How can something so small cause problems so large?

Size: px
Start display at page:

Download "How can something so small cause problems so large?"

Transcription

1

2 How can something so small cause problems so large?

3 Objectives Identify the structural components of DNA and relate to its function Create and ask questions about a model of DNA

4 DNA is made of genes. Gene - a segment of DNA that codes for a protein, which in turn codes for a trait (skin tone, eye color..etc) Genes control the inherited characteristics of living things

5 1953: James Watson & Francis Crick discovered structure of DNA molecule (with the help from Franklin s X-rays) Double Helix- two strands of nucleotides wound around a central axis Looks like a twisted ladder or spiral staircase

6 DNA is a long molecule made up of units called nucleotides 5 carbon sugar (deoxyribose) Phosphate group Nitrogen base Adenine Thymine Guanine Cytosine

7 Sides of the DNA helix are made of sugar (deoxyribose) and phosphates Bases are in the middle & are held together by Hydrogen bonds strong enough to hold bases together, but weak enough to be broken during replication *The rungs of the ladder can occur in any order (as long as the base-pair rule is followed)

8 Nucleotides (also called Bases) Adenine, Thymine,, Guanine, Cytosine or A, T, G, C Nucleotides pair in a specific way - called the Base-Pair Rule Adenine pairs to Thymine Guainine pairs to Cytosine base pairs said to be complementary Also called Chargaff s Rule

9 Those 4 bases have endless combinations just like the letters of the alphabet can combine to make different words. Endless combinations result in different traits, appearances, and functions of the organism For example: compare these stretches of DNA for a fictional organism A A A T T A T T T = curly tails A A A T T A G G G = straight tails A A A T T A C C C = no tails

10 e.com/watch?v=5m QdXjRPHmQ 5mins

11 DNA is often compared to a ladder or a spiral staircase. Look at Figure 4 (pg. 296) and answer the following questions. 1. How is the structure of DNA similar to that of a ladder or spiral staircase? 2. How is it different from that of a ladder or spiral staircase?

12 DNA is copied for Cell Division. Objectives: Explain how DNA s structure relates to DNA replication

13 In eukaryotes: Replication occurs at multiple points called replication forks DNA located in a cell s nucleus on multiple chromosomes Remember DNA condenses to form chromosomes Before a cell divides, DNA is copied in a process called replication - ensures each resulting cell will have a complete set of DNA molecules

14 DNA replication involves several enzymes & regulatory molecules Principle enzyme of DNA replication is DNA polymerase- it polymerizes (puts together) individual nucleotides to produce DNA Also proofreads each new DNA strand to maximize the odds that each new molecule is a perfect copy of the original DNA

15 The enzyme DNA helicase unzip a molecule of DNA by breaking the Hydrogen bonds between the base pairs This causes the 2 strands of DNA to unwind Each strand serves as a template for attachment of complimentary bases (A-T & G-C) For example: TACGTT would match up with ATGCAA

16 Prokaryotes: Only one chromosome in a circular loop Prokaryotes: DNA replication a single point and proceeds in two directions until entire chromosome is replicated DNA floats freely in the cytoplasm (because they have no nucleus) DNA is contained on one circular chromosome that holds the cell s genetic information DNA REPLICAION

17 1. What does DNA stand for? 2. What is the shape of DNA? 3. Who established the structure of DNA? 4. Adenine always pairs with? 5. The sides of the DNA ladder of deoxyribose and?

18 6. Guanine always pairs with. 7. What is the complementary sequence of CATTAG? 8. the two sides of DNA are held together by a bond. 9. DNA is composed of repeating subunits called. 10. What are the 4 bases that make up the rungs of the DNA ladder?

19 Objectives: Describe structural differences between DNA and RNA. Describe the different types of RNA Explain the role of RNA in helping to make proteins (protein synthesis)

20 Protein synthesis -making of proteins Genes are coded DNA instructions that control the production of proteins within the cell The first step in decoding these genetic messages is to copy part of the nucleotide sequence from DNA into RNA (ribonucleic acid) which carry out the process of making proteins

21 3 main differences between DNA & RNA: 1. Sugar of RNA is ribose DNA s sugar is deoxyribose 2. RNA is a single strand of nucleotides DNA is a double strand of nucleotides 3. RNA s nitrogen bases are: Uracil, Adenine, Guanine & Cytosine DNA has Thymine, Adenine, Guanine & Cytosine

22 RNA is a disposable copy of a segment of DNA and is a working copy of a single gene The ability to copy a single DNA sequence into RNA makes it possible for a single gene to produce hundreds or thousands of RNA molecules

23 Assembly of amino acids into proteins is controlled by RNA 3 main types of RNA: 1. messenger RNA (mrna): carries copies of instructions for assembling amino acids into proteins by serving as messengers from DNA to rest of the cell

