BIL 256 Cell and Molecular Biology Lab Spring, Molecular Weight Determination: SDS Electrophoresis

Size: px
Start display at page:

Download "BIL 256 Cell and Molecular Biology Lab Spring, Molecular Weight Determination: SDS Electrophoresis"

Transcription

1 BIL 256 Cell and Molecular Biology Lab Spring, 2007 Molecular Weight Determination: SDS Electrophoresis Separation of Proteins by Electrophoresis A. Separation by Charge All polypeptide chains contain at least two ionizable groups: the amino and carboxyl groups at their termini. In addition, the R-groups of most amino acid residues can be charged. These charges are responsible for the migration of proteins in an electric field. At high ph, the carboxyl (-COOH) groups are negatively charged while the amino groups (-NH 2 ) are not charged. At low ph, acidic groups are uncharged (-COOH) and basic groups (-NH 3 + ) are positively charged. Thus, there must be an intermediate ph at which the protein bears no net charge and does not migrate in an electric field. The ph at which an amino acid or protein does not migrate in an electric field is called the isoelectric point. At a ph above the isoelectric point, a protein is negatively charged and when applied to sample wells at the negative electrode end of the gel, will travel toward the positive electrode. The rate of migration of a protein species in an electric field depends upon its charge density (the ratio of charge to mass); the higher the charge density, the faster the protein will travel. For example, serum albumin, which has an isoelectric point of 4.7, will carry a strong negative charge in a buffer of ph 8.6 as compared to γ-globulin which has an isoelectric point of 7.2. Therefore, at ph 8.6 albumin will migrate toward the positive electrode at a much faster rate than γ-globulin. The agarose gel is commonly used in the charge separation of proteins since low percentage gels form a sponge-like network that serves as a medium for the buffer but which has pores large enough to allow even the largest proteins to pass unimpeded. B. Separation by Size Electrophoretic separation of proteins by molecular size requires several modifications in the basic procedure described above. First proteins are covered with the anionic detergent sodium dodecyl sulfate (SDS), which masks their native charges with its own negative charges. Proteins that contain disulfide bonds must also be treated with reducing agents to cleave these bonds so that polypeptide chains dissociate from each other and unfold. Proteins that have been treated with SDS and reducing agent assume a rod like structure and carry the same charge density imposed by anionic SDS. Since such proteins no longer possess their native shape and charge, they are referred to as denatured proteins. The final modification involves a reduction in the pore size of the agarose gel so that the gel matrix now serves as a molecular sieve. Thus, electrophoretic separation of denatured proteins sorts them according to size since it relies on the ability of uniformly charged proteins to fit through the pores of a gel matrix. Consider again the electrophoresis of albumin and γ-globulin. Albumin consists of a single polypeptide of molecular weight 66,000 Daltons (Da) while γ-globulin is a multi peptide protein containing two 53,000 Da polypeptides and two 23,000 Da polypeptides. Native γ-globulin migrates toward the positive electrode slower than albumin at ph 8.6 since it carries a weaker negative charge. When it is denatured, however, γ-globulin has the same charge density as albumin and its polypeptide chains dissociate from each other. Thus, electrophoretic migration will only be affected by the

2 sieving property of the gel matrix and the smaller, 23,000 Da γ-globulin polypeptide will move the fastest toward the positive electrode, followed by the 53,000 Da γ-globulin polypeptide and then by albumin. Polyacrylamide gels are commonly used to produce this sieving effect since small pore sizes are readily attained within the polyacrylamide gel matrix. However, the preparation of polyacrylamide gels is laborious and necessitates handling a number of toxic chemicals. Therefore, a special type of small pore size agarose gel that is comparable to the polyacrylamide gel for separating denatured proteins is used in this experiment. Agarose Gel A number of different types of stabilizing supports have been used in the electrophoretic separation of proteins. These include filter paper cellulose acetate and gels composed of either starch, polyacrylamide, agar or agarose. The agarose gel is an ideal solid support for the separation of proteins on the basis of charge, and the polyacrylamide gel is generally used for the separation of proteins on the basis of size. However, our special blend of agarose, which permits the preparation of high percentage (5-6%) agarose gels, extends the utility of this non-toxic support to SDS electrophoresis applications as well. These high percentage agarose gels have small pores, and thus, can be used to separate SDS treated proteins on the basis of size. Agarose is a natural polysaccharide of galactose and 3,6-anhydrogalactose derived from agar, which in turn is obtained from certain marine red algae. Agarose gels are made by dissolving the dry powder in boiling buffer, pouring the gels into casting trays, and allowing them to set by cooling at room temperature. Agarose gels are frequently run in the "submarine" mode where the gel is completely immersed in buffer. This feature reduces heat development in the gel that could otherwise lead to protein band distortion. Electrophoresis Buffer System The separation of proteins on the basis of molecular weight is highly dependent on their denaturation with the anionic detergent SDS. Furthermore, the ph of the buffer is also important in electrophoretic separation, since it will influence the net charge of the SDS-denatured protein. Thus, the ph and SDS concentration in the electrophoresis chamber buffer (Tris-Acetate-SDS, ph 8.3), and gel buffer (Tris-Borate, ph 8.6) that you will use in the experiment has been carefully controlled. The ionic strength of the buffer is also important in electrophoresis. High ionic strength buffers permit fast migration and can promote the sharpening of protein zones. However, high ionic strength buffers may also cause high heat production which can lead to band distortion. The moderate ionic strength buffer used in the experiment described below permits optimal resolution of protein bands in minimal time. Sample Buffer In addition to SDS denaturation, protein samples must be treated with an agent effective at eliminating disulfide bonds prior to electrophoretic separation. Thus, the sample buffer incorporates the reducing agent, β-mercaptoethanol as well as sodium dodecyl sulfate. The protein sample buffer also contains 10-20% glycerol to ensure that the samples will layer

3 smoothly at the bottom of the sample wells. The tracking dye, bromphenol blue, is also present in the sample buffer to enable the investigator to follow the progress of an electrophoretic run. Staining and Destaining Most proteins are not colored, and therefore it is necessary to visualize them in some way in order to determine their position in the agarose gel after electrophoresis. The most commonly used stain for the detection of proteins is Coomassie blue, and this stain has been incorporated into the staining solution that you will use. The staining solution also contains acetic acid which serves to precipitate and immobilize the proteins in the structure of the gel matrix after electrophoresis. The acid serves to fix the proteins in the gel so that the protein bands do not become blurred by diffusion. After the proteins in the gel have been stained, the unbound dye must be rinsed from the gel by a process known as destaining. A dilute solution of acetic acid and methanol is often used for the destaining of the agarose gels.

