Structure and Replication

Size: px
Start display at page:

Download "Structure and Replication"

Transcription

1 Structure and Replication

2 6.A: Students will identify components of DNA, and describe how information for specifying traits of an organism is carried in the DNA 6.B: Students will recognize that components of that make up the genetic code are common to all organisms

3 DNA RNA Protein DNA is the molecule of heredity that passes from parents to offspring DNA contains the instructions for building proteins (which make up the structure of the body and carry out most of its functions) What are the functions of proteins? What are their monomers? Their elements?

4 In 1952, Rosalind Franklin used X-rays to photograph DNA molecules, but she could not interpret the photograph. Franklin s photograph helped James Watson and Francis Crick figure out the structure of DNA in The structure is called a double helix, or twisted ladder.

5

6 All living organisms contain DNA The structure of DNA is the same in ALL organisms only the order of nucleotides is different Which biomolecule is DNA? What is the monomer? The elements?

7 DNA is made of nucleic acids, which are made up of the subunit nucleotides (CHONP) Consists of (1) a phosphate group, (2) a 5 carbon sugar (deoxyribose), and (3) one of four nitrogenous bases

8 The two sides of the DNA molecule are called the backbone, are made from deoxyribose sugar and phosphate, joined by phosphate bonds The backbone is what gives DNA its double helix shape and structure (called the sugar-phosphate backbone) The two sides of the ladder run in opposite directions (antiparallel) One side runs 5 3 The other side runs 3 5

9 The center of the DNA molecule contains pairs of nitrogenous bases connected by hydrogen bonds DNA has 4 kinds of nitrogenous bases: Adenine, Guanine, Cytosine and Thymine The bases on one side of the ladder pair up with the bases on the other side Chargraff s Base Pairing Rules Adenine only pairs with Thymine (2 H-bonds) Guanine only pairs with Cytosine (3 H-bonds) A/T + G/C = 100%

10 The nitrogenous bases can be put into two categories Purines 2-carbon nitrogen ring Pyrimidines 1-carbon nitrogen ring

11 *The sequence of these bases determines your traits!!!

12

13 GATTACA

14 GATTACA CTAATGT

15 DNA: the molecule that carries the genetic instructions for the characteristics and traits of an organism Gene: a section of DNA that codes for a specific RNA or protein; a specific sequence of bases Chromosome: a single molecule of coiled (organized) DNA Genome: an organism s complete set of DNA, including all genes

16 ALL your cells contain a complete copy of your ENTIRE genome (except sex cells) Humans have 23 pairs of chromosomes (or 46 total) in each cell One set of 23 chromosomes from your mom (egg), and another set from your dad (sperm) There are approximately 20,000-30,000 genes on a human chromosome, and each gene has about 6 billion base pairs (seemingly infinite combinations)

17 ALL organisms (animals, plants, fungi, protists, and bacteria) have DNA made out of the same components Sugar-phosphate backbone The 4 nitrogenous bases (A, C, G, and T) There are only two differences in the DNA of different organisms Different organisms have different number of chromosomes Bacteria have one chromosome Eukaryotes have chromosomes The order (sequence) of bases is different for each organism

18

19 1. In DNA replication, the enzyme helicase splits the double helix down the middle by cutting the hydrogen bonds 2. Once separated, each side is used as a template strand and the enzyme RNA primase adds an RNA primer to each strand of DNA 3. The enzyme DNA polymerase adds the matching bases to the RNA primer on each template strand The leading strand is made as nucleotide bases are added smoothly to the 3 end The lagging strand is made as nucleotide bases are added in the 3 5 direction with small pieces called Okazaki fragments

20 A 1. A 2. E 3. e 4. DNA polymerase then removes the RNA primers and replaces them with DNA nucleotides 5. The enzyme ligase seals the bonds between the bases 6. The end result is two IDENTICAL molecules of DNA identical to each other and identical to the original

21 Once replication is finished, there are two complete double helix molecules of DNA Each new double-helix molecule has one old strand and one new strand The old strand is said to have been conserved Semi = half Therefore, this type of replication is known as semi-conservative

22 1. The double helix unzips This unzipping is caused by the enzyme helicase

23 2. The two strands are separated

24 3. Each side is now a template The addition of new DNA bases onto the two original strands of DNA is performed by the enzyme DNA polymerase The bonds between the old and new bases is sealed by the enzyme ligase