24 2. ribosomal RNA (rrna): makes up ribosome (site of protein assembly) & helps form peptide bonds that hold amino acids together in a protein 3. transfer RNA (trna): transfers each amino acid to ribosome for protein assembly

25 Your body is made of trillions of cells, of all different kinds: muscle cells, brain cells, blood cells, and more. Inside those cells are proteins allowing your body to do what it does: break down food to power your muscles, send signals through your brain, and transport nutrients through your blood. Proteins are made of subunits called amino acids

26 1. Transcription RNA is made from DNA 2. Translation Proteins are made from mrna

27 Transcription: RNA molecules are produced by copying part of the nucleotide sequence of DNA into a complimentary strand of mrna (DNA mrna) RNA polymerase binds to DNA & separates the DNA strands so that one strand of the DNA nucleotides can serve as a template from which nucleotides are assembled into a strand of mrna

28 RNA polymerase will bind only to regions of DNA called promoters Promoters have specific base sequences and act as signals in DNA to indicate to the enzyme where to bind to make RNA Similar signals in DNA cause transcription to stop when the new RNA molecule is completed

29 Proteins are made by joining amino acids into long chains called polypeptides; each of which contains any or all of the 20 different amino acids Properties of proteins are determined by the order in which the amino acids are joined together Bases of DNA and RNA must be translated into a particular order of amino acids to form polypeptides

30 The language of mrna instructions is called the genetic code Written in 4 bases: (A)Adenine, (U) Uracil, (C) Cytosine, and (G) Guanine Read 3 letters at a time: codon- 3 consecutive nucleotides that specify a single amino acid

31 4 different bases; allows for 64 different codons in the genetic code Some amino acids can be specified by more than one codon AUG is the start codon; signals the initiation of protein synthesis as well as coding for the amino acid methionine 3 stop codons; UAA, UAG, UGA signal the end of a polypeptide

32 To decipher the genetic code: UCGCACGGU Break down into codons: UCG CAC GGU Serine -Histidine -Glycine

33 The decoding of an mrna message into a protein is known as translation (mrna amino acid sequence) The cell uses information from messenger RNA to produce proteins

34 1. mrna is transcribed in nucleus & released into cytoplasm

35 Each trna molecule has an amino acid attached to one end & a region of 3 unpaired bases on the other The 3 bases on the trna molecule are called an anticodon and are complimentary to one of the mrna codons trna anticodon

36 2. mrna attaches to a ribosome. As codons move through the ribosome, the proper amino acid is brought to the ribosome (via trna) and attached to the growing polypeptide chain.

37 3. Ribosome will form a peptide bond between the 1 st & 2 nd amino acids. The ribosome then moves to each consecutive codon.

38 4. The polypeptide chain continues to grow until the ribosome reaches a stop codon on the mrna. It then releases the newly formed polypeptide & the mrna molecule & completes the process of translation

39 Every once in a while, cells make mistakes in copying their own DNA An incorrect base can be inserted or sometimes a base is skipped as the new DNA is being assembled Mutation : changes in DNA sequence that affect genetic information

40 Mutation : changes in DNA sequence that affect genetic information Gene mutations: result from changes in a single gene Chromosomal mutations: involve changes in whole chromosome

41 Point mutation: affect one nucleotide Occur at a single point in the DNA sequence Often one nucleotide is substituted for another Generally change just one amino acid Usually not lethal

42

43 Frameshift mutation- results from the insertion or deletion of a nucleotide Since genetic code is read in groups of three, adding or deleting a nucleotide shifts all resulting amino acids This mutation can alter a protein so much that it is unable to perform its normal functions Most likely lethal

44

45 Chromosomal mutations involves changes in the number or structure of chromosomes May change the locations of genes on chromosomes & even the number of copies of some genes

46 Deletion: Involves the loss of all or part of a chromosome Duplication: A segment of a chromosome is repeated

47 Inversion: Part of a chromosome becomes oriented in the reverse of its usual direction Translocation: Part of one chromosome breaks off and attaches to another chromosome

48

49 The nucleus of a human cell contains more than 1 meter of DNA: must be folded to fit into the tiny space of a cell s nucleus chromatin- DNA & proteins (histones) tightly packed together DNA & histone molecules form beadlike structure called a nucleosome

50 Nucleosomes pack with one another to form a thick fiber which is shortened by a system of loops & coils This makes chromosomes visible & may aid in their separation during mitosis Important because a mistake in DNA folding could harm a cell s ability to reproduce Nucleosomes may also play a role in how genes are read to make proteins

51 Nucleosomes pack with one another to form a thick fiber which is shortened by a system of loops & coils This makes chromosomes visible & may aid in their separation during mitosis Important because a mistake in DNA folding could harm a cell s ability to reproduce Nucleosomes may also play a role in how genes are read to make proteins