4 Experiment 6. Molecular Weight Determination A first step in the analysis of a protein in the molecular biology laboratory frequently involves determination of its size or molecular weight. The molecular weight of a protein may be determined using a variety of techniques. Gel electrophoresis in the presence of SDS is one of the most common methods since it is relatively simple to perform and does not require elaborate equipment. When an SDS denatured protein is separated electrophoretically, its rate of migration from the point of application toward the positively charged electrode is proportional to the log 10 of its molecular weight. When the molecular weights of several standard proteins are known, their mobilities can be plotted as a function of molecular weight to give a linear calibration curve (see Figure 1-1). The molecular weight of an unknown protein can then be estimated from this calibration curve. In practice, protein standards and unknowns are electrophoresed on adjacent lanes of the same gel. Following electrophoresis, the relative migration of standards and unknowns are determined and the molecular weight of unknowns calculated Molecular Weight Determination Rf log MW

5 In this experiment, you will determine the molecular weights of two proteins by comparing their electrophoretic migration with the migration of proteins of known molecular weight. The molecular weights of these standards are given in Table 1. You will also determine the molecular weight of the major protein that is found in rabbit serum. This protein is called serum albumin. The proteins for this experiment have been pre-stained to allow you to follow their separation during electrophoresis. Table 1-1. Molecular Weights* of Standard Proteins. Standard Protein Molecular Weight (Daltons) Bovine Serum Albumin Dimer 132,000 Bovine Serum Albumin Monomer 66,000 Ovalbumin 43,000 Myoglobin 17,000 *The terms molecular weight and Dalton are used interchangeably. For example, a 20,000 Da protein has a molecular weight of 20,000. A Dalton is a unit equal to on the atomic mass scale; this unit is very nearly equal to that of a hydrogen atom. The average amino acid residue in a protein is 120 Da. Thus, a protein with a molecular weight of 20,000 contains 167 amino acid residues (20,000/120 = 167). Gel Prep Procedure 1. Dispense 15 ml of TRIS-Borate (ph 8.6) gel buffer into a 25 ml glass test tube and then add 0.8 grams of agarose. Stir the contents of the tube with a pipet until the agarose forms a suspension. 2. Place the test tube into a boiling water bath containing a sufficient volume of water to completely immerse the agarose suspension within the tube. After 6-8 minutes in the boiling water bath, remove the test tube, stir gently, and cool at room temperature for about 2-3 minutes. At this time, the agarose solution should be clear, pale yellow, and quite viscous. 3. Insert the comb into the casting tray slots and push down gently on the top of the comb until resistance is encountered. Pour the melted agarose directly from the test tube onto the casting deck and rock the deck back and forth one time to evenly distribute the melted agarose. The teeth of the comb will come to rest in the melted agarose about 0.2 mm above the surface of the glass plate. 4. After the gel has cooled for at least 20 minutes, remove the tape strips and carefully lift the comb straight up and away from the casting tray. Cooling time can be reduced to minutes if the gel is placed in a refrigerator. The gel is now ready for sample application.

6 Sample Preparation 1. Prior to application, all samples must be vigorously boiled to encourage denaturation by SDS and β-mercaptoethanol. This is accomplished with the aid of the heat resistant foam rack. Bring to boil sufficient water to immerse but not completely cover the body of the boiling rack. Prepare the sample tubes for boiling by first tapping the tube with the tip of your index finger to mix the contents, and then piercing the top of the tube with a straight pin or similar sharp object to provide a vent for escaping steam during boiling. Once the vent has been formed, care should be taken to prevent inverting the tubes or completely submerging them during boiling. When the water is boiling vigorously, place all samples in the rack and place the rack in boiling water for a period of three minutes. 2. Load 10μl of each sample into the wells as indicated below: SAMPLE WELL SAMPLE 1,5 Standard Proteins 2,6 Transferrin 3,7 Lysozyme 4,8 Rabbit serum Pre-stained protein standards: The molecular weights of these proteins are given in Table 1-1. The cow albumin and albumin dimer are stained red-brown. The myoglobin and ovalbumin are stained blue. Transferrin: A protein sample of unknown molecular weight. The protein is stained blue. Lysozyme: A protein sample of unknown molecular weight. The protein is stained blue. Rabbit serum: The rabbit serum proteins have been pre-stained. The proteins are stained red-brown and the major protein is called albumin. This sample also contains the tracking dye, bromophenol blue. 3. Transfer the gel to the electrophoretic cell, making sure you note the positions of your samples and your gel in the electrophoresis chamber. 4. Electrophorese until the bromophenol blue in the samples has migrated to within 1 cm of the positive electrode end of the gel. 5. Remove the agarose gel from the electrophoresis unit and measure the distance each standard protein and each unknown protein has migrated in mm from the point of application (sample well). Record these values. 6. Stain and destain the gels and measure the distance of migration of each protein.