25 3. Each side is now a template Because the two strands are antiparallel, one goes in the direction of replication (leading strand), and the other does not (lagging strand)

26 3. Each side is now a template Replication occurs continuously for the LEADING strand Bases are added to the 3 end

27 3. Each side is now a template Replication occurs discontinuously, in short sections, in the LAGGING strand (3 5 ) These sections are known as Okazaki fragments

28 3. Each side is now a template

29 4. The result is two IDENTICAL strands of DNA

30 One strand is the original strand (PARENT) One strand is the new strand (DAUGHTER)

31 One strand is the original strand (PARENT) One strand is the new strand (DAUGHTER)

32 All cells contain ALL your DNA However, different genes are turned on in different cells This means different proteins are made in each cell whatever the cell needs to make in order to do its job This is a regulated process (what biomolecule?)

33 Cell Differentiation All cells start as stem cells - undifferentiated Different cells have different jobs, so stem cells have certain genes that get turned on the ones that help the cell do its job

34 Cell Differentiation Examples animal cells Blood: carries oxygen to cells (RBC) and fights infection (WBC) Muscle: allows movement (skeletal, smooth, cardiac) Epithelium: skin, secreting mucus, & absorbing nutrients

35 Cell Differentiation Examples plant cells Root: absorb water and minerals from the soil Stem: carry substances between roots and leaves Leaves: capture sunlight and perform photosynthesis

The structure, type and functions of a cell are all determined by chromosomes:

The structure, type and functions of a cell are all determined by chromosomes: DNA Basics The structure, type and functions of a cell are all determined by chromosomes: They are found in the nucleus of a cell. These chromosomes are composed of DNA, the acronym for deoxyribonucleic

More information

Essential Questions. DNA: The Genetic Material. Copyright McGraw-Hill Education

Essential Questions. DNA: The Genetic Material. Copyright McGraw-Hill Education Essential Questions Which experiments led to the discovery of DNA as the genetic material? What is the basic structure of DNA? What is the basic structure of eukaryotic chromosomes? Vocabulary Review nucleic

More information

DNA and Replication 1

DNA and Replication 1 DNA and Replication 1 History of DNA 2 History of DNA Early scientists thought protein was the cell s hereditary material because it was more complex than DNA Proteins were composed of 20 different amino

More information

Chapter 9: DNA: The Molecule of Heredity

Chapter 9: DNA: The Molecule of Heredity Chapter 9: DNA: The Molecule of Heredity What is DNA? Answer: Molecule that carries the blueprint of life General Features: DNA is packages in chromosomes (DNA + Proteins) Gene = Functional segment of

More information

copyright cmassengale 2

copyright cmassengale 2 1 copyright cmassengale 2 History of DNA Early scientists thought protein was the cell s hereditary material because it was more complex than DNA Proteins were composed of 20 different amino acids in long

More information

Purines vs. Pyrimidines

Purines vs. Pyrimidines Introduction to Genetics/DNA Replication The DNA molecule is found in the nucleus and is composed of nucleotides The DNA Molecule Composed of 2 polymers of nucleotides Polymers are oriented in antiparallel

More information

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information DNA: CH 13 How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information Discovering DNA s Function 1928: Frederick Griffith studied

More information

DNA: The Primary Source of Heritable Information. Genetic information is transmitted from one generation to the next through DNA or RNA

DNA: The Primary Source of Heritable Information. Genetic information is transmitted from one generation to the next through DNA or RNA DNA and Replication DNA: The Primary Source of Heritable Information Genetic information is transmitted from one generation to the next through DNA or RNA Chromosomes Non-eukaryotic (bacteria) organisms

More information

DNA stands for deoxyribose nucleic acid.

