Measuring Evolution of Populations

Size: px
Start display at page:

Download "Measuring Evolution of Populations"

Transcription

1 Measuring Evolution of Populations

2 5 Agents of evolutionary change Mutation Gene Flow Non-random mating Genetic Drift Selection

3 Populations & gene pools Concepts u a population is a localized group of interbreeding individuals u gene pool is collection of alleles in the population remember difference between alleles & genes! u allele frequency is how common is that allele in the population how many A vs. a in whole population

4 Evolution of populations Evolution = change in allele frequencies in a population u hypothetical: what conditions would cause allele frequencies to not change? u non-evolving population REMOVE all agents of evolutionary change 1. very large population size (no genetic drift) 2. no migration (no gene flow in or out) 3. no mutation (no genetic change) 4. random mating (no sexual selection) 5. no natural selection (everyone is equally fit)

5 Hardy-Weinberg equilibrium Hypothetical, non-evolving population u preserves allele frequencies Serves as a model (null hypothesis) u natural populations rarely in H-W equilibrium u useful model to measure if forces are acting on a population measuring evolutionary change G.H. Hardy mathematician W. Weinberg physician

6 Hardy-Weinberg theorem Counting Alleles u assume 2 alleles = B, b u frequency of dominant allele (B) = p u frequency of recessive allele (b) = q frequencies must add to 1 (100%), so: p + q = 1 BB Bb bb

7 Hardy-Weinberg Equilibrium How do we determine if a population is in Hardy-Weinberg equilibrium? u Find out the genotype frequencies in the population. u Calculate the frequencies of the dominant and recessive alleles (p and q). u Calculate what the allele frequencies would be in one generation of random mating.

8 Hardy-Weinberg Equilibrium If the allele frequencies after one round of random mating change at all from the original frequencies, the population is not in Hardy-Weinberg equilibrium and evolution has occurred within the population.

9 Hardy-Weinberg theorem Counting Individuals u frequency of homozygous dominant: p x p = p 2 u frequency of homozygous recessive: q x q = q 2 u frequency of heterozygotes: (p x q) + (q x p) = 2pq frequencies of all individuals must add to 1 (100%), so: p 2 + 2pq + q 2 = 1 BB Bb bb

10 H-W formulas Alleles: p + q = 1 B b B b B BB Bb b Bb bb Individuals: p 2 + 2pq + q 2 = 1 BB Bb bb BB Bb bb

11 Using Hardy-Weinberg equation population: 100 cats 84 black, 16 white How many of each genotype? q 2 (bb): 16/100 =.16 q (b):.16 = 0.4 p (B): = 0.6 p 2 =.36 2pq=.48 q 2 =.16 BB Bb bb AP Must BiologyWhat assume are population the genotype is in frequencies? H-W equilibrium!

12 Using Hardy-Weinberg equation Assuming H-W equilibrium Null hypothesis p 2 =.36 2pq=.48 q 2 =.16 BB Bb bb Sampled data p 2 =.20 =.74 2pq=.64 2pq=.10 q 2 =.16 BB Bb bb How do you explain the data?

13 Application of H-W principle Sickle cell anemia u inherit a mutation in gene coding for hemoglobin oxygen-carrying blood protein recessive allele = H s H s w normal allele = H b u low oxygen levels causes RBC to sickle breakdown of RBC clogging small blood vessels damage to organs u often lethal

14 Sickle cell frequency High frequency of heterozygotes u 1 in 5 in Central Africans = H b H s u unusual for allele with severe detrimental effects in homozygotes 1 in 100 = H s H s usually die before reproductive age Why is the H s allele maintained at such high levels in African populations? Suggests some selective advantage of being heterozygous

15 Malaria Single-celled eukaryote parasite (Plasmodium) spends part of its life cycle in red blood cells 1 2 3

16 Heterozygote Advantage In tropical Africa, where malaria is common: u homozygous dominant (normal) die of malaria: H b H b u homozygous recessive die of sickle cell anemia: H s H s u heterozygote carriers are relatively free of both: H b H s survive more, more common in population Hypothesis: In malaria-infected cells, the O 2 level is lowered enough to cause sickling which kills the cell & destroys the parasite. Frequency of sickle cell allele & distribution of malaria