52

To truly understand genetics, biologists first had to discover the chemical nature of genes

To truly understand genetics, biologists first had to discover the chemical nature of genes To truly understand genetics, biologists first had to discover the chemical nature of genes Identifying the structure that carries genetic information makes it possible to understand how genes control

More information

DNA RNA PROTEIN SYNTHESIS -NOTES-

DNA RNA PROTEIN SYNTHESIS -NOTES- DNA RNA PROTEIN SYNTHESIS -NOTES- THE COMPONENTS AND STRUCTURE OF DNA DNA is made up of units called nucleotides. Nucleotides are made up of three basic components:, called deoxyribose in DNA In DNA, there

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 Warm Up Exercise Test Corrections Make sure to indicate your new answer and provide an explanation for why this is the correct answer. Do this with a red pen in the margins of your

More information

DNA - DEOXYRIBONUCLEIC ACID

DNA - DEOXYRIBONUCLEIC ACID DNA - DEOXYRIBONUCLEIC ACID blueprint of life (has the instructions for making an organism) established by James Watson and Francis Crick codes for your genes shape of a double helix made of repeating

More information

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes Frank Griffith- discovered DNA in 1928

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes Frank Griffith- discovered DNA in 1928 HEREDITY = passing on of characteristics from parents to offspring I. DNA, Chromosomes, Chromatin, and Genes DNA = blueprint of life (has the instructions for making an organism) Chromatin= uncoiled DNA

More information

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are? 2 strands, has the 5-carbon sugar deoxyribose, and has the nitrogen base Thymine. The actual process of assembling the proteins on the ribosome is called? DNA translation Adenine pairs with Thymine, Thymine

More information

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base DNA,, RNA,, AND PROTEIN SYNTHESIS DNA Deoxyribonucleic Acid Enables cells to have different forms and perform different functions Primary functions of DNA: Store and transmit genetic information that tells

More information

Review? - What are the four macromolecules?

Review? - What are the four macromolecules? Review? - What are the four macromolecules? Lipids Carbohydrates Protein Nucleic Acids What is the monomer of nucleic acids and what do nucleic acids make up? Nucleotides; DNA and RNA 12-1 DNA DNA Stands

More information

Unit 5 DNA, RNA, and Protein Synthesis

Unit 5 DNA, RNA, and Protein Synthesis 1 Biology Unit 5 DNA, RNA, and Protein Synthesis 5:1 History of DNA Discovery Fredrick Griffith-conducted one of the first experiment s in 1928 to suggest that bacteria are capable of transferring genetic

More information

DNA, RNA and protein synthesis

DNA, RNA and protein synthesis DNA, RNA and protein synthesis DNA is deoxyribonucleic acid DNA contains all the genetic instructions for making proteins within the cell. Each DNA molecule is made of repeating subunits called nucleotides.

More information

From Gene to Protein

From Gene to Protein 8.2 Structure of DNA From Gene to Protein deoxyribonucleic acid - (DNA) - the ultimate source of all information in a cell This information is used by the cell to produce the protein molecules which are

More information

DNA. Essential Question: How does the structure of the DNA molecule allow it to carry information?

DNA. Essential Question: How does the structure of the DNA molecule allow it to carry information? DNA Essential Question: How does the structure of the DNA molecule allow it to carry information? Fun Website to Explore! http://learn.genetics.utah.edu/content/molecules/ DNA History Griffith Experimented

More information

DNA & RNA. Chapter Twelve and Thirteen Biology One

DNA & RNA. Chapter Twelve and Thirteen Biology One DNA & RNA Chapter Twelve and Thirteen Biology One I. DNA Structure A. DNA monomers = nucleotides *1. sugar bonded to PO4 & one of four possible nitrogen bases 2. bases = Adenine, Guanine, Cytosine, Thymine

More information

March 26, 2012 NUCLEIC ACIDS AND PROTEIN SYNTHESIS

March 26, 2012 NUCLEIC ACIDS AND PROTEIN SYNTHESIS NUCLEIC ACIDS AND PROTEIN SYNTHESIS MAIN MAIN TOPICS TOPICS TO TO BE BE COVERED COVERED THIS THIS UNIT: UNIT: I. I. EVIDENCE EVIDENCE OF OF DNA DNA AS AS THE THE GENETIC GENETIC CODE CODE II. II. DNA DNA

More information

Lesson 8. DNA: The Molecule of Heredity. Gene Expression and Regulation. Introduction to Life Processes - SCI 102 1

