4 Phenotypic ratio 3: / 4 yr YyRr Yyrr yyrr yyrr 9 / 6 3 / 6 3 / 6 / 6 Phenotypic ratio 9:3:3:

42 Fig. 4-8b RESULTS Phenotypic ratio approximately 9:3:3:

43 Fig. 4-8 EXPERIMENT P Generation YYRR yyrr Gametes YR yr F Generation Predictions Hypothesis of dependent assortment YyRr Hypothesis of independent assortment Predicted offspring of F 2 generation Eggs / 2 / 2 YR yr Sperm / 2 YR / 2 yr YYRR YyRr YyRr yyrr or Eggs / 4 / 4 / 4 YR Yr yr Sperm / 4 YR / 4 Yr / 4 yr / 4 yr YYRR YYRr YyRR YyRr YYRr YYrr YyRr Yyrr YyRR YyRr yyrr yyrr 3 / 4 / 4 Phenotypic ratio 3: / 4 yr YyRr Yyrr yyrr yyrr 9 / 6 3 / 6 3 / 6 / 6 RESULTS Phenotypic ratio 9:3:3: Phenotypic ratio approximately 9:3:3:

44 The Law of Independent Assortment Using a dihybrid cross, Mendel developed the law of independent assortment The law of independent assortment states that each pair of alleles segregates independently of each other pair of alleles during gamete formation Strictly speaking, this law applies only to genes on different, nonhomologous chromosomes Genes located near each other on the same chromosome tend to be inherited together

45 Summary

46 CONCEPT 4.2: THE LAWS OF PROBABILITY GOVERN MENDELIAN INHERITANCE

47 Concept 4.2: The laws of probability govern Mendelian inheritance Mendel s laws of segregation and independent assortment reflect the rules of probability When tossing a coin, the outcome of one toss has no impact on the outcome of the next toss In the same way, the alleles of one gene segregate into gametes independently of another gene s alleles

48 The Multiplication and Addition Rules Applied to Monohybrid Crosses The multiplication rule states that the probability that two or more independent events will occur together is the product of their individual probabilities Probability in an F monohybrid cross can be determined using the multiplication rule Segregation in a heterozygous plant is like flipping a coin: Each gamete has a 2 chance of carrying the dominant allele and a chance of carrying the recessive allele 2

49 Fig. 4-9 Rr Segregation of alleles into eggs Rr Segregation of alleles into sperm Sperm / 2 R / 2 r / 2 R R R R r Eggs / 4 / 4 r r / 2 r R r / 4 / 4

50 The Multiplication and Addition Rules Applied to Monohybrid Crosses The rule of addition states that the probability that any one of two or more exclusive events will occur is calculated by adding together their individual probabilities The rule of addition can be used to figure out the probability that an F 2 plant from a monohybrid cross will be heterozygous rather than homozygous

51 Solving Complex Genetics Problems with the Rules of Probability We can apply the multiplication and addition rules to predict the outcome of crosses involving multiple characters A dihybrid or other multicharacter cross is equivalent to two or more independent monohybrid crosses occurring simultaneously In calculating the chances for various genotypes each character is considered separately then the individual probabilities are multiplied together

52 Fig. 4-UN

53 CONCEPT 4.3: INHERITANCE PATTERNS ARE OFTEN MORE COMPLEX THAN PREDICTED BY SIMPLE MENDELIAN GENETICS

54 Concept 4.3: Inheritance patterns are often more complex than predicted by simple Mendelian genetics The relationship between genotype and phenotype is rarely as simple as in the pea plant characters Mendel studied Many heritable characters are not determined by only one gene with two alleles However, the basic principles of segregation and independent assortment apply even to more complex patterns of inheritance

55 Extending Mendelian Genetics for a Single Gene Inheritance of characters by a single gene may deviate from simple Mendelian patterns in the following situations: When alleles are not completely dominant or recessive When a gene has more than two alleles When a gene produces multiple phenotypes

56 Degrees of Dominance Complete dominance occurs when phenotypes of the heterozygote and dominant homozygote are identical Like the purple flower In incomplete dominance, the phenotype of F hybrids is somewhere between the phenotypes of the two parental varieties Not blending because the traits are separable with further crosses Offspring show :2: phenotypic and genotypic ratios

57 Fig P Generation Red C R C R White C W C W Gametes C R C W

58 Fig P Generation Red C R C R White C W C W Gametes C R C W F Generation Pink C R C W C R Gametes / 2 / 2 C W

59 Fig P Generation Red C R C R White C W C W Gametes C R C W F Generation Pink C R C W C R Gametes / 2 / 2 C W F 2 Generation Eggs / 2 C R C R Sperm / 2 / 2 C W C R C R C R C W / C W 2 C R C W C W C W

60 Degrees of Dominance In codominance, two dominant alleles affect the phenotype in separate, distinguishable ways M and N blood groups of humans due to the presence of specific molecules on the surface of red blood cells People of the M group (MM) have one kind of molecule on their red blood cells People of the N group (NN) have a different kind People of the MN group (MN) have both the M and N phenotype

61 The Relationship between Dominance and Phenotype A dominant allele does not subdue a recessive allele; alleles don t interact Alleles are simply variations in a gene s nucleotide sequence

62 One dominant allele results in enough of the enzyme to synthesize adequate amounts of branched starch The Relationship between Dominance and Phenotype Round vs wrinkled pea shape The dominant allele (round) codes for an enzyme that helps convert an unbranched form of starch to a branched form in the seed The recessive allele (wrinkled) codes for a defective form of this enzyme Leads to accumulation of unbranched starch Excess water to enter seed by osmosis When seed dries it wrinkles If a dominant allele is present no excess water enters the seed and it does not wrinkle on drying