17 HARDY-WEINBERG PRACTICE PROBLEMS p + q = 1 p pq + q 2 = 1

18 Black (b) is recessive to white (B) Bb and BB pigs look alike so can t tell their alleles by observing their phenotype. ALWAYS START WITH RECESSIVE alleles. p= dominant allele q = recessive allele 4/16 are black. So bb or q 2 = 4/16 or 0.25 q = 0.25 = 0.5

19 Once you know q you can figure out p... p + q = 1 p + q = 1 p = 1 p = 0.5 Now you know the allele frequencies. The frequency of the recessive (b) allele q = 0.5 The frequency of the dominant (B) allele p = 0.5

20 WHAT ARE THE GENOTYPIC FREQUENCIES? You know pp from problem bb or q 2 = 4/16 = 0.25 BB or p 2 = (0.5) 2 = 0.25 Bb = 2pq = 2 (0.5) (0.5) = % of population are bb 25% of population are BB 50% of population are Bb

21 Within a population of butterflies, the color brown (B) is dominant over the color white (b). And, 40% of all butterflies are white. q 2 = 0.4 q = 0.4 = p = = aa = 0.4 = 40% Aa = 2 (0.632) (0.368) = =46.5% AA = (0.3676) (0.3676) =.135 = 13.5% Image from: BIOLOGY by Miller and Levine; Prentice Hall Publishing 2006

22 PRACTICE HARDY WEINBERG 1 in 1700 US Caucasian newborns have cystic fibrosis. C for normal is dominant over c for cystic fibrosis. Calculate the allele frequencies for C and c in the population Image from: BIOLOGY by Miller and Levine; Prentice Hall Publishing 2006

23 1/1700 have cystic fibrosis q 2 = 1/1700 q = q = p = = Frequency of C = 97.6% Frequency of c = 2.4% NOW FIND THE GENOTYPIC FREQUENCIES

24 CC or p 2 = (0.976) 2 =.953 Cc or 2pq = 2 (0.976) (0.024) = cc = 1/1700 = CC = 95.3% of population Cc = 4.68% of population cc =.06% of population

25 Now you can answer questions about the population: How many people in this population are heterozygous? (1700) = 79.5 ~ 80 people are Cc It has been found that a carrier is better able to survive diseases with severe diarrhea. What would happen to the frequency of the "c" if there was a epidemic of cholera or other type of diarrhea producing disease? Cc more likely to survive than CC. c will increase in population

26 The gene for albinism is known to be a recessive allele. In Michigan, 9 people in a sample of 10,000 were found to have albino phenotypes. The other 9,991 had skin pigmentation normal for their ethnic group. Assuming hardy-weinberg equilibrium, what is the allele frequency for the dominant pigmentation allele in this population? q 2 = 9/10000 q = q = 0.03 p = = 0.97 Frequency of C = 97% Frequency of c = 3%

27 CC or q 2 = (0.976) 2 =.953 Cc or 2pq = 2 (0.976) (0.024) = cc = 1/1700 = CC = 95.3% of population Cc = 4.68% of population cc =.06% of population

AP Biology Laboratory 8 Population Genetics Virtual Student Guide

AP Biology Laboratory 8 Population Genetics Virtual Student Guide AP Biology Laboratory 8 Population Genetics Virtual Student Guide http://www.phschool.com/science/biology_place/labbench/index.html Introduction The Hardy-Weinberg law of genetic equilibrium provides a

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans POPULATION GENETICS, SELECTION, AND EVOLUTION INTRODUCTION A common misconception is that individuals evolve. While individuals may have favorable and heritable traits that are advantageous for survival

More information

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a

More information

Genetic Equilibrium: Human Diversity Student Version

Genetic Equilibrium: Human Diversity Student Version Genetic Equilibrium: Human Diversity Student Version Key Concepts: A population is a group of organisms of the same species that live and breed in the same area. Alleles are alternate forms of genes. In

More information

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017 OVERVIEW In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution and changes in allele frequency by using your class to represent

More information

AP BIOLOGY Population Genetics and Evolution Lab

AP BIOLOGY Population Genetics and Evolution Lab AP BIOLOGY Population Genetics and Evolution Lab In 1908 G.H. Hardy and W. Weinberg independently suggested a scheme whereby evolution could be viewed as changes in the frequency of alleles in a population

More information

Population genetics. Population genetics provides a foundation for studying evolution How/Why?