Lesson 8. DNA: The Molecule of Heredity. Gene Expression and Regulation. Introduction to Life Processes - SCI 102 1 Lesson 8 DNA: The Molecule of Heredity Gene Expression and Regulation Introduction to Life Processes - SCI 102 1 Genes and DNA Hereditary information is found in discrete units called genes Genes are segments

More information

Chapter 12 DNA & RNA

Chapter 12 DNA & RNA Chapter 12 DNA & RNA Experiments with Heredity Material Griffith s Experiments: injected mice with bacteria that cause pneumonia Concluded genetic info is transformed from one bacteria to another Avery

More information

DNA Structure and Replication, and Virus Structure and Replication Test Review

DNA Structure and Replication, and Virus Structure and Replication Test Review DNA Structure and Replication, and Virus Structure and Replication Test Review What does DNA stand for? Deoxyribonucleic Acid DNA is what type of macromolecule? DNA is a nucleic acid The building blocks

More information

Unit VII DNA to RNA to protein The Central Dogma

Unit VII DNA to RNA to protein The Central Dogma Unit VII DNA to RNA to protein The Central Dogma DNA Deoxyribonucleic acid, the material that contains information that determines inherited characteristics. A DNA molecule is shaped like a spiral staircase

More information

Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein)

Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein) Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein) I. Review A. Cells copy their DNA (in S phase of Interphase)-Why? Prepare for Cell Division (Mitosis & Cytokinesis) Genes

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: _ Date: _ CH 12 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How many codons are needed to specify three amino acids? a. 6 c. 3 b. 12

More information

Ch 12.DNA and RNA.Biology.Landis

Ch 12.DNA and RNA.Biology.Landis Identity Section 12 1 DNA (pages 287 294) This section tells about the experiments that helped scientists discover the relationship between genes and DNA. It also describes the chemical structure of the

More information

Semester 2: Unit 1: Molecular Genetics

Semester 2: Unit 1: Molecular Genetics Semester 2: Unit 1: Molecular Genetics Information Overload : Cells store information in DNA. Information is used to build molecules needed for cell growth. As cell size increases, the demands on that

More information

Griffith and Transformation (pages ) 1. What hypothesis did Griffith form from the results of his experiments?

Griffith and Transformation (pages ) 1. What hypothesis did Griffith form from the results of his experiments? Section 12 1 DNA (pages 287 294) This section tells about the experiments that helped scientists discover the relationship between genes and DNA. It also describes the chemical structure of the DNA molecule.

More information

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information DNA: CH 13 How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information Discovering DNA s Function 1928: Frederick Griffith studied

More information

12-1 DNA The Structure of DNA (Pages )

12-1 DNA The Structure of DNA (Pages ) 12-1 DNA The Structure of DNA (Pages 291-294) The Components and Structure of DNA You might think that knowing genes were made of DNA would have satisfied scientists, but that was not the case at all.

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 History of DNA Late 1800 s scientists discovered that DNA is in the nucleus of the cell 1902 Walter Sutton proposed that hereditary material resided in the chromosomes in the nucleus

More information

Key Concepts. Ø DNA Replication Ø Protein Synthesis Ø Transcription: Ø Translation: Ø messenger RNA (mrna)

Key Concepts. Ø DNA Replication Ø Protein Synthesis Ø Transcription: Ø Translation: Ø messenger RNA (mrna) Heredity B-4.3 Explain how DNA functions as the code of life and the blueprint for proteins. (Focus on DNA replication) B-4.4: Summarize the basic process involved in protein synthesis (including transcription

More information

NUCLEIC ACIDS AND PROTEIN SYNTHESIS

NUCLEIC ACIDS AND PROTEIN SYNTHESIS NUCLEIC ACIDS AND PROTEIN SYNTHESIS DNA Cell Nucleus Chromosomes is a coiled double helix carrying hereditary information of the cell Contains the instructions for making from 20 different amino acids

More information

Nucleic acids and protein synthesis

Nucleic acids and protein synthesis THE FUNCTIONS OF DNA Nucleic acids and protein synthesis The full name of DNA is deoxyribonucleic acid. Every nucleotide has the same sugar molecule and phosphate group, but each nucleotide contains one

More information

DNA life s code. Importance of DNA. DNA Structure. DNA Structure - nucleotide. DNA Structure nitrogen bases. Linking Nucleotides

DNA life s code. Importance of DNA. DNA Structure. DNA Structure - nucleotide. DNA Structure nitrogen bases. Linking Nucleotides Importance of life s code molecule that makes up genes and determines the traits of all living things Controls by: producing proteins Proteins are important because All structures are made of protein Skin

More information

RNA & PROTEIN SYNTHESIS

RNA & PROTEIN SYNTHESIS RNA & PROTEIN SYNTHESIS DNA & RNA Genes are coded DNA instructions that control the production of proteins within the cell. The first step in decoding these genetic messages is to copy part of the nucleotide