63 The Relationship between Dominance and Phenotype For any character, dominance/recessiveness relationships of alleles depend on the level at which we examine the phenotype

64 The Relationship between Dominance and Phenotype Tay-Sachs disease is fatal; a dysfunctional enzyme causes an accumulation of lipids in the brain Only children with two copies of the Tay-Sachs allele have the disease At the organismal level, the allele is recessive At the biochemical level, the phenotype (i.e., the enzyme activity level) is incompletely dominant The activity level of the lipid-metabolizing enzyme is reduced in heterozygotes At the molecular level, the alleles are codominant Heterozygotes produce equal numbers of normal and dysfunctional enzyme molecules

65 The Relationship between Dominance and Phenotype Frequency of Dominant Alleles Dominant alleles are not necessarily more common in populations than recessive alleles For example, one baby out of 400 in the United States is born with extra fingers or toes

66 The Relationship between Dominance and Phenotype The allele for this unusual trait is dominant to the allele for the more common trait of five digits per appendage In this example, the recessive allele is far more prevalent than the population s dominant allele

67 Multiple Alleles Most genes exist in populations in more than two allelic forms For example, the four phenotypes of the ABO blood group in humans are determined by three alleles for the enzyme (I) that attaches A or B carbohydrates to red blood cells: I A, I B, and i. The enzyme encoded by the I A allele adds the A carbohydrate, whereas the enzyme encoded by the I B allele adds the B carbohydrate; the enzyme encoded by the i allele adds neither

68 Fig. 4- Allele I A I B i Carbohydrate A B none (a) The three alleles for the ABO blood groups and their associated carbohydrates Genotype Red blood cell appearance Phenotype (blood group) I A I A or I A i A I B I B or I B i B I A I B AB ii O (b) Blood group genotypes and phenotypes

69 Pleiotropy Most genes have multiple phenotypic effects, a property called pleiotropy For example, pleiotropic alleles are responsible for the multiple symptoms of certain hereditary diseases, such as cystic fibrosis and sickle-cell disease

70 Extending Mendelian Genetics for Two or More Genes Some traits may be determined by two or more genes

71 Epistasis In epistasis, a gene at one locus alters the phenotypic expression of a gene at a second locus For example, in mice and many other mammals, coat color depends on two genes One gene determines the pigment color (with alleles B for black and b for brown) The other gene (with alleles C for color and c for no color) determines whether the pigment will be deposited in the hair

72 Fig. 4-2 BbCc BbCc Eggs Sperm / 4 / 4 / 4 / 4 BC bc Bc bc / 4 BC BBCC BbCC BBCc BbCc / 4 bc BbCC bbcc BbCc bbcc / 4 Bc BBCc BbCc BBcc Bbcc / 4 bc BbCc bbcc Bbcc bbcc 9 : 3 : 4

73 Polygenic Inheritance Some characters cannot be defined as eitheror as Mendel s genes were Quantitative characters are those that vary in the population along a continuum Quantitative variation usually indicates polygenic inheritance, an additive effect of two or more genes on a single phenotype Skin color in humans is an example of polygenic inheritance

74 Fig. 4-3 AaBbCc AaBbCc Sperm / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 Eggs / 8 / 8 / 8 / 8 / 8 Phenotypes: Number of / 64 6 / 64 5 / / 64 5 / 64 6 / 64 / 64 dark-skin alleles:

75 Nature and Nurture: The Environmental Impact on Phenotype Another departure from Mendelian genetics arises when the phenotype for a character depends on environment as well as genotype The norm of reaction is the phenotypic range of a genotype influenced by the environment For example, hydrangea flowers of the same genotype range from blue-violet to pink, depending on soil acidity

76 Fig. 4-4

77 Nature and Nurture: The Environmental Impact on Phenotype Norms of reaction are generally broadest for polygenic characters Such characters are called multifactorial because genetic and environmental factors collectively influence phenotype

78 Integrating a Mendelian View of Heredity and Variation An organism s phenotype includes its physical appearance, internal anatomy, physiology, and behavior An organism s phenotype reflects its overall genotype and unique environmental history

79 Fig. 4-UN2 Degree of dominance Description Example Heterozygous phenotype same as that of homozygous dominant PP Pp Incomplete dominance of either allele C R C R C R C W C W C W Heterozygotes: Both phenotypes expressed I A I B Multiple alleles In the whole population, some genes have more than two alleles One gene is able to affect multiple phenotypic characters Sickle-cell disease

80 Fig. 4-UN2 Degree of dominance Description Example Complete dominance of one allele Heterozygous phenotype same as that of homozygous dominant PP Pp Incomplete dominance of either allele Heterozygous phenotype intermediate between the two homozygous phenotypes C R C R C R C W C W C W Codominance Heterozygotes: Both phenotypes expressed I A I B Multiple alleles Pleiotropy In the whole population, some genes have more than two alleles One gene is able to affect multiple phenotypic characters ABO blood group alleles I A, I B, i Sickle-cell disease

81 CONCEPT 4.4: MANY HUMAN TRAITS FOLLOW MENDELIAN PATTERNS OF INHERITANCE

82 Concept 4.4: Many human traits follow Mendelian patterns of inheritance Humans are not good subjects for genetic research Generation time is too long Parents produce relatively few offspring Breeding experiments are unacceptable However, basic Mendelian genetics endures as the foundation of human genetics