DNA stands for deoxyribose nucleic acid. 1 DNA stands for deoxyribose nucleic acid. DNA controls the kind of cell which is formed (i.e. muscle, blood, nerve). DNA controls the type of organism which is produced (i.e. buttercup, giraffe, herring,

More information

DNA STRUCTURE & REPLICATION

DNA STRUCTURE & REPLICATION DNA STRUCTURE & REPLICATION A MODEL OF DNA In 1953, two scientists named Watson & Crick built a model of DNA that demonstrates its exact structure and function. They called this model a double helix, which

More information

DNA Structure. DNA: The Genetic Material. Chapter 14

DNA Structure. DNA: The Genetic Material. Chapter 14 DNA: The Genetic Material Chapter 14 DNA Structure DNA is a nucleic acid. The building blocks of DNA are nucleotides, each composed of: a 5-carbon sugar called deoxyribose a phosphate group (PO 4 ) a nitrogenous

More information

DNA Replication. Packet #17 Chapter #16

DNA Replication. Packet #17 Chapter #16 DNA Replication Packet #17 Chapter #16 1 HISTORICAL FACTS ABOUT DNA 2 Historical DNA Discoveries 1928 Frederick Griffith finds a substance in heat-killed bacteria that transforms living bacteria 1944 Oswald

More information

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes Frank Griffith- discovered DNA in 1928

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes Frank Griffith- discovered DNA in 1928 HEREDITY = passing on of characteristics from parents to offspring I. DNA, Chromosomes, Chromatin, and Genes DNA = blueprint of life (has the instructions for making an organism) Chromatin= uncoiled DNA

More information

3.A.1 DNA and RNA: Structure and Replication

3.A.1 DNA and RNA: Structure and Replication 3.A.1 DNA and RNA: Structure and Replication Each DNA polymer is made of Nucleotides (monomer) which are made of: a) Phosphate group: Negatively charged and polar b) Sugar: deoxyribose- a 5 carbon sugar

More information

Chapter 16. The Molecular Basis of Inheritance. Biology Kevin Dees

Chapter 16. The Molecular Basis of Inheritance. Biology Kevin Dees Chapter 16 The Molecular Basis of Inheritance DNA Life s instructions!!!! Deoxyribonucleic Acid Nucleic acid polymer from nucleotide monomers Unique in that it can: Self replicate Carry information History

More information

CH 4 - DNA. DNA = deoxyribonucleic acid. DNA is the hereditary substance that is found in the nucleus of cells

CH 4 - DNA. DNA = deoxyribonucleic acid. DNA is the hereditary substance that is found in the nucleus of cells CH 4 - DNA DNA is the hereditary substance that is found in the nucleus of cells DNA = deoxyribonucleic acid» its structure was determined in the 1950 s (not too long ago).» scientists were already investigating

More information

THE STRUCTURE AND FUNCTION OF DNA

THE STRUCTURE AND FUNCTION OF DNA THE STRUCTURE AND FUNCTION OF DNA 1. DNA is our genetic code!!! It is passed from generation to generation. It carries information that controls the functions of our cells. DNA stands for deoxyribonucleic

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

DNA. Deoxyribose Nucleic Acid

DNA. Deoxyribose Nucleic Acid DNA Deoxyribose Nucleic Acid Biomolecules Remember 1. Carbohydrates 2. Lipids 3. Nucleic acids hold genetic information; code for proteins 4. Proteins History of DNA Who Discovered DNA Rosalind Franklin

More information

IN: Discuss how the role of DNA has affected each fish. What is deoxyribonucleic acid and why is it important?

IN: Discuss how the role of DNA has affected each fish. What is deoxyribonucleic acid and why is it important? IN: Discuss how the role of DNA has affected each fish. What is deoxyribonucleic acid and why is it important? But first. Where are we on our biological scale? Organism Cell Nucleus Chromosome Gene DNA

More information

What can you tell me about DNA? copyright cmassengale 1

What can you tell me about DNA? copyright cmassengale 1 What can you tell me about DNA? copyright cmassengale 1 DNA and Replication copyright cmassengale 2 Credit for discovery of DNA is given to Watson & Crick 1 DNA DNA stands for deoxyribose nucleic acid

More information

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein Chapter 16 DNA: The Genetic Material The Nature of Genetic Material Chromosomes - DNA and protein Genes are subunits DNA = 4 similar nucleotides C(ytosine) A(denine) T(hymine) G(uanine) Proteins = 20 different

More information

Outline. Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage

Outline. Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage Genetics Outline Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage Chromosomes are composed of chromatin, which is DNA and associated