BIL 256 Cell and Molecular Biology Lab Spring, 2007 BACKGROUND INFORMATION I. PROTEIN COMPOSITION AND STRUCTURE: A REVIEW OF THE BASICS

BIL 256 Cell and Molecular Biology Lab Spring, 2007 BACKGROUND INFORMATION I. PROTEIN COMPOSITION AND STRUCTURE: A REVIEW OF THE BASICS BIL 256 Cell and Molecular Biology Lab Spring, 2007 BACKGROUND INFORMATION I. PROTEIN COMPOSITION AND STRUCTURE: A REVIEW OF THE BASICS Proteins occupy a central position in the structure and function

More information

LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA

LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA I. Objectives The purpose of today s lab is to learn how to set up and run an agarose gel, separate DNA fragments on the gel, and

More information

Protein electrophoresis: Introduction to SDS-PAGE

Protein electrophoresis: Introduction to SDS-PAGE Protein electrophoresis: Introduction to SDS-PAGE Aim: -Separation of proteins in an electric field by electrophoresis. Purposes: -Estimation of molecular masses -Relative abundances of major proteins

More information

MOLEBIO LAB #3: Electrophoretic Separation of Proteins

MOLEBIO LAB #3: Electrophoretic Separation of Proteins MOLEBIO LAB #3: Electrophoretic Separation of Proteins Introduction: Proteins occupy a central position in the structure and function of all living organisms. Some proteins serve as structural components

More information

Appendix IV Version

Appendix IV Version APPENDIX IV. Gel Electrophoresis. Migration of biological molecules in the presence of an electric field through a gel matrix is the heart of many biochemistry experiments. The variety of electrophoresis

More information

Lab 5: Protein electrophoresis

Lab 5: Protein electrophoresis Chemistry 103 Lab 5: Protein electrophoresis Objective: To use the technique of protein electrophoresis to determine the length(s) of the component(s) of the fungal protein, alpha amylase. Protein electrophoresis

More information

Agarose Gel Electrophoresis

Agarose Gel Electrophoresis Agarose Gel Electrophoresis Gel electrophoresis is a widely used technique for the analysis of nucleic acids and proteins. Agarose gel electrophoresis is routinely used for the preparation and analysis

More information

ELECTROPHORESIS a es

ELECTROPHORESIS a es ELECTROPHORESIS Images DEFINITION Electrophoresis is a procedure for separating a mixture of charged molecules through a stationary material (gel) in an electrical field. It is a powerful tool for separating

More information

The Biotechnology Education Company. Molecular Weight Determination of Proteins. See Page 3 for storage instructions. EXPERIMENT OBJECTIVE:

The Biotechnology Education Company. Molecular Weight Determination of Proteins. See Page 3 for storage instructions. EXPERIMENT OBJECTIVE: The Biotechnology Education Company Molecular Weight Determination of Proteins See Page 3 for storage instructions. EXPERIMENT OBJECTIVE: EDVO-Kit 110 The objective of this experiment module is to determine

More information

Principles and Practice of Agarose Gel Electrophoresis

Principles and Practice of Agarose Gel Electrophoresis Edvo-Kit #101 Principles and Practice of Agarose Gel Electrophoresis Experiment Objective: The objective of this experiment is to develop a basic understanding of electrophoretic theory, and to gain "hands-on"

More information

Gel Electrophoresis of Proteins

Gel Electrophoresis of Proteins Gel Electrophoresis of Proteins Comparative Proteomics: Protein Profiles of Fish Muscle Tissue Adapted by Audrey Dell Hammerich, 11/12/2016 Electrophoresis is the migration of charged molecules in a strong

More information

ADVANCED ELECTROPHORESIS

ADVANCED ELECTROPHORESIS Ref. ELECAVANZADA (4 practices) 1. EXPERIMENT OBJETIVE ADVANCED ELECTROPHORESIS The aim of this experiment is to introduce students to the knowledge of electrophoretic theory and to familiarize themselves

More information

h1056i BIOTECHNOLOGY- DERIVED ARTICLES POLYACRYLAMIDE GEL ELECTROPHORESIS

h1056i BIOTECHNOLOGY- DERIVED ARTICLES POLYACRYLAMIDE GEL ELECTROPHORESIS 46 INTERIM REVISION ANNOUNCEMENT Vol. 35(1) [Jan. Feb. 2009] REPRODUCIBILITY Determination of various parameters indicated above is repeated using the same USP Reference Standard or Reference Material

More information

Human DNA Alu Amplification by Polymerase Chain Reaction (PCR)* Laboratory Procedure

Human DNA Alu Amplification by Polymerase Chain Reaction (PCR)* Laboratory Procedure Human DNA Alu Amplification by Polymerase Chain Reaction (PCR)* Laboratory Procedure *Polymerase Chain Reaction is covered by patents owned by Hoffmann-La Roche, Inc. This experiment was adapted from Laboratory

More information

Lecture 3. Agarose Gel Electrophoresis

Lecture 3. Agarose Gel Electrophoresis Lecture 3 Dr. M. Tariq Javed Professor Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan. Gel electrophoresis is a widely used technique for the analysis

More information

HiPer Immunoprecipitation Teaching Kit

HiPer Immunoprecipitation Teaching Kit HiPer Immunoprecipitation Teaching Kit Product Code: HTI016 Number of experiments that can be performed: 5 Duration of Experiment Storage Instructions The kit is stable for 6 months from the date of receipt

More information

Let s Move It! Gel Electrophoresis Using Food Dye Student Guide

Let s Move It! Gel Electrophoresis Using Food Dye Student Guide Let s Move It! Gel Electrophoresis Using Food Dye Student Guide Purpose This lab explores the principle of electrophoresis, an important technique used in biochemistry and molecular biology. You will:

More information

Protein Electrophoresis EZ-Run Protein Gel Solution EZ-Run Protein Standards EZ-Run Gel Staining Solution Traditional SDS-PAGE Reagents

Protein Electrophoresis EZ-Run Protein Gel Solution EZ-Run Protein Standards EZ-Run Gel Staining Solution Traditional SDS-PAGE Reagents Protein Electrophoresis EZ-Run Protein Gel Solution EZ-Run Protein Standards EZ-Run Gel Staining Solution Traditional SDS-PAGE Reagents Reliability. Purity. Certainty. Introduction Sodium dodecyl sulfate

More information

Determination of Protein Molecular Weight. Storage: Some components require freezer storage. See page 3 for details. EXPERIMENT OBJECTIVES:

Determination of Protein Molecular Weight. Storage: Some components require freezer storage. See page 3 for details. EXPERIMENT OBJECTIVES: Revised and Updated 153 EDVO-Kit # Determination of Protein Molecular Weight Storage: Some components require freezer storage. See page 3 for details. EXPERIMENT OBJECTIVES: The objective of this experiment

More information

Gel Electrophoresis and Analysis

Gel Electrophoresis and Analysis 6/28/2016 Gel Electrophoresis and Analysis B3 Summer Science Camp at Olympic High School Dr. Jennifer Weller Lab Method: Gel electrophoresis 2 6/28/2016 Electrophoresis: separating molecules in a charged

More information

Electrophoresis 101 Student Worksheet

Electrophoresis 101 Student Worksheet 1 Electrophoresis 101 Student Worksheet Experiment Objective To develop an understanding of electrophoresis principles. To analyze results and to calculate the sizes of unknown charged molecules from given

More information

Agarose Gel Electrophoresis Lab

Agarose Gel Electrophoresis Lab Agarose Gel Electrophoresis ACTIVITY AT A GLANCE Goal: This lab will determine the presence or absence of PCR products and uantify the size (length of the DNA molecule) of the products. Learning Objectives:

More information

DNA RESTRICTION ANALYSIS

DNA RESTRICTION ANALYSIS DNA RESTRICTION ANALYSIS In this experiment, DNA from the bacteriophage Lambda (48,502 base pairs in length) is cut with a variety of restriction enzymes and the resulting fragments are separated using

More information

EXPERIMENT GENOMIC DNA ANALYSIS

EXPERIMENT GENOMIC DNA ANALYSIS EXPERIMENT GENOMIC DNA ANALYSIS Population diversity Studies We have 5 species of planarians (3 purchased from Carolina Biologicals, 2 obtained from the Levin lab) andmight have additional species found

More information

TWO-DIMENSIONAL GEL ELECTROPHORESIS THE FIRST DIMENSION

TWO-DIMENSIONAL GEL ELECTROPHORESIS THE FIRST DIMENSION TWO-DIMENSIONAL GEL ELECTROPHORESIS THE FIRST DIMENSION This procedure has been developed for the Hoefer DE 102 series tube gel electrophoresis apparatus, which can run up to 12 tube gels at a time. The

More information

RAINBOW GELS: AN INTRODUCTION TO ELECTROPHORESIS. STANDARDS 3.1.7, , Westminster College 3.3.7, , 3.3.

RAINBOW GELS: AN INTRODUCTION TO ELECTROPHORESIS. STANDARDS 3.1.7, , Westminster College 3.3.7, , 3.3. RAINBOW GELS: AN INTRODUCTION TO ELECTROPHORESIS STANDARDS 3.1.7, 3.1.10, 3.1.12 Westminster College 3.3.7, 3.3.10, 3.3.12 INTRODUCTION This laboratory will demonstrate the basics of electrophoresis and

More information

Pre-Lab: Molecular Biology

Pre-Lab: Molecular Biology Pre-Lab: Molecular Biology Name 1. What are the three chemical parts of a nucleotide. Draw a simple sketch to show how the three parts are arranged. 2. What are the rules of base pairing? 3. In double

More information

GeNei TM Gel Extraction Teaching Kit Manual

GeNei TM Gel Extraction Teaching Kit Manual Teaching Kit Manual Cat No. New Cat No. KT43 106279 KT43A 106300 KT43B 106301 Revision No.: 00280507 CONTENTS Page No. Objective 3 Principle 3 Kit Description 5 Materials Provided 7 Procedure 8 Observation

More information

The Biotechnology Education Company. Western Blot Analysis. Storage: See Page 3 for specific storage instructions EXPERIMENT OBJECTIVE:

The Biotechnology Education Company. Western Blot Analysis. Storage: See Page 3 for specific storage instructions EXPERIMENT OBJECTIVE: The Biotechnology Education Company EDVO-Kit # 317 Storage: See Page 3 for specific storage instructions EXPERIMENT OBJECTIVE: The objective of the experiment is for students to understand the theory and

More information

RFLP ANALYSIS OF DNA LABORATORY

RFLP ANALYSIS OF DNA LABORATORY RFLP ANALYSIS OF DNA LABORATORY BIG PICTURE You will be working with an essential research method widely used in genetics, conservation biology, and forensics. The lab is divided into three sections. Part

More information

Electro refers to electron flow or current. Thus Electrophoresis is movement under electric current.

Electro refers to electron flow or current. Thus Electrophoresis is movement under electric current. ELECTROPHORESIS Electrophoresis Electro refers to electron flow or current. Phoresis refers to movement. Thus Electrophoresis is movement under electric current. This technique therefore can separate molecules

More information

Lesson 3 Gel Electrophoresis of Amplified PCR Samples and Staining of Agarose Gels

Lesson 3 Gel Electrophoresis of Amplified PCR Samples and Staining of Agarose Gels Lesson 3 Gel Electrophoresis of Amplified PCR Samples and Staining of Agarose Gels What Are You Looking At? Before you analyze your PCR products, let s take a look at the target sequence being explored.

More information

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017)

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017) BIOLOGY 163 LABORATORY RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017) Physical mapping of genomes is an important part of modern molecular genetics. As it's name implies, physical mapping seeks

More information

Notes to accompany the slidecast on theory of SDS PAGE and Western blotting

Notes to accompany the slidecast on theory of SDS PAGE and Western blotting S317 Biological science: from genes to species Notes to accompany the slidecast on theory of SDS PAGE and Western blotting SDS PAGE SDS PAGE is a standard technique for determining the molecular size of

More information

Nucleic Acid Electrophoresis APPLICATION GUIDE

Nucleic Acid Electrophoresis APPLICATION GUIDE AGAROSE BUFFERS LADDERS EQUIPMENT Nucleic Acid Electrophoresis APPLICATION GUIDE Reagents: Agarose Thermo Scientific and Fisher Scientific products deliver an end-to-end solution that can meet your most

More information

Allergy Warning: Students with know shellfish allergies should avoid all potential contact with shellfish samples.