83 Pedigree Analysis A pedigree is a family tree that describes the interrelationships of parents and children across generations Rather that manipulate breeding, study results of matings that have already occurred Inheritance patterns of particular traits can be traced and described using pedigrees

84 Fig. 4-5a Key Male Female Affected male Affected female Mating Offspring, in birth order (first-born on left)

85 Fig. 4-5b st generation (grandparents) Ww ww ww Ww 2nd generation (parents, aunts, and uncles) Ww ww ww Ww Ww ww 3rd generation (two sisters) WW or Ww ww Widow s peak (a) Is a widow s peak a dominant or recessive trait? No widow s peak

86 Fig. 4-5c st generation (grandparents) Ff Ff ff Ff 2nd generation (parents, aunts, and uncles) FF or Ff ff ff Ff Ff ff 3rd generation (two sisters) ff or FF Ff Attached earlobe Free earlobe (b) Is an attached earlobe a dominant or recessive trait?

87 Fig. 4-5 Key Male Female Affected male Affected female Mating Offspring, in birth order (first-born on left) st generation (grandparents) Ww ww ww Ww 2nd generation (parents, aunts, and uncles) Ww ww ww Ww Ww ww 3rd generation (two sisters) WW or Ww ww Widow s peak No widow s peak (a) Is a widow s peak a dominant or recessive trait? st generation (grandparents) Ff Ff ff Ff 2nd generation (parents, aunts, and uncles) FF or Ff ff ff Ff Ff ff 3rd generation (two sisters) ff FF or Ff Attached earlobe Free earlobe (b) Is an attached earlobe a dominant or recessive trait?

88 Pedigree Analysis Pedigrees can also be used to make predictions about future offspring We can use the multiplication and addition rules to predict the probability of specific phenotypes For example, what is the probability that a child from heterozygous parents (WwFf) will have a widow s peak and attached earlobes? (widow s peak (Ww) and free earlobes (Ff))

89 Pedigree Analysis Probability of having a Widow s peak with two Ww parents is ¾ Probability of having attached earlobes with two Ff parents is ¼ Therefore the probability of having a widow s peak and attached earlobes: ¾ * ¼ = 3/6

90 Recessively Inherited Disorders Many genetic disorders are inherited in a recessive manner They range from relatively mild )albinism) to life-threatening (cystic fibrosis)

91 The Behavior of Recessive Alleles Recessively inherited disorders show up only in individuals homozygous for the allele Carriers are heterozygous individuals who carry the recessive allele but are phenotypically normal (i.e., pigmented) Albinism is a recessive condition characterized by a lack of pigmentation in skin and hair

92 Fig. 4-6 Parents Normal Normal Aa Aa Eggs A a Sperm A AA Normal Aa Normal (carrier) a Aa Normal (carrier) aa Albino

93 The Behavior of Recessive Alleles If a recessive allele that causes a disease is rare, then the chance of two carriers meeting and mating is low Consanguineous matings (i.e., matings between close relatives) increase the chance of mating between two carriers of the same rare allele Most societies and cultures have laws or taboos against marriages between close relatives

94 Cystic Fibrosis Cystic fibrosis is the most common lethal genetic disease in the United States, striking one out of every 2,500 people of European descent The cystic fibrosis allele results in defective or absent chloride transport channels in plasma membranes Symptoms include mucus buildup in some internal organs and abnormal absorption of nutrients in the small intestine, chronic bronchitis and bacterial infections The extracellular chloride also disables a natural antibiotic made by some body cells Without treatment affected children die before age 5 With treatment they can live past their late 20s or even 30s

95 Sickle-Cell Disease Sickle-cell disease affects one out of 400 African- Americans The disease is caused by the substitution of a single amino acid in the hemoglobin protein in red blood cells When oxygen levels are low sickle cell hemoglobin aggregates into long rods that deform red blood cells into a sickle shape Symptoms include physical weakness, pain, organ damage, and even paralysis Regular blood tranfusion can prevent brain damage and drugs can treat other problems

96 Sickle-Cell Disease The two alleles are codominant, both are sythesized Carriers have sickle cell trait Healthy but may suffer sickle cell symptoms under blood-oxygen stress in 0 African Americans has sickle-cell trait Individuals with sickle cell disease have increased resistance to the malaria parasite, which infects red blood cells

97 Dominantly Inherited Disorders Some human disorders are caused by dominant alleles Dominant alleles that cause a lethal disease are rare and arise by mutation Achondroplasia is a form of dwarfism caused by a rare dominant allele

98 Fig. 4-7 Parents Dwarf Normal Dd dd Sperm Eggs d D Dd Dwarf d dd Normal d Dd Dwarf dd Normal

99 Huntington s Disease A lethal dominant allele can escape elimination if it causes death at a relatively advanced age after the individual has past the trait to his or her children Huntington s disease is a degenerative disease of the nervous system The disease has no obvious phenotypic effects until the individual is about 35 to 40 years of age Any child born to a parent with Huntington s disease has a 50% chance of having the disease and disorder Afflicts in 0,000 in the USA The gene has now been sequenced and a test developed to detect the Huntington s allele

100 Multifactorial Disorders Many diseases, such as heart disease and cancer, have both genetic and environmental components Little is understood about the genetic contribution to most multifactorial diseases

101 Genetic Testing and Counseling Genetic counselors can provide information to prospective parents concerned about a family history for a specific disease

102 Counseling Based on Mendelian Genetics and Probability Rules Using family histories, genetic counselors help couples determine the odds that their children will have genetic disorders For example, both John and Carol had brothers who died of the same recessive disease John, Carol and their parents do not have the disease What are the chances that the their children will have the disease?