More information

ADENINE, THYMINE,CYTOSINE, GUANINE

ADENINE, THYMINE,CYTOSINE, GUANINE MOLECULAR GENETICS Molecular Genetics - the branch of genetics concerned with the structure and activity of genetic material at the molecular level Genetic Material - chromatin (chromosomes) within the

More information

What is that here we go

What is that here we go Donations Requested We could use some Gummy Bears (we need lots of these) Red Twizzlers Black Twizzlers Why? Well we are going to be making models of DNA! What is that here we go ***I stand by my promise

More information

what are proteins? what are the building blocks of proteins? what type of bond is in proteins? Molecular Biology Proteins - review Amino Acids

what are proteins? what are the building blocks of proteins? what type of bond is in proteins? Molecular Biology Proteins - review Amino Acids Molecular Biology The Study of Proteins and Nucleic Acids what are proteins? what are the building blocks of proteins? what type of bond is in proteins? Proteins - review functions include: catalysts for

More information

Molecular Genetics I DNA

Molecular Genetics I DNA Molecular Genetics I DNA Deoxyribonucleic acid is the molecule that encodes the characteristics of living things. It is the molecule that is passed from a mother cell to daughter cells, and the molecule

More information

2. Structure and Replication of DNA. Higher Human Biology

2. Structure and Replication of DNA. Higher Human Biology 2. Structure and Replication of DNA Higher Human Biology Learning Intention Describe the structure of DNA Explain the base pairing rule using adenine, thymine, cytosine and guanine Today we are moving

More information

DNA stands for deoxyribose nucleic acid

DNA stands for deoxyribose nucleic acid DNA DNA stands for deoxyribose nucleic acid This chemical substance is present in the nucleus of all cells in all living organisms DNA controls all the chemical changes which take place in cells DNA Structure

More information

DNA Structure and Replication, and Virus Structure and Replication Test Review

DNA Structure and Replication, and Virus Structure and Replication Test Review DNA Structure and Replication, and Virus Structure and Replication Test Review What does DNA stand for? Deoxyribonucleic Acid DNA is what type of macromolecule? DNA is a nucleic acid The building blocks

More information

Unit 5 DNA, RNA, and Protein Synthesis

Unit 5 DNA, RNA, and Protein Synthesis 1 Biology Unit 5 DNA, RNA, and Protein Synthesis 5:1 History of DNA Discovery Fredrick Griffith-conducted one of the first experiment s in 1928 to suggest that bacteria are capable of transferring genetic

More information

Chromosomes. Nucleosome. Chromosome. DNA double helix. Coils. Supercoils. Histones

Chromosomes. Nucleosome. Chromosome. DNA double helix. Coils. Supercoils. Histones Chromosomes Chromosome Nucleosome DNA double helix Coils Supercoils Histones Evidence That DNA Can Transform Bacteria Frederick Griffith s experiment 1928 Griffith called the phenomenon transformation

More information

DNA: The Secret of Life. Mendel s laws show the rules of heredity (1866, rediscovered in 1900) Inheritance occurs in packets of information

DNA: The Secret of Life. Mendel s laws show the rules of heredity (1866, rediscovered in 1900) Inheritance occurs in packets of information DNA: The Secret of Life Mendel s laws show the rules of heredity (1866, rediscovered in 1900) Inheritance occurs in packets of information Developments in the 20th century 1933: Thomas Hunt Morgan wins

More information

Biology 30 DNA Review: Importance of Meiosis nucleus chromosomes Genes DNA

Biology 30 DNA Review: Importance of Meiosis nucleus chromosomes Genes DNA Biology 30 DNA Review: Importance of Meiosis Every cell has a nucleus and every nucleus has chromosomes. The number of chromosomes depends on the species. o Examples: Chicken 78 Chimpanzee 48 Potato 48

More information

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase DNA and Replication TEKS (6) Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: (A)

More information

C A T T A G C nitrogenous complimentary G T A A T C G to each other

C A T T A G C nitrogenous complimentary G T A A T C G to each other Name DNA RNA Review Worksheet Date 1. What does DNA stand for? Deoxyribonucleic acid 2. What is DNA s primary function? - Provides a pattern for protein manufacture - Provides a pattern for replication

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.