More information

DNA Replication and Protein Synthesis

DNA Replication and Protein Synthesis DNA Replication and Protein Synthesis DNA is Deoxyribonucleic Acid. It holds all of our genetic information which is passed down through sexual reproduction DNA has three main functions: 1. DNA Controls

More information

Adv Biology: DNA and RNA Study Guide

Adv Biology: DNA and RNA Study Guide Adv Biology: DNA and RNA Study Guide Chapter 12 Vocabulary -Notes What experiments led up to the discovery of DNA being the hereditary material? o The discovery that DNA is the genetic code involved many

More information

Summary 12 1 DNA RNA and Protein Synthesis Chromosomes and DNA Replication. Name Class Date

Summary 12 1 DNA RNA and Protein Synthesis Chromosomes and DNA Replication. Name Class Date Chapter 12 Summary DNA and RNA 12 1 DNA To understand genetics, biologists had to learn the chemical structure of the gene. Frederick Griffith first learned that some factor from dead, disease-causing

More information

12 1 DNA. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall:

12 1 DNA. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall: 12 1 DNA 1 of 37 http://www.biologyjunction.com/powerpoints_dragonfly_book_prent.htm 12 1 DNA Griffith and Transformation Griffith and Transformation In 1928, Fredrick Griffith was trying to learn how

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 Section 12-1 DNA DNA Griffith and Transformation Frederick Griffith bacteriologist studying how certain types of bacteria produce pneumonia Isolated 2 strains of pneumonia from mice

More information

Replication Transcription Translation

Replication Transcription Translation Replication Transcription Translation A Gene is a Segment of DNA When a gene is expressed, DNA is transcribed to produce RNA and RNA is then translated to produce proteins. Genotype and Phenotype Genotype

More information

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 39 12-3 RNA and Protein Synthesis 2 of 39 Essential Question What is transcription and translation and how do they take place? 3 of 39 12 3 RNA and Protein Synthesis Genes are coded

More information

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 39 12-3 RNA and Protein Synthesis 2 of 39 12 3 RNA and Protein Synthesis Genes are coded DNA instructions that control the production of proteins. Genetic messages can be decoded by

More information

Biology Celebration of Learning (100 points possible)

Biology Celebration of Learning (100 points possible) Name Date Block Biology Celebration of Learning (100 points possible) Matching (1 point each) 1. Codon a. process of copying DNA and forming mrna 2. Genes b. section of DNA coding for a specific protein

More information

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein This is also known as: The central dogma of molecular biology Protein Proteins are made

More information

DNA- THE MOLECULE OF LIFE

DNA- THE MOLECULE OF LIFE DNA- THE MOLECULE OF LIFE STRUCTURE OF DNA DNA (Deoxyribonucleic Acid): DNA is a long, stringy, twisted molecule made up of nucleotides that carries genetic information. DISCOVERIES Rosalind Franklin,

More information

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases.

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases. DNA and RNA Nucleic Acids What is a Nucleic Acid? Nucleic Acids are organic molecules that carry information needed to make proteins Remember: proteins carry out ALL cellular activity There are two types

More information

DNA: The Molecule of Heredity

DNA: The Molecule of Heredity 1 DNA: The Molecule of Heredity DNA Deoxyribonucleic acid Is a type of nucleic acid What chromosomes (and genes) are made of Made up of repeating nucleotide subunits 1 nucleotide looks like: Phosphate

More information

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! Protein Synthesis/Gene Expression Why do we need to make proteins? To build parts for our body as

More information

DNA, RNA, and Protein. The Whole Story

DNA, RNA, and Protein. The Whole Story DNA, RNA, and Protein The Whole Story They didn t always know DNA was the Genetic Material. But they did know that the genetic material needed to do four things. The Master Molecule Contains Information

More information

DNA- THE MOLECULE OF LIFE. Link

DNA- THE MOLECULE OF LIFE. Link DNA- THE MOLECULE OF LIFE Link STRUCTURE OF DNA DNA (Deoxyribonucleic Acid): DNA is a long, stringy, twisted molecule made up of nucleotides that carries genetic information. DISCOVERIES Rosalind Franklin,

More information

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan Sec. 12-3 RNA and Protein Synthesis Roles of DNA and RNA DNA is the MASTER PLAN RNA is the BLUEPRINT of the Master Plan 1 RNA uses the information from DNA to make proteins Differs from DNA: 1. Ribose

More information

Chapter 13 - Concept Mapping

Chapter 13 - Concept Mapping Chapter 13 - Concept Mapping Using the terms and phrases provided below, complete the concept map showing the discovery of DNA structure. amount of base pairs five-carbon sugar purine DNA polymerases Franklin