Allergy Warning: Students with know shellfish allergies should avoid all potential contact with shellfish samples. Biology 3A Laboratory Protein Fingerprinting using SDS-PAGE Objectives: To use polyacrylamide gel electrophoresis (PAGE) to compare protein profiles derived from muscle tissue of different seafood items.

More information

Restriction Enzyme Analysis of DNA- Student Handout

Restriction Enzyme Analysis of DNA- Student Handout Restriction Enzyme Analysis of DNA- Student Handout How to set up a restriction enzyme reaction Restriction enzymes (or restriction endonucleases) cleave DNA in a very specific fashion. Type II restriction

More information

MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien

MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien Introduction MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien The field of molecular genetics has resulted in a number of practical applications that have been of tremendous

More information

Agarose gel electrophoresis of DNA fragments

Agarose gel electrophoresis of DNA fragments Agarose gel electrophoresis of DNA fragments Page 1 of 5 (Maniatis, Sambrook, BioWhittaker catalogue) Method: DNA in solution has a net negative charge due to its phosphate backbone (at the ph used during

More information

AGAROSE GEL ELECTROPHORESIS. Assiut University

AGAROSE GEL ELECTROPHORESIS. Assiut University AGAROSE GEL ELECTROPHORESIS By Prof. Dr. Asmaa Hussein Prof. of Zoonoses & Director of the MBRU Assiut University The standard method used to separate, identify electrophoresis and purify DNA fragments

More information

Protein Techniques 1 APPENDIX TO CHAPTER 5

Protein Techniques 1 APPENDIX TO CHAPTER 5 Protein Techniques 1 APPENDIX T CHAPTER 5 Dialysis and Ultrafiltration If a solution of protein is separated from a bathing solution by a semipermeable membrane, small molecules and ions can pass through

More information

S-45. What Size Are Your Genes? Edvo-Kit #S-45. Experiment Objective: See page 3 for storage instructions.

S-45. What Size Are Your Genes? Edvo-Kit #S-45. Experiment Objective: See page 3 for storage instructions. Edvo-Kit #S-45 What Size Are Your Genes? S-45 Experiment Objective: The objective of this experiment is to develop an understanding that genetic mutations are inherited from one or both parents. Mutations

More information

Zymogram: Study of an Active Enzyme with Electrophoresis

Zymogram: Study of an Active Enzyme with Electrophoresis PR106 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Zymogram: Study of an Active Enzyme with Electrophoresis Teachers Handbook (Cat. #

More information

Week 1: Protein isolation and quantification

Week 1: Protein isolation and quantification Week 1: Protein isolation and quantification Objective The objective of this lab exercise is to obtain protein samples from fruit fly larvae, BCS and FBS, all of which are then quantitated in the preparation

More information

Exercise 20 GEL ELECTROPHORESIS OF DNA SAMPLES (Plasmids, PCR products & Restriction Fragments)

Exercise 20 GEL ELECTROPHORESIS OF DNA SAMPLES (Plasmids, PCR products & Restriction Fragments) Exercise 20 GEL ELECTROPHORESIS OF DNA SAMPLES (Plasmids, PCR products & Restriction Fragments) Introduction Gel electrophoresis is a technique or procedure allowing DNA fragments to be separated on the

More information

ExpressPlus TM PAGE Gels

ExpressPlus TM PAGE Gels ExpressPlus TM PAGE Gels Technical Manual No. TM0645 Version: 05202014 For research use only. Not for use in diagnostic procedures. Table of Contents I Introduction.. 2 II Gel Selection Guide.. 3 III Compatible

More information

SDS-PAGE and Western Blot. Molecular Basis of Evolution

SDS-PAGE and Western Blot. Molecular Basis of Evolution 1 SDS-PAGE and Western Blot Molecular Basis of Evolution Homology high level of DNA and protein sequence similarity due to common ancestry. Evidence Genomes of related organisms are very similar. Even

More information

Code Description Molecular Weight Separation Range

Code Description Molecular Weight Separation Range SPRINT NEXT GEL * A Ready-to-Pour Acrylamide Gel for the Rapid Electrophoresis of Proteins Code Description Molecular Weight Separation Range Size M312-100ML M312-500ML M311-100ML M311-500ML SPRINT NEXT

More information

4. The Second-dimensional SDS-PAGE (vertical) Protocol

4. The Second-dimensional SDS-PAGE (vertical) Protocol 4. The Second-dimensional SDS-PAGE (vertical) Protocol I. PURPOSE This procedure outlines the steps that must be carried out in the seconddimension SDS-PAGE using vertical system. II. ENVIRONMENT All work

More information

Protein Folding Study

Protein Folding Study PR088 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Protein Folding Study Teacher s Guidebook (Cat. # BE-411) think proteins! think G-Biosciences

More information

ELECTROPHORESIS MODULE 21.1 INTRODUCTION OBJECTIVES. Notes

ELECTROPHORESIS MODULE 21.1 INTRODUCTION OBJECTIVES. Notes 21 ELECTROPHORESIS 21.1 INTRODUCTION The movement of particles under spatially uniform electric field in a fluid is called electrophoresis. In 1807, Ferdinand Frederic Reuss observed clay particles dispersed

More information

Lambda (λ) DNA Restriction Digest and Electrophoresis Lab

Lambda (λ) DNA Restriction Digest and Electrophoresis Lab Lambda (λ) DNA Restriction Digest and Electrophoresis Lab Procedure DAY ONE: restriction digestion Today we will be exposing the lambda DNA to restriction enzymes. For background knowledge, make sure you

More information

DNA Fingerprinting. Student Manual. Contents

DNA Fingerprinting. Student Manual. Contents DNA Fingerprinting Student Manual Contents Page Lesson 1 Introduction to DNA Fingerprinting...19 Lesson 2 Restriction Digests of DNA Samples...21 Lesson 3 Electrophoresis and Staining of DNA Samples...28