More information

1. I can describe the stages of the cell cycle.

1. I can describe the stages of the cell cycle. Unit 5 Study Guide Cell Cycle pg. 1 1. I can describe the stages of the cell cycle. Interphase = period in between division G1 = growth phase S = DNA replication G2 = Preparation for division (extra copies

More information

DNA RNA PROTEIN SYNTHESIS -NOTES-

DNA RNA PROTEIN SYNTHESIS -NOTES- DNA RNA PROTEIN SYNTHESIS -NOTES- THE COMPONENTS AND STRUCTURE OF DNA DNA is made up of units called nucleotides. Nucleotides are made up of three basic components:, called deoxyribose in DNA In DNA, there

More information

DNA Structure and Replica2on

DNA Structure and Replica2on DNA Structure and Replica2on Structure of DNA James Watson and Francis Crick (with Maurice Wilkins) awarded the Nobel Prize in 1962 for the construc2on of the double helix model of DNA Rosalind Franklin

More information

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are? 2 strands, has the 5-carbon sugar deoxyribose, and has the nitrogen base Thymine. The actual process of assembling the proteins on the ribosome is called? DNA translation Adenine pairs with Thymine, Thymine

More information

The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1

The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1 he Chapter Molecular 16: he Basis Molecular of Inheritance Basis of Inheritance Fig. 16-1 dditional Evidence hat DN Is the Genetic Material It was known that DN is a polymer of nucleotides, each consisting

More information

By the end of today, you will have an answer to: How can 1 strand of DNA serve as a template for replication?

By the end of today, you will have an answer to: How can 1 strand of DNA serve as a template for replication? Name: Period: Date: KIPP NYC College Prep Genetics and Biotech UNIT 9: Introduction to DNA Lecture 4: DNA Modeling and Intro to Replication By the end of today, you will have an answer to: How can 1 strand

More information

Nucleic acids and protein synthesis

Nucleic acids and protein synthesis THE FUNCTIONS OF DNA Nucleic acids and protein synthesis The full name of DNA is deoxyribonucleic acid. Every nucleotide has the same sugar molecule and phosphate group, but each nucleotide contains one

More information

Chapter 12. DNA Structure and Replication

Chapter 12. DNA Structure and Replication Chapter 12 DNA Structure and Replication DNA Structure DNA is a polymer of nucleic acids. DNA consist of chemical units or monomers called nucleotides. DNA Structure The sugar in DNA is deoxyribose. Thus,

More information

DNA Structure and Replication

DNA Structure and Replication DA Structure and Replication WHAT IS DA We know: DA is the hereditary material DA has a double helix structure Made of four bases; A,T,C,G Sugar-Phosphate backbone DA replication is semi-conservative Timeline

More information

Transformation: change in genotype & phenotype due to assimilation of external DNA by a cell.

Transformation: change in genotype & phenotype due to assimilation of external DNA by a cell. DNA Replication Chapter 16: DNA as Genetic Material Genes are on Chromosomes T.H. Morgan o Working with Drosophila (fruit flies) o Genes are on chromosomes o But is it the protein or the DNA of the chromosomes

More information

DNA Chapter 12. DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B Griffith s Experiment

DNA Chapter 12. DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B Griffith s Experiment DNA Chapter 12 DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B.1.27 To truly understand genetics, biologists after Mendel had to discover the chemical nature of the gene. In 1928, Frederick Griffith was trying

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Watson and Crick 1953 1953 article in Nature Directionality of DNA You need to number the carbons! u it matters! u 3 refers to the 3 carbon on the sugar u 5 refers to the 5 carbon

More information

Chapter 16 The Molecular Basis of Inheritance

Chapter 16 The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Question? Traits are inherited on chromosomes, but what in the chromosomes is the genetic material? Two possibilities: Protein DNA Qualifications Protein:

More information

Essential Question. What is the structure of DNA, and how does it function in genetic inheritance?

Essential Question. What is the structure of DNA, and how does it function in genetic inheritance? DNA Dr. Bertolotti Essential Question What is the structure of DNA, and how does it function in genetic inheritance? What is the role of DNA in hereditary? Transformation Transformation is the process

More information

Name: Date: Period:

Name: Date: Period: Name: Date: Period: 1 2 3 4 5 The Structure of DNA Mind Map Using the words from our class brainstorm, categorize these ideas into clusters and create a mind map displaying what you already know about

More information

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links The actual process of assembling the proteins on the ribosome is called? translation The building blocks of proteins are? Complementary base pairing links Define and name the Purines amino acids nitrogen

More information

Worksheet Structure of DNA and Replication

Worksheet Structure of DNA and Replication Eastern Intermediate High School Honors Biology Name: Period: Date: Worksheet Structure of DN and Replication Directions: Label the diagram below with the following choices: Nucleotide Deoxyribose Phosphate

More information

The discovery that DNA is the genetic code involved many experiments.