Population genetics. Population genetics provides a foundation for studying evolution How/Why? Population genetics 1.Definition of microevolution 2.Conditions for Hardy-Weinberg equilibrium 3.Hardy-Weinberg equation where it comes from and what it means 4.The five conditions for equilibrium in more

More information

EVOLUTION/HERDEDITY UNIT Unit 1 Part 8A Chapter 23 Activity Lab #11 A POPULATION GENETICS AND EVOLUTION

EVOLUTION/HERDEDITY UNIT Unit 1 Part 8A Chapter 23 Activity Lab #11 A POPULATION GENETICS AND EVOLUTION AP BIOLOGY EVOLUTION/HERDEDITY UNIT Unit Part 8A Chapter Activity Lab # A NAME DATE PERIOD POPULATION GENETICS AND EVOLUTION In 908 G. H. Hardy and W. Weinberg independently suggest a scheme whereby evolution

More information

POPULATION GENETICS AND EVOLUTION

POPULATION GENETICS AND EVOLUTION AP BIOLOGY EVOLUTION ACTIVITY # NAME DATE HOUR POPULATION GENETICS AND EVOLUTION INTRODUCTION In 908 G. H. Hardy and W. Weinberg independently suggest a scheme whereby evolution could be viewed as changes

More information

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale Remember: -Evolution is a change in species over time -Heritable variations exist within a population -These variations can result in differential reproductive success -Over generations this can result

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW POPULATION GENETICS, SELECTION, AND EVOLUTION This hands-on activity, used in conjunction with the short film The Making of the Fittest: (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans),

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations Population genetics Population: a localized group of individuals belonging to the same species Species: a group of populations whose individuals have the potential to interbreed

More information

Population and Community Dynamics. The Hardy-Weinberg Principle

Population and Community Dynamics. The Hardy-Weinberg Principle Population and Community Dynamics The Hardy-Weinberg Principle Key Terms Population: same species, same place, same time Gene: unit of heredity. Controls the expression of a trait. Can be passed to offspring.

More information

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) 7-1 Biology 1001 Lab 7: POPULATION GENETICS PREPARTION Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) OBECTIVES At the end of

More information

COMPUTER SIMULATIONS AND PROBLEMS

COMPUTER SIMULATIONS AND PROBLEMS Exercise 1: Exploring Evolutionary Mechanisms with Theoretical Computer Simulations, and Calculation of Allele and Genotype Frequencies & Hardy-Weinberg Equilibrium Theory INTRODUCTION Evolution is defined

More information

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common?

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common? Evolutionary Processes I. Introduction - The modern synthesis Reading: Chap. 25 II. No evolution: Hardy-Weinberg equilibrium A. Population genetics B. Assumptions of H-W III. Causes of microevolution (forces

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

Principles of Population Genetics

Principles of Population Genetics Principles of Population Genetics Leo P ten Kate, MD, PhD Em. Prof. of Clinical Genetics VU University Medical Center Amsterdam, the Netherlands Training Course in Sexual and Reproductive Health Research

More information

Lab 8: Population Genetics and Evolution. This may leave a bad taste in your mouth

Lab 8: Population Genetics and Evolution. This may leave a bad taste in your mouth Lab 8: Population Genetics and Evolution This may leave a bad taste in your mouth Pre-Lab Orientation Recall that the Hardy-Weinberg Equation helps us identify allele frequencies throughout a population.

More information

Hardy-Weinberg Principle 4/5/09. Chapter 20. Godfrey H. Hardy: English mathematician Wilhelm Weinberg: German physician

Hardy-Weinberg Principle 4/5/09. Chapter 20. Godfrey H. Hardy: English mathematician Wilhelm Weinberg: German physician Chapter 20 1 Godfrey H. Hardy: English mathematician Wilhelm Weinberg: German physician Concluded that: The original proportions of the genotypes in a population will remain constant from generation to

More information

Mendel and The Gene Idea

Mendel and The Gene Idea Mendel and The Gene Idea Gregor Mendel was a monk who experimented with pea plants and was also a scientist He is known as the Father of Genetics. Mendel s two fundamental principles of heredity are now