More information

Part II: Standard Laboratory Techniques

Part II: Standard Laboratory Techniques Part II: Standard Laboratory Techniques Introduction: In addition to demonstrating the performance indicators relating to scientific inquiry described in NYS Living Environment Curriculum Standard 1, students

More information

MOLECULAR WEIGHT DETERMINATION & BY ELECTROPHORESIS and MALDI-TOF MS

MOLECULAR WEIGHT DETERMINATION & BY ELECTROPHORESIS and MALDI-TOF MS MOLECULAR WEIGHT DETERMINATION & BY ELECTROPHORESIS and MALDI-TOF MS Introduction: is a commonly used technique in bioanalytical chemistry. In gel electrophoresis, molecules migrate through a gel medium

More information

Student Manual. Pre-Lab Introduction to DNA Fingerprinting STUDENT MANUAL BACKGROUND

Student Manual. Pre-Lab Introduction to DNA Fingerprinting STUDENT MANUAL BACKGROUND BACKGROUND Pre-Lab Introduction to DNA Fingerprinting You are about to perform a procedure known as DNA fingerprinting. The data obtained may allow you to determine if the samples of DNA that you will

More information

ReadyPrep Reduction-Alkylation Kit

ReadyPrep Reduction-Alkylation Kit ReadyPrep Reduction-Alkylation Kit Instruction Manual Catalog #163-2090 For technical service, call your local Bio-Rad office, or in the US, call 1-800-4BIORAD (1-800-424-6723) Bio-Rad Laboratories, Inc.

More information

SDS-PAGE Analysis. igem TU/e 2016 Biomedical Engineering

SDS-PAGE Analysis. igem TU/e 2016 Biomedical Engineering igem TU/e 2016 Biomedical Engineering Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2016.igem.org/Team:TU-Eindhoven SDS-PAGE

More information

electrophoresis tech Mini-PROTEAN TGX Precast Gel: A Gel for SDS-PAGE with Improved Stability Comparison with Standard Laemmli Gels

electrophoresis tech Mini-PROTEAN TGX Precast Gel: A Gel for SDS-PAGE with Improved Stability Comparison with Standard Laemmli Gels electrophoresis tech note 591 Mini-PROTEAN Precast Gel: A Gel for SDS-PAGE with Improved Stability Comparison with Standard Laemmli Gels Tom Berkelman, Shane Petersen, Chengjun Sun, and Sean Cater, Bio-Rad

More information

Instant-Bands Protein Sample Loading Buffer for SDS-PAGE. User s Manual. View Protein Bands in an SDS Gel. Instantly. EZBiolab.

Instant-Bands Protein Sample Loading Buffer for SDS-PAGE. User s Manual. View Protein Bands in an SDS Gel. Instantly. EZBiolab. Instant-Bands Protein Sample Loading Buffer for SDS-PAGE User s Manual View Protein Bands in an SDS Gel Instantly www.ezbiolab.com 2 Instant-Bands User s Manual Table of Contents Introduction 3 Storage

More information

SDS-PAGE Analysis. igem TU/e 2015 Biomedical Engineering

SDS-PAGE Analysis. igem TU/e 2015 Biomedical Engineering igem TU/e 2015 Biomedical Engineering Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2015.igem.org/Team:TU_Eindhoven SDS-PAGE

More information

Let s Move It! Gel Electrophoresis using Food Dyes Teacher Guide

Let s Move It! Gel Electrophoresis using Food Dyes Teacher Guide www.babec.org Let s Move It! Gel Electrophoresis using Food Dyes Teacher Guide Table of Contents Teacher Guide Unit Overview...T1 Inventory Sheet... T2 Background Materials for Teacher Pre-Lab Activity

More information

Operation Manual. Concorde Vertical Gel Electrophoresis System. *This instrument is intended for laboratory use only.

Operation Manual. Concorde Vertical Gel Electrophoresis System. *This instrument is intended for laboratory use only. Concorde Vertical Gel Electrophoresis System Operation Manual Cat.no. R10-1031101 / R10-1031102 / R10-1031103 *This instrument is intended for laboratory use only http://www.recenttec.com E-mail : support@recenttec.com

More information

Positively Charged Membrane

Positively Charged Membrane BIOBOND NYLON MEMBRANES ProductInformation Technical Bulletin No. MB-570 June 1999 Size Quantity Positively Charged Membrane Neutral Membrane 30 cm x 3.5 m 1 roll N4781 N1031 30 cm x 12 m 1 roll N4906

More information

Study on Efficiency of Protein Extractants Employed for Human Origin Determination of Blood

Study on Efficiency of Protein Extractants Employed for Human Origin Determination of Blood Research Article Study on Efficiency of Protein Extractants Employed for Human Origin Determination of Blood Usha Rani M *, Vijayendran P, and Thangadurai M Biology division, Regional Forensic Science

More information

DNA Visualizer Extraction Kit

DNA Visualizer Extraction Kit DNA Visualizer Extraction Kit Catalog Number D0006 50 reactions Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use... 3 Background... 3 General Information...

More information

HiPer Gel Extraction Teaching Kit (Column Based)

HiPer Gel Extraction Teaching Kit (Column Based) HiPer Gel Extraction Teaching Kit (Column Based) Product Code: HTBM010 Number of experiments that can be performed: 10 Duration of Experiment Agarose Gel Electrophoresis: 1 hour Protocol: 1 hour Agarose

More information

Biotechnology Explorer

Biotechnology Explorer Biotechnology Explorer DNA Fingerprinting Kit Instruction Manual Catalog Number 166-0007-EDU www.explorer.bio-rad.com Lyophilized reagents can be stored at room temperature. Store DNA markers at 4 ºC,

More information

Science Fair Project. Keep Calm and Split DNA Charisma Ware - Carleen McNees - Syracuse Junior High

Science Fair Project. Keep Calm and Split DNA Charisma Ware - Carleen McNees - Syracuse Junior High Science Fair Project Keep Calm and Split DNA Charisma Ware - Carleen McNees - Syracuse Junior High Problem How can you separate DNA when they are to small to see, let alone cut? Hypothesis If I put a group