103 Deductions Let s use A to symbolize the normal allele, a will be the disease allele Both John s parents and Carol s parents must have been carriers of the disease (Aa) Neither John nor Carol is homozygous recessive (aa) because neither has the disease, so they must be each either AA or Aa

104 Calculations John and Carol each has a 2/3 chance of being a carrier (Aa) And a /3 chance of being homozygous dominant (AA) The probability that a child will have the disease if both are carriers is 2/3 (chance of John being a carrier) * 2/3 (Chance of Carol being a carrier) * ¼ (chance of the offspring of two carriers being homozygous recessive) = /9 If their first child is born with the disease then we know that John and Carol are both carriers In that case the chance that their next child will have the disease is also ¼.

105 Tests for Identifying Carriers For a growing number of diseases, tests are available that identify carriers and help define the odds more accurately

106 Fetal Testing In amniocentesis, the liquid that bathes the fetus is removed and tested 4 th to 6 th week of pregnancy Fetal cells cultured and karyotypes

107 Fig. 4-8a Amniotic fluid withdrawn Fetus Centrifugation Placenta Uterus Cervix Fluid Fetal cells Several hours Biochemical tests Several weeks (a) Amniocentesis Several weeks Karyotyping

108 Fetal Testing In chorionic villus sampling (CVS), a sample of the placenta is removed and tested 8 th to 0 th week of pregnancy Faster karyotyping

109 Fig. 4-8b Placenta Chorionic villi Fetus Suction tube inserted through cervix Biochemical tests Several hours Fetal cells Karyotyping Several hours (b) Chorionic villus sampling (CVS)

110 Fig. 4-8 Amniotic fluid withdrawn Fetus Centrifugation Fetus Placenta Uterus Cervix Placenta Chorionic villi Suction tube inserted through cervix Fluid Fetal cells Several hours Several weeks Biochemical tests Several hours Fetal cells (a) Amniocentesis Several weeks Karyotyping Several hours (b) Chorionic villus sampling (CVS)

111 Fetal Testing Other techniques, such as ultrasound and fetoscopy, allow fetal health to be assessed visually in utero Video: Ultrasound of Human Fetus I

112 Newborn Screening Some genetic disorders can be detected at birth by simple tests that are now routinely performed in most hospitals in the United States PKU Occurs in in births Individuals accumulate the amino acid phenylalanine and its derivative phenylpyruvate in blood to toxic levels Leads to mental retardation If disorder is detected early a special low diet in phenylalanine usually promotes normal development

113 Summary

114 You should now be able to:. Define the following terms: true breeding, hybridization, monohybrid cross, P generation, F generation, F 2 generation 2. Distinguish between the following pairs of terms: dominant and recessive; heterozygous and homozygous; genotype and phenotype 3. Use a Punnett square to predict the results of a cross and to state the phenotypic and genotypic ratios of the F 2 generation

115 You should now be able to: 4. Explain how phenotypic expression in the heterozygote differs with complete dominance, incomplete dominance, and codominance 5. Define and give examples of pleiotropy and epistasis 6. Explain why lethal dominant genes are much rarer than lethal recessive genes 7. Explain how carrier recognition, fetal testing, and newborn screening can be used in genetic screening and counseling

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Chapter 4: Mendel and the Gene Idea. The Experiments of Gregor Mendel 2. Beyond Mendelian Genetics 3. Human Genetics . The Experiments of Gregor Mendel Chapter Reading pp. 268-276 TECHNIQUE Parental generation

More information

AP Biology Chapter 14 Notes Mendel and the Gene Idea

AP Biology Chapter 14 Notes Mendel and the Gene Idea AP Biology Chapter 14 Notes Mendel and the Gene Idea I. Chapter 14.1: Mendel used the scientific approach to identify two laws of inheritance. II. Chapter 14.2: The Laws of Probability Govern Mendelian

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 14 Mendel and the Gene Idea Lectures

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Chapter 14: Mendel and the Gene Idea Name Period If you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

Observing Patterns In Inherited Traits

Observing Patterns In Inherited Traits Observing Patterns In Inherited Traits Ø Where Modern Genetics Started/ Gregor Mendel Ø Law of Segregation Ø Law of Independent Assortment Ø Non-Mendelian Inheritance Ø Complex Variations in Traits Genetics:

More information

Genetics Patterns of Inheritance. Biology 20

Genetics Patterns of Inheritance. Biology 20 Genetics Patterns of Inheritance Biology 20 Genetics Study of heredity Aristotle Pangenes Von Leewenhoek Homounculus de Graff ovarian follicle is a miniature person Blended Theory Genetic material mixes

More information

Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!)

Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!) Genetics Early Ideas about Heredity People knew that sperm and eggs transmitted information about traits Blending theory mother and father s traits blended together Problem: Would expect variation to disappear

More information

Observing Patterns in Inherited Traits. Chapter 11

Observing Patterns in Inherited Traits. Chapter 11 Observing Patterns in Inherited Traits Chapter 11 Impacts, Issues: The Color of Skin Like most human traits, skin color has a genetic basis; more than 100 gene products affect the synthesis and deposition

More information

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance Gregor Mendel Austrian monk * Studied science and mathematics

More information

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance Name Biol 211 - Group Number Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance Reference: Chapter 14-15 (Biology by Campbell/Reece, 8 th ed.) Note: In addition to the

More information

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question.