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Define the terms population, species, allelic and genotypic frequencies, gene pool, and fixed allele, genetic drift, bottle-neck effect, founder effect. Explain

More information

Bio 6 Natural Selection Lab

Bio 6 Natural Selection Lab Bio 6 Natural Selection Lab Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you will observe

More information

Hardy-Weinberg Principle

Hardy-Weinberg Principle Name: Hardy-Weinberg Principle In 1908, two scientists, Godfrey H. Hardy, an English mathematician, and Wilhelm Weinberg, a German physician, independently worked out a mathematical relationship that related

More information

POPULATION GENETICS. Evolution Lectures 4

POPULATION GENETICS. Evolution Lectures 4 POPULATION GENETICS Evolution Lectures 4 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

Population Genetics. Lab Exercise 14. Introduction. Contents. Objectives

Population Genetics. Lab Exercise 14. Introduction. Contents. Objectives Lab Exercise Population Genetics Contents Objectives 1 Introduction 1 Activity.1 Calculating Frequencies 2 Activity.2 More Hardy-Weinberg 3 Resutls Section 4 Introduction Unlike Mendelian genetics which

More information

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools Chapter 23: The Evolution of Populations 1. Populations and Gene Pools 2. Hardy-Weinberg Equilibrium 3. A Closer Look at Natural Selection 1. Populations & Gene Pools Chapter Reading pp. 481-484, 488-491

More information

Genetic Variation. Genetic Variation within Populations. Population Genetics. Darwin s Observations

Genetic Variation. Genetic Variation within Populations. Population Genetics. Darwin s Observations Genetic Variation within Populations Population Genetics Darwin s Observations Genetic Variation Underlying phenotypic variation is genetic variation. The potential for genetic variation in individuals

More information

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 5: EVOLUTION UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. Darwin s Principle of Natural Selection a. Variation individuals within a population possess

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Chapter 8. An Introduction to Population Genetics

Chapter 8. An Introduction to Population Genetics Chapter 8 An Introduction to Population Genetics Matthew E. Andersen Department of Biological Sciences University of Nevada, Las Vegas Las Vegas, Nevada 89154-4004 Matthew Andersen received his B.A. in

More information

Localized group of individuals belonging to the same species. Group of populations that have the potential to interbreed

Localized group of individuals belonging to the same species. Group of populations that have the potential to interbreed QUESTIONS: 1. Match the definition with the correct term. A. Gene pool B. Population C. Population genetics D. Species Study of genetic variation within a population Localized group of individuals belonging

More information

Population Dynamics. Population: all the individuals of a species that live together in an area

Population Dynamics. Population: all the individuals of a species that live together in an area Population Dynamics Population Dynamics Population: all the individuals of a species that live together in an area Demography: the statistical study of populations, make predictions about how a population

More information

Biol Lecture Notes

Biol Lecture Notes Biol 303 1 Evolutionary Forces: Generation X Simulation To launch the GenX software: 1. Right-click My Computer. 2. Click Map Network Drive 3. Don t worry about what drive letter is assigned in the upper

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population Genetic variation in a population increases the chance that some individuals

More information

The Theory of Evolution

The Theory of Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

The Making of the Fittest: Natural Selection and Adaptation Allele and phenotype frequencies in rock pocket mouse populations

The Making of the Fittest: Natural Selection and Adaptation Allele and phenotype frequencies in rock pocket mouse populations The Making of the Fittest: Natural Selection and Adaptation Allele and phenotype frequencies in rock pocket mouse populations Name: Per. Introduction The tiny rock pocket mouse weighs just 15 grams, about

More information

CHAPTER 12 MECHANISMS OF EVOLUTION

CHAPTER 12 MECHANISMS OF EVOLUTION CHAPTER 12 MECHANISMS OF EVOLUTION 12.1 Genetic Variation DNA biological code for inheritable traits GENES units of DNA molecule in a chromosome LOCI location of specific gene on DNA molecules DIPLOID

More information

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below.