More information

Using a Controlled Experiment to Identify Two Unknown Plasmids Edwin Braddy, River Ridge Middle/High School, New Port Richey, FL

Using a Controlled Experiment to Identify Two Unknown Plasmids Edwin Braddy, River Ridge Middle/High School, New Port Richey, FL INTRODUCTION To close the yellow note, click once to select it and then click the box in the upper left corner. To open the note, double click (Mac OS) or right click (Windows) on the note icon. Using

More information

LumiPico ECL Kit. ShineGene. User Manual. For Western Blot. Cat.Nos.ZK00901(12.5ml 2) ZK00902(50.0ml 2) LumiPico ECL Kits User Manual

LumiPico ECL Kit. ShineGene. User Manual. For Western Blot. Cat.Nos.ZK00901(12.5ml 2) ZK00902(50.0ml 2) LumiPico ECL Kits User Manual LumiPico ECL Kits User Manual ShineGene LumiPico ECL Kit For Western Blot User Manual Cat.Nos.ZK00901(12.5ml 2) ZK00902(50.0ml 2) USD44.46 USD175.20 Published 24 Feb 2007 ShineGene LumiPico ECL Kits User

More information

2. Relay characteristics of proteins and protein electrophoresis / fractionation.

2. Relay characteristics of proteins and protein electrophoresis / fractionation. UNIT: Proteins 15prot_elec.wpd Task Electrophoresis Objectives Upon completion of this exercise, the student will be able to: 1. Review electrophoresis information as presented in class. 2. Relay characteristics

More information

ExcelGel 2-D Homogeneous Instructions

ExcelGel 2-D Homogeneous Instructions ExcelGel 2-D Homogeneous 12.5 Polyacrylamide gel and buffer strips for flatbed SDS electrophoresis Instructions 71-5009-03 Edition AA Important Information ExcelGel, Multiphor, MultiTemp Hoefer, and PlusOne

More information

WesternMAX Alkaline Phosphatase Chemiluminescent Detection Kits

WesternMAX Alkaline Phosphatase Chemiluminescent Detection Kits WesternMAX Alkaline Phosphatase Chemiluminescent Detection Kits Code N221-KIT N220-KIT Description WesternMAX Chemiluminescent AP Kit, Anti-Mouse Includes: Alkaline Phosphatase (AP) Conjugated Anti-Mouse

More information

Student Name: Prepared by Dr. Elizabeth Tattersall, Instructor of Biophysical Sciences. WNC-Douglas Campus. Edited by

Student Name: Prepared by Dr. Elizabeth Tattersall, Instructor of Biophysical Sciences. WNC-Douglas Campus. Edited by 1 Using A SNP to Predict the Ability to Taste PTC Student Name: Course: Date: Section: Sign-Off: Prepared by Dr. Elizabeth Tattersall, Instructor of Biophysical Sciences WNC-Douglas Campus Edited by Dr.

More information

Electrophoresis and the Agilent Bioanalyzer. Advanced Biotechnology Lab I Florida Atlantic University January 23, 2008

Electrophoresis and the Agilent Bioanalyzer. Advanced Biotechnology Lab I Florida Atlantic University January 23, 2008 Electrophoresis and the Agilent Bioanalyzer Advanced Biotechnology Lab I Florida Atlantic University January 23, 2008 Introduction Electrophoresis is one of the most commonlyused methods of separating

More information

Frequent Difficulties With PFGE (Troubleshooting Tips)

Frequent Difficulties With PFGE (Troubleshooting Tips) Frequent Difficulties With PFGE (Troubleshooting Tips) 6 th PulseNet Latin America Meeting Buenos Aires, Argentina June 26 th 2008 Efrain M. Ribot, Ph.D. PulseNet Methods Development Laboratory Centers

More information

CHAPTER 4A MAKING SURE YOU VE GOT A RECOMBINANT PLASMID. CHAPTER 4A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

CHAPTER 4A MAKING SURE YOU VE GOT A RECOMBINANT PLASMID. CHAPTER 4A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved. CHAPTER 4A MAKING SURE YOU VE GOT A RECOMBINANT PLASMID 55 INTRODUCTION When biologists clone a gene in order to produce human insulin, they create a recombinant plasmid that has the human insulin gene.

More information

Precast Gels. ClearPAGE. SDS PAGE or DNA/Native gels with unsurpassed resolution and 2 year shelf life

Precast Gels. ClearPAGE. SDS PAGE or DNA/Native gels with unsurpassed resolution and 2 year shelf life ClearPAGE Precast Gels SDS PAGE or DNA/Native gels with unsurpassed resolution and 2 year shelf life 4 PRECAST GEL TYPES: 10cm x 10cm TEO SDS gels 10cm x 10cm DNA/Native gels 10cm x 8cm(h) TEO SDS gels

More information

Determination of Isoelectric Point (pi) By Whole-Column Detection cief

Determination of Isoelectric Point (pi) By Whole-Column Detection cief Determination of Isoelectric Point (pi) By Whole-Column Detection cief Tiemin Huang and Jiaqi Wu CONVERGENT BIOSCIENCE Determination of Isoelectric Point (pi) by Whole Column Detection cief Definition

More information

Introduction. Background Information PRINCIPLES OF GEL ELECTROPHORESIS

Introduction. Background Information PRINCIPLES OF GEL ELECTROPHORESIS Martian Genetics: An Electrophoresis Exploration EDVOTEK WORKSHOP Introduction Explore genetics with our out of this world workshop! Imagine being the first scientist to explore Mars and discovering extraterrestrials.