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question. Chapter Test A CHAPTER 11 Complex Inheritance and Human Heredity Part A: Multiple Choice In the space at the left, write the letter of the term or phrase that best completes each statement or answers each

More information

Genetics and Human Inheritance

Genetics and Human Inheritance BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 20 Genetics and Human Inheritance Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Mendel & Inheritance SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment Mendel s Law of Segregation: gene pairs separate when gametes (sex cells) are formed; each gamete as only

More information

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce Genetic Variability Biology 102 Lecture 9: Genetic Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic hybrids Tendency

More information

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses Objective 8: Predict the results of dihybrid genetic crosses by using Punnett squares Exploring Mendelian Genetics 11.3 Dihybrid cross--a cross that involves two pairs of contrasting traits. A cross between

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Chapter 14. Beyond Mendel s Laws of Inheritance 1 Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single gene each gene has only

More information

http://www.simonmawer.com/mendel's_garden.jpg 1 http://khzs.fme.vutbr.cz/iahrwg2009/img/map_cz.gif 2 http://www.haverford.edu/biology/meneely/brno.htm 3 http://biology.clc.uc.edu/fankhauser/travel/berlin/for_web/

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Chapter 14. Beyond Mendel s Laws of Inheritance Modified from Kim Foglia Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single

More information

Genetics and Heredity

Genetics and Heredity Genetics and Heredity History Genetics is the study of genes. Inheritance is how traits, or characteristics, are passed on from generation to generation. Chromosomes are made up of genes, which are made

More information

MENDELIAN GENETICS This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

MENDELIAN GENETICS This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law. MENDELIAN GENETICS This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law. Gregor Mendel! 19 th century Austrian monk! Interested in heredity!

More information

Chp 10 Patterns of Inheritance

Chp 10 Patterns of Inheritance Chp 10 Patterns of Inheritance Dogs, one of human s longest genetic experiments Over 1,000 s of years, humans have chosen and mated dogs with specific traits. A process called -artificial selection The

More information

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above?

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above? Review 0 Genotype: alleles that are present 0 Phenotype: physical appearance 0 Rr 0 RR 0 rr 0 If Red is dominant to white, what is the phenotype of the above? 2 Vocab to Remember! 0 Allele 0 Gene 0 Trait

More information

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology Table of Contents Chapter: Heredity Section 1: Genetics Section 2: Genetics Since Mendel Section 3: Biotechnology 1 Genetics Inheriting Traits Eye color, nose shape, and many other physical features are

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It was not until 1900 that biology finally caught up with Gregor Mendel. 3 guys made him famous. Factors = genes located on chromosomes, which are made of the chemical DNA, whose function

More information

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics Genetics Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics Blending Theory offspring have a blend of traits of their parents Problems with blending theory

More information

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue Benjamin A. Pierce Genetics Essentials Concepts and Connections SECOND EDITION CHAPTER 3 Basic Principles of Heredity CHAPTER 3 OUTLINE 3.1 Gregor Mendel Discovered the Basic Principles of Heredity, 44

More information

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology. Biology 1 of 31 11-3 Exploring Mendelian Exploring Genetics Mendelian Genetics 2 of 31 What is the principle of independent assortment? 3 of 31 1 The principle of independent assortment states that genes

More information

Non Mendelian Genetics

Non Mendelian Genetics Non Mendelian Genetics TEKS 6 Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: 6F

More information

Genetics. Chapter 10/12-ish

Genetics. Chapter 10/12-ish Genetics Chapter 10/12-ish Learning Goals For Biweekly Quiz #7 You will be able to explain how offspring receive genes from their parents You will be able to calculate probabilities of simple Mendelian

More information

Topic 11. Genetics. I. Patterns of Inheritance: One Trait Considered

Topic 11. Genetics. I. Patterns of Inheritance: One Trait Considered Topic 11. Genetics Introduction. Genetics is the study of how the biological information that determines the structure and function of organisms is passed from one generation to the next. It is also concerned

More information

Classical (Mendelian) Genetics. Gregor Mendel

Classical (Mendelian) Genetics. Gregor Mendel Classical (Mendelian) Genetics Gregor Mendel Vocabulary Genetics: The scientific study of heredity Allele: Alternate forms of a gene/factor. Genotype: combination of alleles an organism has. Phenotype:

More information

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells.

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells. The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells. Mendelian Genetics Gregor Mendel was an Austrian monk, who,

More information

! Allele Interactions

! Allele Interactions Chapter 4!Extensions to Mendelian Genetics! Allele Interactions 1 INTRODUCTION Mendelian inheritance describes inheritance patterns that obey two laws Law of segregation Law of independent assortment Simple

More information

Concept Probability laws govern Mendelian inheritance

Concept Probability laws govern Mendelian inheritance Figure 14.8 Inquiry Do the alleles for one character segregate into gametes dependently or independently of the alleles for a different character? Experiment To follow the characters of seed color and

More information

Lab Mendelian Genetics-Exploring Genetic Probability -Revisiting Mendel s Observations

Lab Mendelian Genetics-Exploring Genetic Probability -Revisiting Mendel s Observations NAMES: (one packet per partner pair to be turned in) DATE: Lab Mendelian Genetics-Exploring Genetic -Revisiting Mendel s Observations Purpose: Students will 1. Learn that probability is strongly related