The discovery that DNA is the genetic code involved many experiments. Section 1: The discovery that DNA is the genetic code involved many experiments. K What I Know W What I Want to Find Out L What I Learned Vocabulary Review nucleic acid New double helix nucleosome Discovery

More information

CELL BIOLOGY: DNA. Generalized nucleotide structure: NUCLEOTIDES: Each nucleotide monomer is made up of three linked molecules:

CELL BIOLOGY: DNA. Generalized nucleotide structure: NUCLEOTIDES: Each nucleotide monomer is made up of three linked molecules: BIOLOGY 12 CELL BIOLOGY: DNA NAME: IMPORTANT FACTS: Nucleic acids are organic compounds found in all living cells and viruses. Two classes of nucleic acids: 1. DNA = ; found in the nucleus only. 2. RNA

More information

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Chapter 9 Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination 1 Genetics Genome Chromosome Gene Protein Genotype Phenotype 2 Terms and concepts gene Fundamental unit of heredity

More information

Name: - Bio A.P. DNA Replication & Protein Synthesis

Name: - Bio A.P. DNA Replication & Protein Synthesis Name: - Bio A.P. DNA Replication & Protein Synthesis 1 ESSENTIAL KNOWLEDGE Big Idea 3: Living Systems store, retrieve, transmit and respond to information critical to living systems Enduring Understanding:

More information

2015 Biology Unit 4 PRACTICE TEST DNA, Structure, Function, Replication Week of December

2015 Biology Unit 4 PRACTICE TEST DNA, Structure, Function, Replication Week of December Name: Class: Date: 2015 Biology Unit 4 PRACTICE TEST DNA, Structure, Function, Replication Week of 14-18 December 1. Which scientists figured out the three-dimensional structure of DNA by using a model

More information

Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery.

Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery. Hershey-Chase Bacteriophage Experiment - 1953 Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery. Bacteriophages are composed

More information

DNA vs. RNA B-4.1. Compare DNA and RNA in terms of structure, nucleotides and base pairs.

DNA vs. RNA B-4.1. Compare DNA and RNA in terms of structure, nucleotides and base pairs. DNA vs. RNA B-4.1 Compare DNA and RNA in terms of structure, nucleotides and base pairs. Key Concepts l Nucleic Acids: l deoxyribonucleic acid (DNA) l ribonucleic acid (RNA) l Nucleotides: l nitrogen base,

More information

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA DNA Replication DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA molecule can assume different structures

More information

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE CHAPTER 16 MOLECULAR BASIS OF INHERITANCE DNA as genetic material? Deducted that DNA is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

The discovery that DNA is the genetic code involved many experiments.

The discovery that DNA is the genetic code involved many experiments. Section 1: The discovery that DNA is the genetic code involved many experiments. K What I Know W What I Want to Find Out L What I Learned Essential Questions Which experiments led to the discovery of DNA

More information

Replication Transcription Translation

Replication Transcription Translation Replication Transcription Translation A Gene is a Segment of DNA When a gene is expressed, DNA is transcribed to produce RNA and RNA is then translated to produce proteins. Genotype and Phenotype Genotype

More information

THE COMPONENTS & STRUCTURE OF DNA

THE COMPONENTS & STRUCTURE OF DNA THE COMPONENTS & STRUCTURE OF DNA - How do genes work? - What are they made of, and how do they determine the characteristics of organisms? - Are genes single molecules, or are they longer structures made

More information

DNA Structure and Replication

DNA Structure and Replication Name: DNA Structure and Replication 1. DNA: Deoxyribonucleic Acid a. Credit for discovery is given to Watson & Crick b. DNA stands for c. This chemical substance is present in the of all cells in all living

More information

DNA Structure and Replication

DNA Structure and Replication DNA Structure and Replication DNA: The Double Helix Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of

More information

DNA & RNA. Chapter Twelve and Thirteen Biology One

DNA & RNA. Chapter Twelve and Thirteen Biology One DNA & RNA Chapter Twelve and Thirteen Biology One I. DNA Structure A. DNA monomers = nucleotides *1. sugar bonded to PO4 & one of four possible nitrogen bases 2. bases = Adenine, Guanine, Cytosine, Thymine

More information

DNA and Biotechnology

DNA and Biotechnology DNA and Biotechnology What makes us human? Our DNA! It codes for our genes. (Gene = a piece of DNA that codes for a protein) What is DNA and why is it so important? DNA is the blueprint for an organism.