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below. SECTION 11.1 GENETIC VARIATION WITHIN POPULATIONS Study Guide KEY CONCEPT A population shares a common gene pool. VOCABULARY gene pool allele frequency MAIN IDEA: Genetic variation in a population increases

More information

Evolution in a Genetic Context

Evolution in a Genetic Context Evolution in a Genetic Context What is evolution? Evolution is the process of change over time. In terms of genetics and evolution, our knowledge of DNA and phenotypic expression allow us to understand

More information

Population Genetics and Evolution

Population Genetics and Evolution Population Genetics and Evolution Forces of Evolution DETERMINISTIC: direction of change predictable Mutation Migration Natural Selection STOCHASTIC: direction of change unknowable (none exp.) Genetic

More information

The Making of the Fittest: Natural Selection and Adaptation

The Making of the Fittest: Natural Selection and Adaptation ALLELE AND PHENOTYPE FREQUENCIES IN ROCK POCKET MOUSE POPULATIONS INTRODUCTION The tiny rock pocket mouse weighs just 15 grams, about as much as a handful of paper clips. A typical rock pocket mouse is

More information

mrna for protein translation

mrna for protein translation Biology 1B Evolution Lecture 5 (March 5, 2010), Genetic Drift and Migration Mutation What is mutation? Changes in the coding sequence Changes in gene regulation, or how the genes are expressed as amino

More information

Study Guide A. Answer Key. The Evolution of Populations

Study Guide A. Answer Key. The Evolution of Populations The Evolution of Populations Answer Key SECTION 1. GENETIC VARIATION WITHIN POPULATIONS 1. b 2. d 3. gene pool 4. combinations of alleles 5. allele frequencies 6. ratio or percentage 7. mutation 8. recombination

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Chapter 14. Beyond Mendel s Laws of Inheritance Modified from Kim Foglia Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single

More information

Lecture 10: Introduction to Genetic Drift. September 28, 2012

Lecture 10: Introduction to Genetic Drift. September 28, 2012 Lecture 10: Introduction to Genetic Drift September 28, 2012 Announcements Exam to be returned Monday Mid-term course evaluation Class participation Office hours Last Time Transposable Elements Dominance

More information

Laboratory. Hardy-Weinberg Population Genetics

Laboratory. Hardy-Weinberg Population Genetics Laboratory 10 Hardy-Weinberg Population Genetics Biology 171L SP18 Lab 10: Hardy-Weinberg Population Genetics Student Learning Outcomes 1. Calculate allele and genotype frequencies 2. Use phenotypes to

More information

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Mendel & Inheritance SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment Mendel s Law of Segregation: gene pairs separate when gametes (sex cells) are formed; each gamete as only

More information

Evolution. Population Genetics. Targets: Alleles and Genes 3/30/2014

Evolution. Population Genetics. Targets: Alleles and Genes 3/30/2014 Targets: Alleles and Genes Evolution Population Genetics 1. I can explain how genetic variation in a species increases chances for survival 2. I can write an example of how lethal alleles are stored in

More information

A little knowledge is a dangerous thing. So is a lot. Albert Einstein. Distribution of grades: Exam I. Genetics. Genetics. Genetics.

A little knowledge is a dangerous thing. So is a lot. Albert Einstein. Distribution of grades: Exam I. Genetics. Genetics. Genetics. A little knowledge is a dangerous thing. So is a lot. Albert Einstein Percentage Distribution of grades: Exam I.5.4.3.2. A B C D F Grade If Huntington s disease is a dominant trait, shouldn t most people

More information

1) Genetic Drift. Genetic Drift - population with stable size ~ 10

1) Genetic Drift. Genetic Drift - population with stable size ~ 10 1) Genetic Drift Flip a coin 1000 times 700 heads and 300 tails very suspicious. Flip a coin 10 times 7 heads and 3 tails well within the bounds of possibility. 700 7 300 3 The smaller the sample, the

More information

Biology Day 82. Announcements& Upcoming& Science&teachers&out&Thurs.&4/16& Collab&schedule&Mon.&4/20& ReCtake&your&test&!& & Planner: Study Guide 11.

Biology Day 82. Announcements& Upcoming& Science&teachers&out&Thurs.&4/16& Collab&schedule&Mon.&4/20& ReCtake&your&test&!& & Planner: Study Guide 11. Biology Day 82 Monday, April 13 Tuesday, April 14, 2015 Types'of'Selec-on '& 1. Write'today s'flt'' 2. Divide'your'paper'into'3'sec-ons:'(1)' Direc-onal'selec-on'(2)'Stabilizing'and' (3)'Disrup-ve' 3.