More information

DNA segment: T A C T G T G G C A A A

DNA segment: T A C T G T G G C A A A DNA Structure, Replication, Protein Synthesis & Name Period Genetics Study Guide Chapter 12 and 13 Structure of DNA and Protein Synthesis 1. What macromolecule is coded for by genes located on DNA? Provide

More information

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Genetics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 41. Situations in which one allele for a gene is not completely dominant over another allele

More information

Genetics. Biology. vocabulary terms

Genetics. Biology. vocabulary terms Genetics Biology vocabulary terms INHERITANCE or HEREDITY- The genetic transmission of characteristics from parent to offspring, such as hair, eye, and skin color. 1 vocabulary terms HOMOLOGOUS CHROMOSOME-

More information

Chapter Extending Mendelian Genetics. Incomplete Dominance. Incomplete Dominance. R = red R = white. Incomplete Dominance (alt)

Chapter Extending Mendelian Genetics. Incomplete Dominance. Incomplete Dominance. R = red R = white. Incomplete Dominance (alt) female / eggs Colonie High AP Biology Chapter 12.2 12.3 Beyond Mendel s Laws of Inheritance Etending Mendelian Genetics Mendel worked with a simple system peas are genetically simple most traits are controlled

More information

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene Genetics The Study of Inherited Characteristics Meiosis in the Gonads makes gametes: Sperm Meiotic cell division Egg Chromosome DNA Code for Gene Segments of DNA Code Code for a trait Hair Color Eye Color

More information

Lecture 3 Monohybrid and Dihybrid Crosses

Lecture 3 Monohybrid and Dihybrid Crosses THE MONOHYBRID CROSS Lecture 3 Monohybrid and Dihybrid Crosses FOLLOWING THE INHERITANCE OF ONE TRAIT Monohybrid cross Parents differ by a single trait. Crossing two pea plants that differ in stem size,

More information

Exploring Mendelian Genetics 11-3

Exploring Mendelian Genetics 11-3 Exploring Mendelian Genetics 11- GENES are more complicated than Mendel thought Some traits have MORE than 2 allele choices = MULTIPLE ALLELE TRAIT http://www.eslkidstuff.com/images/tallshort.gif EX: blood

More information

Inheritance Biology. Unit Map. Unit

Inheritance Biology. Unit Map. Unit Unit 8 Unit Map 8.A Mendelian principles 482 8.B Concept of gene 483 8.C Extension of Mendelian principles 485 8.D Gene mapping methods 495 8.E Extra chromosomal inheritance 501 8.F Microbial genetics

More information

Phenotypic Expression & Multi-Factorial Traits (Learning Objectives)

Phenotypic Expression & Multi-Factorial Traits (Learning Objectives) Phenotypic Expression & Multi-Factorial Traits (Learning Objectives) Understand and explain the factors affecting the phenotypic expression of Mendelian inheritance and provide examples for each: a) Lethal

More information

Q.2: Write whether the statement is true or false. Correct the statement if it is false.

Q.2: Write whether the statement is true or false. Correct the statement if it is false. Solved Exercise Biology (II) Q.1: Fill In the blanks. i. is the basic unit of biological information. ii. A sudden change in the structure of a gene is called. iii. is the chance of an event to occur.

More information

Biology Genetics Practice Quiz

Biology Genetics Practice Quiz Biology Genetics Practice Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The table above shows information related to blood types. What genotype(s)

More information

EOC Review Reporting Category 2 Mechanisms of Genetics

EOC Review Reporting Category 2 Mechanisms of Genetics EOC Review Reporting Category 2 Mechanisms of Genetics The student will demonstrate an understanding of the mechanisms of genetics. Langham Creek High School 2012-2013 By PresenterMedia.com TEK 6A Identify

More information

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments.

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments. Fundamentals of Genetics 1. What scientist is responsible for our study of heredity? 2. Define heredity. 3. What plant did Mendel use for his hereditary experiments? 4. Name the 7 characteristics, giving

More information

12 The Chromosomal Basis of Inheritance

12 The Chromosomal Basis of Inheritance CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 12 The Chromosomal Basis of Inheritance Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Locating Genes

More information

Exam 1 Answers Biology 210 Sept. 20, 2006

Exam 1 Answers Biology 210 Sept. 20, 2006 Exam Answers Biology 20 Sept. 20, 2006 Name: Section:. (5 points) Circle the answer that gives the maximum number of different alleles that might exist for any one locus in a normal mammalian cell. A.

More information

Gregor Mendel. Austrian Monk Worked with pea plants

Gregor Mendel. Austrian Monk Worked with pea plants Gregor Mendel Austrian Monk Worked with pea plants A. True Breeding Pea Plants Self pollinate and produce new plants genetically identical to themselves Mendel decides to cross pollinate the plants Offspring

More information

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides Name: Date: 1. A strand of DNA consists of thousands of smaller, repeating units known as A. lipids B. amino acids C. nucleotides D. polysaccarides 2. Which two bases are present in equal amounts in a

More information

Biology Mrs. Howe Tues, 2/7 Agenda New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1

Biology Mrs. Howe Tues, 2/7 Agenda New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1 Biology Mrs. Howe Tues, 2/7 New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1 Start fresh with semester 2 and our next unit. Due Today: None Announcements: Have you checked your Semester

More information

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster Chromosomes and Inheritance 1 4 Fig. 12-10, p. 244 Introduction It was not until 1900 that biology finally caught up with Gregor Mendel. Independently, Karl Correns, Erich von Tschermak, and Hugo de Vries

More information

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4 Mendelian inheritance describes inheritance patterns that obey two laws: Law of

More information

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2017 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2017 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2017 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4 Mendelian inheritance describes inheritance patterns that obey two laws: Law of

More information

AP Biology. Gregor Mendel. Chapter 14. Mendel & Genetics. Mendel s work. Looking closer at Mendel s work. What did Mendel s findings mean?