More information

Chapter 12. DNA TRANSCRIPTION and TRANSLATION

Chapter 12. DNA TRANSCRIPTION and TRANSLATION Chapter 12 DNA TRANSCRIPTION and TRANSLATION 12-3 RNA and Protein Synthesis WARM UP What are proteins? Where do they come from? From DNA to RNA to Protein DNA in our cells carry the instructions for making

More information

I. Gene Expression Figure 1: Central Dogma of Molecular Biology

I. Gene Expression Figure 1: Central Dogma of Molecular Biology I. Gene Expression Figure 1: Central Dogma of Molecular Biology Central Dogma: Gene Expression: RNA Structure RNA nucleotides contain the pentose sugar Ribose instead of deoxyribose. Contain the bases

More information

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes? Bio11 Announcements TODAY Genetics (review) and quiz (CP #4) Structure and function of DNA Extra credit due today Next week in lab: Case study presentations Following week: Lab Quiz 2 Ch 21: DNA Biology

More information

Protein Synthesis. DNA to RNA to Protein

Protein Synthesis. DNA to RNA to Protein Protein Synthesis DNA to RNA to Protein From Genes to Proteins Processing the information contained in DNA into proteins involves a sequence of events known as gene expression and results in protein synthesis.

More information

Bundle 5 Test Review

Bundle 5 Test Review Bundle 5 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? _Nucleic

More information

Sections 12.3, 13.1, 13.2

Sections 12.3, 13.1, 13.2 Sections 12.3, 13.1, 13.2 Background: Watson & Crick recognized that base pairing in the double helix allows DNA to be copied, or replicated Each strand in the double helix has all the information to remake

More information

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links The actual process of assembling the proteins on the ribosome is called? translation The building blocks of proteins are? Complementary base pairing links Define and name the Purines amino acids nitrogen

More information

Replication Review. 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells?

Replication Review. 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells? Replication Review 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells? 3. Where does DNA Replication take place in the cell cycle? 4. 4. What guides DNA Replication?

More information

Resources. How to Use This Presentation. Chapter 10. Objectives. Table of Contents. Griffith s Discovery of Transformation. Griffith s Experiments

Resources. How to Use This Presentation. Chapter 10. Objectives. Table of Contents. Griffith s Discovery of Transformation. Griffith s Experiments How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Chapter 10 - Molecular Biology of the Gene

Chapter 10 - Molecular Biology of the Gene Bio 100 - Molecular Genetics 1 A. Bacterial Transformation Chapter 10 - Molecular Biology of the Gene Researchers found that they could transfer an inherited characteristic (e.g. the ability to cause pneumonia),

More information

Section 3: DNA Replication

Section 3: DNA Replication Section 3: DNA Replication Main Idea: Replication- process by which DNA is copied during the cell cycle DNA Polymerase- a group of enzymes that bond the new nucleotides together 1 DNA Replication Replication

More information

4/22/2014. Interest Grabber. Section Outline. Today s Goal. Percentage of Bases in Four Organisms. Figure 12 2 Griffith s Experiment

4/22/2014. Interest Grabber. Section Outline. Today s Goal. Percentage of Bases in Four Organisms. Figure 12 2 Griffith s Experiment Order! Order! Genes are made of, a large, complex molecule. is composed of individual units called nucleotides. Three of these units form a code. The order, or sequence, of a code and the type of code

More information

DNA: Structure and Function

DNA: Structure and Function DNA: Structure and Function Biology's biggest moment in the 20th century, as heralded in six paragraphs in The New York Times, May 16, 1953. 2 Research of DNA Structure Chargaff s Rule of Ratios Amount

More information

Route to DNA discovery

Route to DNA discovery Unit 6 All living things use DNA to pass genetic information to the next generation. Genetic information directs the development and homeostasis of organism through a process of translating the genetic

More information

Nucleic Acids: DNA and RNA

Nucleic Acids: DNA and RNA Nucleic Acids: DNA and RNA Living organisms are complex systems. Hundreds of thousands of proteins exist inside each one of us to help carry out our daily functions. These proteins are produced locally,

More information

DNA Structure and Protein synthesis

DNA Structure and Protein synthesis DNA Structure and Protein synthesis What is DNA? DNA = deoxyribonucleic acid Chromosomes are made of DNA It carries genetic information: controls the activities of cells by providing instructions for making

More information

Ch 10.4 Protein Synthesis

Ch 10.4 Protein Synthesis Ch 10.4 Protein Synthesis I) Flow of Genetic Information A) DNA is made into RNA which undergoes transcription and translation to be made into a protein. II) RNA Structure and Function A) RNA contains

More information

(deoxyribonucleic acid)

(deoxyribonucleic acid) 1 The Central Dogma of Molecular Biology Mark Mayo Cypress College 2 The Central Dogma of Molecular Biology 3 Importance of Proteins There are three main kinds: structural - make up most body parts hormone

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information

Why are proteins important?