More information

Ch. 14 Mendel and the Gene Idea

Ch. 14 Mendel and the Gene Idea Ch. 14 Mendel and the Gene Idea 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

HARDY WEIBERG EQUILIBRIUM & BIOMETRY

HARDY WEIBERG EQUILIBRIUM & BIOMETRY 1 HARDY WEIBERG EQUILIBRIUM & BIOMETRY DR. KOFI OWUSU-DAAKU POPULATION GENETICS AND EVOLUTION LECTURE V Hardy- Weinberg Law The Hardy-Weinberg Law is a basic concept in the population genetics developed

More information

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question.

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question. Chapter Test A CHAPTER 11 Complex Inheritance and Human Heredity Part A: Multiple Choice In the space at the left, write the letter of the term or phrase that best completes each statement or answers each

More information

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above?

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above? Review 0 Genotype: alleles that are present 0 Phenotype: physical appearance 0 Rr 0 RR 0 rr 0 If Red is dominant to white, what is the phenotype of the above? 2 Vocab to Remember! 0 Allele 0 Gene 0 Trait

More information

Advanced Placement Biology

Advanced Placement Biology Advanced Placement Lab 2 EDVO-Kit # Population Genetics and Evolution Storage: Store entire experiment at room temperature. EXPERIMENT OBJECTIVE The objective of this experiment module is to use the Hardy-Weinberg

More information

The Modern Synthesis. Causes of microevolution. The Modern Synthesis. Microevolution. Genetic Drift. Genetic drift example

The Modern Synthesis. Causes of microevolution. The Modern Synthesis. Microevolution. Genetic Drift. Genetic drift example The Modern Synthesis Populations are the units of evolution Natural selection plays an important role in evolution, but is not the only factor Speciation is at the boundary between microevolution and macroevolution

More information

Bean Bunny Evolution Modeling Gene Frequency Change (Evolution) in a Population by Natural Selection

Bean Bunny Evolution Modeling Gene Frequency Change (Evolution) in a Population by Natural Selection Modeling Gene Frequency Change (Evolution) in a Population by Natural Selection In this activity, you will examine natural selection in a small population of wild rabbits. Evolution, on a genetic level,

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Genotype AA Aa aa Total N ind We assume that the order of alleles in Aa does not play a role. The genotypic frequencies follow as

Genotype AA Aa aa Total N ind We assume that the order of alleles in Aa does not play a role. The genotypic frequencies follow as N µ s m r - - - - Genetic variation - From genotype frequencies to allele frequencies The last lecture focused on mutation as the ultimate process introducing genetic variation into populations. We have

More information

How about the genes? Biology or Genes? DNA Structure. DNA Structure DNA. Proteins. Life functions are regulated by proteins:

How about the genes? Biology or Genes? DNA Structure. DNA Structure DNA. Proteins. Life functions are regulated by proteins: Biology or Genes? Biological variation Genetics This is what we think of when we say biological differences Race implies genetics Physiology Not all physiological variation is genetically mediated Tanning,

More information

can be found from OMIM (Online Mendelian Inheritance in Man),

can be found from OMIM (Online Mendelian Inheritance in Man), Lectures 4 & 5 Wednesday, October 5, 2011 & Friday, October 7, 2011 Forces causing gene frequency change Mutation Random mating does not cause allele frequencies to change, but other forces do. Mutation

More information

GENETIC DRIFT INTRODUCTION. Objectives

GENETIC DRIFT INTRODUCTION. Objectives 2 GENETIC DRIFT Objectives Set up a spreadsheet model of genetic drift. Determine the likelihood of allele fixation in a population of 0 individuals. Evaluate how initial allele frequencies in a population

More information

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4 Mendelian inheritance describes inheritance patterns that obey two laws: Law of

More information

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1 1 Wheat is an important food crop in many European countries. Developments in farming allowed the yield of wheat produced by farms in the UK to increase rapidly in the second half of the 20th century.

More information

SAMPLE LITERATURE Please refer to included weblink for correct version.