AP Biology. Gregor Mendel. Chapter 14. Mendel & Genetics. Mendel s work. Looking closer at Mendel s work. What did Mendel s findings mean? Chater 14. Mendel & Genetics Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in eas used eerimental method used quantitative

More information

PED'IGREE, n. from L. pes,pedis, foot. Lineage; line of ancestors from which a person or tribe descends; genealogy.

PED'IGREE, n. from L. pes,pedis, foot. Lineage; line of ancestors from which a person or tribe descends; genealogy. Also review list of objectives, notes, textbook, and homework assignments 1. Animals can teach us genetics. Match Heterozygotes exhibit two distinct proteins on red blood cells Show a dominant and recessive

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 12 The Chromosomal Basis of Inheritance Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

& Practice

& Practice IB BIOLOGY 4.1-4.3 & 10.1-10.3 Practice 1. Red-green colour blindness is a sex-linked condition. Which of the following always shows normal vision? (HL p1 May09 TZ1 q11) A. A homozygous male B. A homozygous

More information

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a

More information

Mendelian Genetics. What is Gregor Mendel known for and what organism did he use? When did Mendel conduct most of his work?

Mendelian Genetics. What is Gregor Mendel known for and what organism did he use? When did Mendel conduct most of his work? Mendelian Genetics What is Gregor Mendel known for and what organism did he use? When did Mendel conduct most of his work? What Mendel called particles are actually Define the following: Trait- Heredity-

More information

Heredity & Genetic Engineering. Human Chromosomes Review. Human body cells, called somatic cells, have 46 chromosomes (diploid number)

Heredity & Genetic Engineering. Human Chromosomes Review. Human body cells, called somatic cells, have 46 chromosomes (diploid number) Heredity & Genetic Engineering Human Chromosomes Review Human body cells, called somatic cells, have 46 chromosomes (diploid number) Gametes have 23 chromosomes (haploid number) Zygote = fertilized egg

More information

DNA/Genetics Test 2016

DNA/Genetics Test 2016 N/Genetics Test 2016 Name: ate: 1. Genetic information usually flows in one specific direction. Which of the following best represents this flow?. N Protein RN. Protein RN N. RN Protein N. N RN Protein

More information

Chapter 4.!Extensions to Mendelian Genetics.! Gene Interactions

Chapter 4.!Extensions to Mendelian Genetics.! Gene Interactions Chapter 4!Extensions to Mendelian Genetics! Gene Interactions 1 Gene Interactions Extensions to Mendelian Genetics Just as different alleles of 1 gene can interact in complex ways, 2 different genes can

More information

Dr. Mallery Biology Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS

Dr. Mallery Biology Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS Dr. Mallery Biology 150 - Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS CELL REPRODUCTION The goal of today's exercise is for you to look at mitosis and meiosis and to develop the ability

More information

MECHANISM OF TRANSMISSION OF CHARACTERS FROM PARENTS TO OFFSPRINGS & HEREDITARY VARIATION IN LIVING ORGANISMS BY DESCENT.

MECHANISM OF TRANSMISSION OF CHARACTERS FROM PARENTS TO OFFSPRINGS & HEREDITARY VARIATION IN LIVING ORGANISMS BY DESCENT. VARIATIONS & PRINCIPLES OF INHERITANCE BY:- HIMANSHU LATAWA BIOLOGY LECTURER G.G.S.S.SCHOOL, SIRHIND MANDI anshu223@gmail.com GENETICS: SCIENTIFIC STUDY OF MECHANISM OF TRANSMISSION OF CHARACTERS FROM

More information

17.1 Variation, 17.2 Chromosomes and DNA, 17.3 Monohybrid Inheritance, 17.4 Selection, 17.5 Genetic Engineering SYLLABUS CHECKLIST

17.1 Variation, 17.2 Chromosomes and DNA, 17.3 Monohybrid Inheritance, 17.4 Selection, 17.5 Genetic Engineering SYLLABUS CHECKLIST Topic 17 INHERITANCE 17.1 Variation, 17.2 Chromosomes and DNA, 17.3 Monohybrid Inheritance, 17.4 Selection, 17.5 Genetic Engineering SUFEATIN SURHAN BIOLOGY MSPSBS 2010 SYLLABUS CHECKLIST Candidates should

More information

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation.

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation. AP Lab 7: The Mendelian Genetics of Corn Objectives: In this laboratory investigation, you will: Use corn to study genetic crosses, recognize contrasting phenotypes, collect data from F 2 ears of corn,

More information

four chromosomes ` four chromosomes correct markers (sister chromatids identical!)

four chromosomes ` four chromosomes correct markers (sister chromatids identical!) Name KEY total=107 pts 1. Genes G and H are on one chromosome; gene F is on another chromosome. Assume the organism is diploid and that there is no crossing over in this species. You are examining the

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

The Genetics of Parenthood FACE LAB

The Genetics of Parenthood FACE LAB The Genetics of Parenthood FACE LAB Introduction to the Teacher This is a simulation that easily captures student interest, and can be varied to meet different ability levels. Making the assumption that

More information

6.5. Traits and Probability. Punnett squares illustrate genetic crosses.

6.5. Traits and Probability. Punnett squares illustrate genetic crosses. 6.5 Traits and Probability VOCABULARY Punnett square monohybrid cross testcross dihybrid cross law o independent assortment probability Key Concept The inheritance o traits ollows the rules o probability.