Why are proteins important? PROTEIN SYNTHESIS Why are proteins important? proteins help build cell structures some proteins are enzymes that promote biological reactions Proteins are found in muscles, blood, bones, etc.. RNA RNA

More information

DNA, RNA, and Protein Synthesis

DNA, RNA, and Protein Synthesis http://faculty.uca.edu/~johnc/mbi1440.htm DNA, RNA, and Protein Synthesis http://www.wappingersschools.org/rck/staff/teacherhp/johnson/visualvocab/mrna.gif DNA base pairs carry the genetic Section 12-1

More information

Comparing RNA and DNA

Comparing RNA and DNA RNA The Role of RNA Genes contain coded DNA instructions that tell cells how to build proteins. 1 st step in decoding these genetic instructions = copy part of the base sequence from DNA into RNA. 2 nd

More information

TRANSCRIPTION AND TRANSLATION

TRANSCRIPTION AND TRANSLATION TRANSCRIPTION AND TRANSLATION Bell Ringer (5 MINUTES) 1. Have your homework (any missing work) out on your desk and ready to turn in 2. Draw and label a nucleotide. 3. Summarize the steps of DNA replication.

More information

Genes are coded DNA instructions that control the production of proteins within a cell. The first step in decoding genetic messages is to copy a part

Genes are coded DNA instructions that control the production of proteins within a cell. The first step in decoding genetic messages is to copy a part Genes are coded DNA instructions that control the production of proteins within a cell. The first step in decoding genetic messages is to copy a part of the nucleotide sequence of the DNA into RNA. RNA

More information

DNA DNA. The molecule of heredity. of characteristics from parents to offspring. Gene

DNA DNA. The molecule of heredity. of characteristics from parents to offspring. Gene DNA The molecule of heredity 1 HEREDITY = passing on of characteristics from parents to offspring How?... DNA! 2 DNA I. DNA, Chromosomes, Chromatin and Genes DNA = blueprint of life (has the instructions

More information

CELL BIOLOGY: DNA. Generalized nucleotide structure: NUCLEOTIDES: Each nucleotide monomer is made up of three linked molecules:

CELL BIOLOGY: DNA. Generalized nucleotide structure: NUCLEOTIDES: Each nucleotide monomer is made up of three linked molecules: BIOLOGY 12 CELL BIOLOGY: DNA NAME: IMPORTANT FACTS: Nucleic acids are organic compounds found in all living cells and viruses. Two classes of nucleic acids: 1. DNA = ; found in the nucleus only. 2. RNA

More information

DNA, Replication and RNA

DNA, Replication and RNA DNA, Replication and RNA The structure of DNA DNA, or Deoxyribonucleic Acid, is the blue prints for building all of life. DNA is a long molecule made up of units called NUCLEOTIDES. Each nucleotide is

More information

8.1. KEY CONCEPT DNA was identified as the genetic material through a series of experiments. 64 Reinforcement Unit 3 Resource Book

8.1. KEY CONCEPT DNA was identified as the genetic material through a series of experiments. 64 Reinforcement Unit 3 Resource Book 8.1 IDENTIFYING DNA AS THE GENETIC MATERIAL KEY CONCEPT DNA was identified as the genetic material through a series of experiments. A series of experiments helped scientists recognize that DNA is the genetic

More information

The Chemistry of Heredity

The Chemistry of Heredity The Chemistry of Heredity Amy Brown Science Stuff Copyrighted By the 1940's, there was no doubt of the existence of chromosomes and that genes were on the chromosomes. But there were so many questions

More information

NUCLEIC ACID METABOLISM. Omidiwura, B.R.O

NUCLEIC ACID METABOLISM. Omidiwura, B.R.O NUCLEIC ACID METABOLISM Omidiwura, B.R.O Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid

More information

Vocabulary: DNA (Deoxyribonucleic Acid) RNA (Ribonucleic Acid) Gene Mutation

Vocabulary: DNA (Deoxyribonucleic Acid) RNA (Ribonucleic Acid) Gene Mutation STUDENTS WILL: Identify the parts of a DNA molecule and its structure. Explain how DNA copies itself. Describe the structure and function of each kind of RNA. Vocabulary: DNA (Deoxyribonucleic Acid) RNA

More information

Biology. DNA & the Language of Life

Biology. DNA & the Language of Life Biology DNA & the Language of Life Genes are Made of DNA Fredrick Griffith (1928) studied pneumonia strains (one was harmless while the other was pathogenic, or disease-causing) Made non-harmful strains

More information

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins KEY CONCEPT Section 1 DNA was identified as the genetic material through a series of experiments. Griffith finds a transforming principle. Griffith experimented with the bacteria that cause pneumonia.