More information

MOLECULAR BASIS OF INHERITANCE

MOLECULAR BASIS OF INHERITANCE MOLECULAR BASIS OF INHERITANCE C H A P T E R 1 6 as genetic material? Deducted that is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions.

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions. Opening Activity DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions. 1. How is the structure of DNA similar to that of a ladder or spiral

More information

Chapter 10. DNA: The Molecule of Heredity. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 10. DNA: The Molecule of Heredity. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 10 DNA: The Molecule of Heredity Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 10.1 What Is The Structure Of DNA? Deoxyribonucleic acid (DNA) is

More information

Genetic material must be able to:

Genetic material must be able to: Genetic material must be able to: Contain the information necessary to construct an entire organism Pass from parent to offspring and from cell to cell during cell division Be accurately copied Account

More information

Scientists figured out how genes work years before they figured out what genes are They didn t know what they were, but they knew genes had to

Scientists figured out how genes work years before they figured out what genes are They didn t know what they were, but they knew genes had to Chapter 12 Scientists figured out how genes work years before they figured out what genes are They didn t know what they were, but they knew genes had to be able to store information both for embryonic

More information

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance?

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance? 12 DNA Big idea Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance? WHAT I KNOW WHAT I LEARNED 12.1 How did scientists determine

More information

What is DNA? DEOXYRIBONUCLEIC ACID

What is DNA? DEOXYRIBONUCLEIC ACID DNA What is DNA? DEOXYRIBONUCLEIC ACID What does DNA do? STORES AND PASSES ON GENETIC INFORMATION FROM ONE GENERATION TO ANOTHER. Scientists Hershey and Chase confirmed that DNA carries genetic information.

More information

DNA Structure and Replication. Higher Human Biology

DNA Structure and Replication. Higher Human Biology DNA Structure and Replication Higher Human Biology Learning Intention Describe the structure of DNA Explain the base pairing rule using adenine, thymine, cytosine and guanine 1 Division and differentiation

More information

Nucleic Acids. Biotechnology

Nucleic Acids. Biotechnology Nucleic Acids Biotechnology DNA Deoxyribonucleic acid Forms the Genetic Code 1953 The work of four people identify the structure of DNA. This knowledge opens the floodgates of scientific discovery that

More information

DNA: The Genetic Material. Chapter 14

DNA: The Genetic Material. Chapter 14 DNA: The Genetic Material Chapter 14 The Genetic Material Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia there are 2 strains of Streptococcus: - S strain

More information

DNA Structure and Function. Chapter 13

DNA Structure and Function. Chapter 13 DNA Structure and Function Chapter 13 Impacts, Issues Here Kitty, Kitty, Kitty, Kitty, Kitty Clones made from adult cells have problems; the cell s DNA must be reprogrammed to function like the DNA of

More information

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology Friday, April 17 th Crash Course: DNA, Transcription and Translation Today I will 1. Review the component parts of a DNA molecule. 2. Describe the process of transformation. 3. Explain what is meant by

More information

I. DNA as Genetic Material Figure 1: Griffith s Experiment. Frederick Griffith:

I. DNA as Genetic Material Figure 1: Griffith s Experiment. Frederick Griffith: I. DNA as Genetic Material Figure 1: Griffith s Experiment Frederick Griffith: a) Frederick Griffith suspected that some component of the S strain was being passed along to the R strain, causing it to

More information

BIOLOGY 101. CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions

BIOLOGY 101. CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions BIOLOGY 101 CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions Life s Operating Instructions CONCEPTS: 16.1 DNA is the genetic material 16.2 Many proteins work together in DNA

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Watson and Crick 1953 article in Nature Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible

More information

Adv Biology: DNA and RNA Study Guide

Adv Biology: DNA and RNA Study Guide Adv Biology: DNA and RNA Study Guide Chapter 12 Vocabulary -Notes What experiments led up to the discovery of DNA being the hereditary material? o The discovery that DNA is the genetic code involved many

More information

Discovery of nucleic acid. What is the genetic material? DNA is made up of: Genetic material = DNA. Griffith s mice experiment.