SAMPLE LITERATURE Please refer to included weblink for correct version. Edvo-Kit #AP02 Mathematical Modeling: Hardy-Weinberg Experiment Objective: In this exercise, students will determine whether they are PTC tasters. They will use the Hardy-Weinberg equation to analyze the

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Chapter 14. Beyond Mendel s Laws of Inheritance 1 Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single gene each gene has only

More information

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2017 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2017 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2017 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4 Mendelian inheritance describes inheritance patterns that obey two laws: Law of

More information

AS91159 Demonstrate understanding of gene expression

AS91159 Demonstrate understanding of gene expression AS91159 Demonstrate understanding of gene expression Mutations and Metabolic Pathways (2015,2) In 1941 biologists George Beadle and Edward Tatum exposed the bread mould Neurospora crassa to radiation.

More information

Agenetic view of evolution offers a new way to look at key

Agenetic view of evolution offers a new way to look at key 16 2 Evolution as Genetic Change Agenetic view of evolution offers a new way to look at key evolutionary concepts. Each time an organism reproduces, it passes copies of its genes to its offspring. We can

More information

ch03 Student: If a phenotype is controlled by the genotypes at two different loci the interaction of these genes is called

ch03 Student: If a phenotype is controlled by the genotypes at two different loci the interaction of these genes is called ch03 Student: 1. Which of the following is not a phenotypic description of allele interactions affecting the expression of traits? incomplete dominance codominance polymorphic multifactorial E. pleiotrophic

More information

AP BIOLOGY. Investigation #2 Mathematical Modeling: Hardy-Weinberg. Slide 1 / 35. Slide 2 / 35. Slide 3 / 35. Investigation #2: Mathematical Modeling

AP BIOLOGY. Investigation #2 Mathematical Modeling: Hardy-Weinberg. Slide 1 / 35. Slide 2 / 35. Slide 3 / 35. Investigation #2: Mathematical Modeling New Jersey Center for Teaching and Learning Slide 1 / 35 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Genetic Variation Reading Assignment Answer the following questions in your JOURNAL while reading the accompanying packet. Genetic Variation 1.

Genetic Variation Reading Assignment Answer the following questions in your JOURNAL while reading the accompanying packet. Genetic Variation 1. Genetic Variation Reading Assignment Answer the following questions in your JOURNAL while reading the accompanying packet. Genetic Variation 1. In the diagram about genetic shuffling, what two phenomena

More information

Chapter 14. Mendel and the Gene Idea

Chapter 14. Mendel and the Gene Idea Chapter 14 Mendel and the Gene Idea Gregor Mendel Gregor Mendel documented a particular mechanism for inheritance. Mendel developed his theory of inheritance several decades before chromosomes were observed

More information

Codominant. Both alleles affect the phenotype in separate, distinguishable ways.

Codominant. Both alleles affect the phenotype in separate, distinguishable ways. Codominant Both alleles affect the phenotype in separate, distinguishable ways. Codominance Alleles for a gene are both dominant Both alleles are expressed when present Examples: Roan cow or horse Codominance:

More information

JS 190- Population Genetics- Assessing the Strength of the Evidence Pre class activities

JS 190- Population Genetics- Assessing the Strength of the Evidence Pre class activities JS 190- Population Genetics- Assessing the Strength of the Evidence I. Pre class activities a. Quiz then Review Assignments and Schedule II. Learning Objectives a. Overview of Validation Developmental

More information

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations.

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations. POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations. DARWINIAN EVOLUTION BY NATURAL SELECTION Many more individuals are born

More information

Genetics Culminating Project

Genetics Culminating Project Genetics Culminating Project Goal: To create an imaginary organism demonstrating your knowledge of genetics Your organism must display: Two single allele traits (Simple dominance/recessive) One incomplete

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Chapter 4: Mendel and the Gene Idea. The Experiments of Gregor Mendel 2. Beyond Mendelian Genetics 3. Human Genetics . The Experiments of Gregor Mendel Chapter Reading pp. 268-276 TECHNIQUE Parental generation

More information

HARDY-WEINBERG EQUILIBRIUM

HARDY-WEINBERG EQUILIBRIUM 29 HARDY-WEINBERG EQUILIBRIUM Objectives Understand the Hardy-Weinberg principle and its importance. Understand the chi-square test of statistical independence and its use. Determine the genotype and allele