More information

Notes: (Our Friend) DNA. DNA Structure DNA is composed of 2 chains of repeating. A nucleotide = + +

Notes: (Our Friend) DNA. DNA Structure DNA is composed of 2 chains of repeating. A nucleotide = + + Notes: (Our Friend) DNA Some DNA Basics DNA stands for DNA functions to & genetic info. This information tells an organism s cells what to make and when to make them. Proteins form cell structures and

More information

Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering

Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering DNA Introduction Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering At the most basic level DNA is a set of instructions for protein construction. Structural

More information

DNA. Deoxyribose Nucleic Acid

DNA. Deoxyribose Nucleic Acid DNA Deoxyribose Nucleic Acid Biomolecules Remember 1. Carbohydrates 2. Lipids 3. Nucleic acids hold genetic information; code for proteins 4. Proteins History of DNA Who Discovered DNA Rosalind Franklin

More information

Activity A: Build a DNA molecule

Activity A: Build a DNA molecule Name: Date: Student Exploration: Building DNA Vocabulary: double helix, DNA, enzyme, lagging strand, leading strand, mutation, nitrogenous base, nucleoside, nucleotide, replication Prior Knowledge Questions

More information

Macromolecule Review

Macromolecule Review DNA: CH 13 Macromolecule Review Nucleic acid Monomer = nucleotide Polymer = DNA, RNA Function = genetic information Protein Monomer = amino acid Polymer = polypeptide Function = structure and chemical

More information

PROTEIN SYNTHESIS. Higher Level

PROTEIN SYNTHESIS. Higher Level PROTEIN SYNTHESIS Higher Level Lesson Objectives At the end of this lesson you should be able to 1. Outline the steps in protein synthesis 2. Understand DNA contains the code for protein 3. Understand

More information

Chapter 14: From DNA to Protein

Chapter 14: From DNA to Protein Chapter 14: From DNA to Protein Steps from DNA to Proteins Same two steps produce all proteins: 1) DNA is transcribed to form RNA Occurs in the nucleus RNA moves into cytoplasm 2) RNA is translated in

More information

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA 21 DNA and Biotechnology DNA and Biotechnology OUTLINE: Replication of DNA Gene Expression Mutations Regulating Gene Activity Genetic Engineering Genomics DNA (deoxyribonucleic acid) Double-stranded molecule

More information

Biology 30 DNA Review: Importance of Meiosis nucleus chromosomes Genes DNA

Biology 30 DNA Review: Importance of Meiosis nucleus chromosomes Genes DNA Biology 30 DNA Review: Importance of Meiosis Every cell has a nucleus and every nucleus has chromosomes. The number of chromosomes depends on the species. o Examples: Chicken 78 Chimpanzee 48 Potato 48

More information

What does DNA stand for?

What does DNA stand for? DNA and RNA What does DNA stand for? DNA = deoxribonucleic acid NOTE: the DNA from one cell would stretch 3 metre DNA are coiled and folded. DNA has two strands. What four bases are used in DNA? The four

More information

DNA, RNA, and PROTEIN SYNTHESIS

DNA, RNA, and PROTEIN SYNTHESIS DNA, RNA, and PROTEIN SYNTHESIS 1 DNA DNA contains genes, sequences of nucleotide bases The genes code for polypeptides (proteins) Proteins are used to build cells and do much of the work inside cells

More information

Chapter 8: DNA and RNA

Chapter 8: DNA and RNA Chapter 8: DNA and RNA Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 8-1 DNA and the Importance of Proteins Proteins play

More information

Name Date Class. The Central Dogma of Biology

Name Date Class. The Central Dogma of Biology Concept Mapping The Central Dogma of Biology Complete the events chain showing the events that occur as DNA codes for RNA, which guides the synthesis of proteins, the central dogma of biology. These terms

More information

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein?

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein? Lesson 1 - RNA Do you remember What is a gene? What is RNA? How does it differ from DNA? What is protein? Gene Segment of DNA that codes for building a protein DNA code is copied into RNA form, and RNA

More information

UNIT 4. DNA, RNA, and Gene Expression

UNIT 4. DNA, RNA, and Gene Expression UNIT 4 DNA, RNA, and Gene Expression DNA STRUCTURE DNA is the primary material that causes recognizable, inheritable characteristics in related groups of organisms. DNA is the GENETIC MATERIAL Contain

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

Unit #5 - Instructions for Life: DNA. Background Image

Unit #5 - Instructions for Life: DNA. Background Image Unit #5 - Instructions for Life: DNA Introduction On the following slides, the blue sections are the most important. Underline words = vocabulary! All cells carry instructions for life DNA. In this unit,

More information