More information

Capillary Electrophoresis of Proteins

Capillary Electrophoresis of Proteins Capillary Electrophoresis of Proteins SDS Capillary Gel Electrophoresis SDS-CGE Outline CE-SDS Gel Analysis Description of Technique Method Development Tips PA800 plus kits SDS-MW IgG Purity & Heterogeneity

More information

Table of Contents. Catalog No

Table of Contents. Catalog No Table of Contents Catalog No. 54-11-50 Section Page Introduction 2 Materials and Equipment 3 Warnings and Precautions 4 Protocols Western Blotting Protocol At A Glance 5 PAGE and Western Blotting 6-7 Detection

More information

PCR Cloning Protocol

PCR Cloning Protocol Modifications to EXPERIMENTS 21 and 24: PCR and Molecular Cloning This experiment was designed by Dylan Dodd, based on research completed in Dr. Isaac Cann s lab*, with modifications and editing of content

More information

1. Why do DNA restriction fragments and plasmids separate when analyzed by gel electrophoresis?

1. Why do DNA restriction fragments and plasmids separate when analyzed by gel electrophoresis? INTRODUCTION When biologists clone a gene in order to produce human insulin, they create a recombinant plasmid that has the insulin gene. To do so, they use restriction enzymes to create DNA fragments

More information

R R Innovation Way P/N SECKIT-7830 Newark, DE 19711, USA Tel: Fax: Website: Published in November 2013

R R Innovation Way P/N SECKIT-7830 Newark, DE 19711, USA Tel: Fax: Website:  Published in November 2013 5-100 Innovation Way Newark, DE 19711, USA Tel:302-3661101 Fax:302-3661151 Website: www.sepax-tech.com Published in November 2013 P/N SECKIT-7830 These Phases are developed based on innovative surface

More information

Wearing gloves is highly recommended when handling the kit contents.

Wearing gloves is highly recommended when handling the kit contents. Warning: Wearing gloves is highly recommended when handling the kit contents. GeBAflex-tube is covered by the WO0190731 patent application assigned to Gene Bio-Application Ltd. GeBAflex-tubes are autoclaved

More information

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract Purification: Step 1 Lecture 11 Protein and Peptide Chemistry Cells: Break them open! Crude Extract Total contents of cell Margaret A. Daugherty Fall 2003 Big Problem: Crude extract is not the natural

More information

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open!

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open! Lecture 11 Protein and Peptide Chemistry Margaret A. Daugherty Fall 2003 Purification: Step 1 Cells: Break them open! Crude Extract Total contents of cell Big Problem: Crude extract is not the natural

More information

Electrophoresis and transfer

Electrophoresis and transfer Electrophoresis and transfer Electrophoresis Cation = positively charged ion, it moves toward the cathode (-) Anion = negatively charged ion, it moves toward the anode (+) Amphoteric substance = can have

More information

Analysis of Precut Lambda DNA. Evaluation copy

Analysis of Precut Lambda DNA. Evaluation copy Analysis of Precut Lambda DNA Computer 6B Restriction enzymes are a special class of proteins that cut DNA at specific sites and have become an indispensable tool in molecular biology. Restriction enzymes,

More information

Types of chromatography

Types of chromatography Chromatography Physical separation method based on the differential migration of analytes in a mobile phase as they move along a stationary phase. Mechanisms of Separation: Partitioning Adsorption Exclusion

More information

COC Biotechnology Program

COC Biotechnology Program COC Biotechnology Program DNA FINGERPRINTING: VERSION C In the time it takes you to complete this lab, your DNA could be extracted, amplified, analyzed and compared. Everything from a criminal past to

More information

electrophoresis tech Performance Comparison of the Experion Automated Electrophoresis System and SDS-PAGE for Protein Analysis

electrophoresis tech Performance Comparison of the Experion Automated Electrophoresis System and SDS-PAGE for Protein Analysis electrophoresis tech note 5299 Performance Comparison of the Experion Automated Electrophoresis System and for Protein Analysis Karen Zhu, Marie Nguyen, William Strong, and Christina Whitman-Guliaev, Bio-Rad

More information

Principles of Gel Filtration Chromatography

Principles of Gel Filtration Chromatography Edvo-Kit #108 Principles of Gel Filtration Chromatography Experiment Objective: The objective of this experiment is to introduce the principles of gel fi ltration chromatography as a method that separates

More information

TECHNICAL BULLETIN. Components System includes tank, lid, electrodes, electrophoresis and electroblotter modules, and accessories (see Table 1).

TECHNICAL BULLETIN. Components System includes tank, lid, electrodes, electrophoresis and electroblotter modules, and accessories (see Table 1). Sigma-Aldrich CVS10CBS omnipage mini dual Electrophoresis and Electroblotting System - Complete System for both Vertical Gel Electrophoresis and Electroblotting Catalog Number EP1301 Store at Room Temperature

More information

KPL SignaLOCK ChemiWestern Kits (Film and Imager Analysis)

KPL SignaLOCK ChemiWestern Kits (Film and Imager Analysis) KPL SignaLOCK ChemiWestern Kits (Film and Imager Analysis) SignaLOCK HRP ChemiWestern Kit (Film) Catalog No. 54-53-00 SignaLOCK HRP ChemiWestern Kit (Imager) Catalog No. 54-54-00 SignaLOCK AP ChemiWestern

More information

LAB 1: DNA PRECUT BY RESTRICTION ENZYMES

LAB 1: DNA PRECUT BY RESTRICTION ENZYMES LAB 1: DNA PRECUT BY RESTRICTION ENZYMES Why would anyone want to study DNA? Scientists have learned that the incredible amount of information stored in DNA can answer many questions and solve problems

More information

Standards for Electrophoresis and Blotting

Standards for Electrophoresis and Blotting Electrophoresis and Blotting for Electrophoresis and Blotting A Diverse Portfolio for All Applications A Diverse Portfolio of Bio-Rad s standards provide an excellent means of monitoring electrophoresis

More information

qpcr Kit, DNA-free Product components 100 rxn 250 rxn Product description

qpcr Kit, DNA-free Product components 100 rxn 250 rxn Product description qpcr Kit, DNA-free For the PCR detection and identification of bacterial and fungal DNA using custom primers Product code A8514 Product components 100 rxn 250 rxn A 2.5x mastermix (3 mm MgCl 2 final concentration)

More information