More information

AS91159 Demonstrate understanding of gene expression

AS91159 Demonstrate understanding of gene expression AS91159 Demonstrate understanding of gene expression Mutations and Metabolic Pathways (2015,2) In 1941 biologists George Beadle and Edward Tatum exposed the bread mould Neurospora crassa to radiation.

More information

ch03 Student: If a phenotype is controlled by the genotypes at two different loci the interaction of these genes is called

ch03 Student: If a phenotype is controlled by the genotypes at two different loci the interaction of these genes is called ch03 Student: 1. Which of the following is not a phenotypic description of allele interactions affecting the expression of traits? incomplete dominance codominance polymorphic multifactorial E. pleiotrophic

More information

Exploring Mendelian Genetics

Exploring Mendelian Genetics Exploring Mendelian Genetics GENES are more complicated than Mendel thought ENVIRONMENT influences the. expression of genes = Nature vs Nurture Genes provide the plan for development, but how plan unfolds

More information

GENETICS: BIOLOGY HSA REVIEW

GENETICS: BIOLOGY HSA REVIEW GENETICS: BIOLOGY HSA REVIEW HSA Review A. Matching: On the lines provided, write the letter of the definition of each term. a. genetics f. gamete b. trait g. probability c. hybrid h. Punnett square d.

More information

Solve Mendelian Genetics Problems

Solve Mendelian Genetics Problems Solve Problems Free PDF ebook Download: Solve Problems Download or Read Online ebook solve mendelian genetics problems in PDF Format From The Best User Guide Database AP Biology I ' Cate. PRACTICE 1: BASIC.

More information

Genetics. Genetics- is the study of all manifestation of inheritance from the distributions of traits to the molecules of the gene itself

Genetics. Genetics- is the study of all manifestation of inheritance from the distributions of traits to the molecules of the gene itself What is Genetics? Genetics Mapping of genes Basis of life Inheritable traits Abnormalities Disease Development DNA RNA Proteins Central dogma - Watson & Crick Genes- segments of DNA that code for proteins

More information

Codominant. Both alleles affect the phenotype in separate, distinguishable ways.

Codominant. Both alleles affect the phenotype in separate, distinguishable ways. Codominant Both alleles affect the phenotype in separate, distinguishable ways. Codominance Alleles for a gene are both dominant Both alleles are expressed when present Examples: Roan cow or horse Codominance:

More information

8.2 Human Inheritance

8.2 Human Inheritance www.ck12.org Chapter 8. Human Genetics and Biotechnology 8.2 Human Inheritance Lesson Objectives Describe inheritance in humans for autosomal and X-linked traits. Identify complex modes of human inheritance.

More information

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 - Genetics: Progress from Mendel to DNA: Gregor Mendel, in the mid 19 th century provided the

More information

Mendelian problems done.notebook

Mendelian problems done.notebook Mendelian Genetics Problems hen a genetic cross occurs beteen the gametes of to individuals, there are a number of possible combinations for the arrangement of alleles in the offspring. e can easily organize

More information

SOLUZIONE DEL LEARN BY DOING

SOLUZIONE DEL LEARN BY DOING Sadava, Hillis, Heller, Berenbaum La nuova biologia.blu SOLUZIONE DEL LEARN BY DOING Di seguito sono riportate le soluzioni degli esercizi delle sezioni Learn by doing, esercizi con approccio CLIL dei

More information

The Genetics of Parenthood: Background Information

The Genetics of Parenthood: Background Information The Genetics of Parenthood: Background Information Targeted Standard Course of Study: Goals and Objectives Goal 1: The learner will develop abilities necessary to do and understand scientific inquiry.

More information

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017 OVERVIEW In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution and changes in allele frequency by using your class to represent

More information

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1 1 Wheat is an important food crop in many European countries. Developments in farming allowed the yield of wheat produced by farms in the UK to increase rapidly in the second half of the 20th century.

More information

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology.

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology. Name: 1117 1 Page 1 1) A small amount of DNA was taken from a fossil of a mammoth found frozen in glacial ice. Genetic technology can be used to produce a large quantity of identical DNA from this mammoth's

More information

DO NOT OPEN UNTIL TOLD TO START

DO NOT OPEN UNTIL TOLD TO START DO NOT OPEN UNTIL TOLD TO START BIO 312, Section 1, Spring 2011 February 21, 2011 Exam 1 Name (print neatly) Instructor 7 digit student ID INSTRUCTIONS: 1. There are 11 pages to the exam. Make sure you

More information

Dr. Ramesh. GRU2L10.1 Codominance and Incomplete Dominance

Dr. Ramesh. GRU2L10.1 Codominance and Incomplete Dominance Dr. Ramesh GRU2L10.1 Codominance and Incomplete Dominance Do Now! Directions: Answer the following questions. The trait for brown eyes is dominant to the trait for blue eyes. A man who is heterozygous

More information

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) 7-1 Biology 1001 Lab 7: POPULATION GENETICS PREPARTION Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) OBECTIVES At the end of

More information

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES Objectives: Upon completion of this lab, the students should be able to: Understand the different stages of meiosis. Describe the events during each phase of

More information