Discovery of nucleic acid. What is the genetic material? DNA is made up of: Genetic material = DNA. Griffith s mice experiment. Chapter 9 DN: he Molecule of Heredity What is DN? nswer: Molecule that carries the blueprint of life General Features: DN is packages in chromosomes (DN + Proteins) Gene = Functional segment of DN located

More information

The Genetic Material. The Genetic Material. The Genetic Material. DNA: The Genetic Material. Chapter 14

The Genetic Material. The Genetic Material. The Genetic Material. DNA: The Genetic Material. Chapter 14 DNA: Chapter 14 Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia there are 2 strains of Streptococcus: - S strain is virulent - R strain is nonvirulent

More information

AP Biology Chapter 16 Notes:

AP Biology Chapter 16 Notes: AP Biology Chapter 16 Notes: I. Chapter 16: The Molecular Basis of Inheritance a. Overview: i. April 1953 James Watson and Francis Crick great the double helix model of DNA- deoxyribonucleic acid ii. DNA

More information

Nucleic acids. What important polymer is located in the nucleus? is the instructions for making a cell's.

Nucleic acids. What important polymer is located in the nucleus? is the instructions for making a cell's. Nucleic acids DNA - The Double Helix Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of the cell including

More information

DNA Structure & Replication How is the genetic information stored and copied?

DNA Structure & Replication How is the genetic information stored and copied? DNA Structure & Replication How is the genetic information stored and copied? Why? DNA is the molecule of heredity. It contains the genetic blueprint for life. For organisms to grow and repair damaged

More information

Exam: Structure of DNA and RNA 1. Deoxyribonucleic Acid is abbreviated: a. DRNA b. DNA c. RNA d. MRNA

Exam: Structure of DNA and RNA 1. Deoxyribonucleic Acid is abbreviated: a. DRNA b. DNA c. RNA d. MRNA Exam: Structure of DNA and RNA 1. Deoxyribonucleic Acid is abbreviated: a. DRNA b. DNA c. RNA d. MRNA 2. Which two scientists discovered DNA? a. Mendel and Newton b. Bohr and Crick c. Watson and Crick

More information

From Gene to Protein

From Gene to Protein 8.2 Structure of DNA From Gene to Protein deoxyribonucleic acid - (DNA) - the ultimate source of all information in a cell This information is used by the cell to produce the protein molecules which are

More information

DNA - DEOXYRIBONUCLEIC ACID

DNA - DEOXYRIBONUCLEIC ACID DNA - DEOXYRIBONUCLEIC ACID blueprint of life (has the instructions for making an organism) established by James Watson and Francis Crick codes for your genes shape of a double helix made of repeating

More information

Double helix structure of DNA

Double helix structure of DNA Replication Double helix structure of It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material. Watson & Crick

More information

How does the transmission of genetic information occur?

How does the transmission of genetic information occur? 5/1/06 DNA replication How does the transmission of genetic information occur? Transmission of genetic information requires two steps: 1. copying step called DNA replication 2. parcelling out or distribution

More information

Chapter 16 The Molecular Basis of Inheritance

Chapter 16 The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Chromosomes and DNA Morgan s experiments with Drosophila were able to link hereditary factors to specific locations on chromosomes. The double-helical model

More information

Review of ORGANIC CHEMISTRY

Review of ORGANIC CHEMISTRY Nucleic Acids: DNA Review of ORGANIC CHEMISTRY Definition: Contains CARBON (C) and Hydrogen (H) Large polymers can be made of smaller individual monomers. Ex: For carbohydrates, polysaccharides are large

More information

Unit 1. DNA and the Genome

Unit 1. DNA and the Genome Unit 1 DNA and the Genome National 5 Knowledge Learners should have a clear understanding of the following areas of content from their previous learning: *Cell division (mitosis) and chromosomes *Base

More information