More information

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

Summary Genes and Variation Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

Chapter 11 Reading Guide: Mendel and the Gene Idea

Chapter 11 Reading Guide: Mendel and the Gene Idea Chapter 11 Reading Guide: Mendel and the Gene Idea Since you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

chromosome locus of gene

chromosome locus of gene Genetic Terminology chromosome locus of gene gene alleles a B A B Each chromosome consists of; A linear sequence of genes c d c D A centromere Regions of repetitive DNA NOT organised into genes Term Phenotype

More information

! Allele Interactions

! Allele Interactions Chapter 4!Extensions to Mendelian Genetics! Allele Interactions 1 INTRODUCTION Mendelian inheritance describes inheritance patterns that obey two laws Law of segregation Law of independent assortment Simple

More information

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology. Biology 1 of 31 11-3 Exploring Mendelian Exploring Genetics Mendelian Genetics 2 of 31 What is the principle of independent assortment? 3 of 31 1 The principle of independent assortment states that genes

More information

Exploring Mendelian Genetics

Exploring Mendelian Genetics Exploring Mendelian Genetics GENES are more complicated than Mendel thought ENVIRONMENT influences the. expression of genes = Nature vs Nurture Genes provide the plan for development, but how plan unfolds

More information

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics Genetics Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics Blending Theory offspring have a blend of traits of their parents Problems with blending theory

More information

Chapter Extending Mendelian Genetics. Incomplete Dominance. Incomplete Dominance. R = red R = white. Incomplete Dominance (alt)

Chapter Extending Mendelian Genetics. Incomplete Dominance. Incomplete Dominance. R = red R = white. Incomplete Dominance (alt) female / eggs Colonie High AP Biology Chapter 12.2 12.3 Beyond Mendel s Laws of Inheritance Etending Mendelian Genetics Mendel worked with a simple system peas are genetically simple most traits are controlled

More information

Deme Anton E. Weisstein BioQUEST Curriculum Consortium

Deme Anton E. Weisstein BioQUEST Curriculum Consortium Deme 1.0 2004 Anton E. Weisstein BioQUEST Curriculum Consortium Summary Deme (pronounced "deem") is an Excel workbook that simulates the population genetics of a single gene with two alleles. The user

More information

What percentage of the cells listed above are in mitosis?

What percentage of the cells listed above are in mitosis? AP Biology - Math Review Basics: There are many basic math skills that you must be able to do to work the more complex math problems in AP Biology. Don t screw up on the basics. 1. Working with decimals,

More information

Genetic variation, genetic drift (summary of topics)

Genetic variation, genetic drift (summary of topics) Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #11 -- Hardy Weinberg departures: genetic variation

More information

Biology 40S: Course Outline Monday-Friday Slot 1, 8:45 AM 9:45 AM Room 311 Teacher: John Howden Phone:

Biology 40S: Course Outline Monday-Friday Slot 1, 8:45 AM 9:45 AM Room 311 Teacher: John Howden   Phone: The course is designed to help students develop and demonstrate an understanding of the biological concepts of genetics and biodiversity through scientific inquiry, problem solving, personal reflection

More information

Introduction to population genetics. CRITFC Genetics Training December 13-14, 2016

Introduction to population genetics. CRITFC Genetics Training December 13-14, 2016 Introduction to population genetics CRITFC Genetics Training December 13-14, 2016 What is population genetics? Population genetics n. In culture: study of the genetic composition of populations; understanding

More information

#3: Random Fertilization. If DNA replication and cell division are both so precise, and so accurate, why are we all so unique??

#3: Random Fertilization. If DNA replication and cell division are both so precise, and so accurate, why are we all so unique?? Today: Microbial Genetics Wrap-up Mendelian Genetics Adding Chromosomes to the Mix?? Tomorrow: UW Fieldtrip! Back to Eukaryotes: Bringing in Mendel If DNA replication and cell division are both so precise,

More information

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation.

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation. AP Lab 7: The Mendelian Genetics of Corn Objectives: In this laboratory investigation, you will: Use corn to study genetic crosses, recognize contrasting phenotypes, collect data from F 2 ears of corn,

More information