Nucleic acid and protein Flow of genetic information

Size: px
Start display at page:

Download "Nucleic acid and protein Flow of genetic information"

Transcription

1 Nucleic acid and protein Flow of genetic information References: Glick, BR and JJ Pasternak, 2003, Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press, Washington DC, pages and Groves MJ, 2006, Pharmaceutical Biotechnology, 2nd ed., CRC, Taylor & Francis, pages Genetic information flow 1

2 Nucleic acids and proteins DEBBIE S. RETNONINGRUM SCHOOL OF PHARMACY INSTITUT TEKNOLOGI BANDUNG Genetic information flow 2

3 NUCLEIC ACIDS DNA AND RNA Polymer/Polynucleotides Monomer : nucleotide Components : sugar, phosphate, base Genetic information flow 3

4 Structure of nucleotides and polynucleotides mabrybio211/chapter05/ch5.htm Genetic information flow 4

5 Genetic information flow 5

6 DNA Backbone : Phosphate-sugar base in the anti parallel strands Polarity: 5 3 vs 3 5 Complement : Base pairs (C=O and N-H bases between polinucleotides Phosphodiester bond (between nucleotides) Genetic information flow 6

7 CHROMOSOM ROMOSOMES VS PLASMID Genetic information flow 7

8 CELL DNA : TO STORE GENETIC INFORMATION RNA : INTERMEDIATE OF GENE EXPRESSION Proteins : PRODUCT OF GENE EXPRESSION SPECIFIC FUNCTION Genetic information flow 8

9 The Central Dogma of Molecular Biology Genetic information flow 9

10 Genetic information flow 10

11 DNA vs RNA Sugar: deoxyribose Base: AGCT Double strand Prokaryote: cytosol Eukaryote: nucleus Storage of genetic information Sugar: ribose Base: AGCU Single strand Prokaryote: cytosol Eukaryote: nucleus and cytosol Product of transcription Genetic information flow 11

12 POLYPEPTIDE PROTEIN Polymer Monomer : amino acids (20 aa) Polarity : N - C Peptide bond Genetic information flow 12

13 Amino acids Genetic information flow 13

14 Amino acid One letter symbol Three letter symbol alanine A Ala arginine R Arg asparagine N Asn aspartic acid D Asp cysteine C Cys glutamic acid E Glu glutamine Q Gln glycine G Gly histidine H His isoleucine I Ile leucine L Leu lysine K Lys methionine M Met phenylalanine F Phe proline P Pro serine S Ser threonine T Thr tryptophan W Trp tyrosine Y Tyr valine V Val Genetic information flow 14

15 Amino acid sequences of human insulin Genetic information flow 15

16 Amino acid sequences of interferon α 2a MCDLPQTHSLGSRRTLMLLAQMLRISLFSCLKDRH DFGFPQEEFGNQFQKAETIPVLHEM IQQIFNLFST KDSSAAWDET LLDKFYTELY QQ LNDLEACVIQGV GVTETPLMKEDSILAV RKY FQRITLYLKEKKYSPCA WEVVRAEIMRSFS LSTNLQESLRSKE Length is 165 amino acids Genetic information flow 16

17 The Four Levels of Protein Structure Genetic information flow 17

18 The primary structure of a protein Genetic information flow 18

19 The secondary structure of a protein Heliks α: Ala, Phe, Leu (often) Arg, Glu, Pro (rare) β-turn: Pro, gly β-sheet: Gly, Ala, Ser Pro: distrupts Genetic information flow 19

20 Secondary structure of protein Collagen helix: left handed helix Sequence tends to form collagen helix: Gly X Y X= often Pro Y= unusual amino acid derivative Genetic information flow 20

21 Secondary vs tertiary structure Genetic information flow 21

22 TERTIARY STRUCTURE : α-heliks β-sheet β-bend Non-covalent interactions: Van der waals interaction Electrostatic interaction Hydrogen bonds Hydrophobic interaction Disulphide bond Genetic information flow 22

23 The quarternary structure of a protein Genetic information flow 23

24 QUARTENER STRUCTURE Association of two or more polypeptide strands Can be the same or different polypeptides (homodimer vs heterodimer) Consists of subunits / monomers Weak non covalent interaction: Hydrophobic interaction Hydrogen bond Van der waals interaction Disulfide bond Genetic information flow 24

25 PROTEIN FUNCTION Genetic information flow 25

26 Location of Protein in Bacterial Cell Gram positive Gram negative Genetic information flow 26

27 Nucleic acids vs protein Nucleotides Polarity 5 3 Phosphodiester bond Storage of genetic information Amino acids Polarity N C Peptide bonds Product of gene expression Genetic information flow 27

28 PROTEIN: Therapeutic agents INSULIN, INTERFERON, STREPTOKINASE, ERYTHROPOEITIN, MONOCLONAL ANTIBODI, HBsAg DNA: GENE THERAPY, DNA ANTISENSE, OLIGONUCLEOTIDES, DNA VACCINE Genetic information flow 28

29 FLOW OF GENETIC INFORMATION

30 PRODUCTS OF PHARMACEUTICAL BIOTECHNOLOGY NUCLEIC ACIDS (DNA AND RNA) PROTEINS (DRUG, VACCINES, DETECTION KITS): PRODUCTS OF TRANSCRIPTION AND TRANSLATION OF GENETIC MATERIAL PEPTIDES (SHORTER THAN PROTEINS) Genetic information flow 30

31 The Central Dogma of Molecular Biology Genetic information flow 31

32 WHY IS UNDERSTANDING TRANSCRIPTION IMPORTANT? PROTEIN IS NEEDED IN LARGE AMOUNTS ONE STRATEGY IS TO INCREASE TRANSCRIPTION EFFIENCY Genetic information flow 32

33 TRANSCRIP RIPTION RNA SYNTHESIS (mrna, rrna, trna) USING INFORMATION STORED IN DNA RNA POLYMERASE (PROTEIN) PROKARYOTE (CYTOSOL); EUKARYOTE (NUCLEUS) PROMOTOR (STRONGvsWEAK) TERMINATOR (STRONG vs WEAK) OPERATOR (REGULATION) ACTIVATOR SITES (REGULATION) Genetic information flow 33

34 TRANSCRIPTION mrna Genetic information flow 34

35 TRANSCRIP RIPTION AND BIOTECH CHNOLOGY STRONG PROMOTOR AND TERMINATOR PROMOTOR AND TERMINATOR RECOGNIZED BY HOST RNA POLYMERASE Genetic information flow 35

36 Genetic information flow 36

37 Genetic information flow 37

38 REVERSE TRANSCRIP RIPTION RNA DNA (cdna) REVERSE TRANSCRIPTASE VIRUS (RETROVIRUS, HIV) AND Hepatitis Bvirus (HBV) Genetic information flow 38

39 Genetic information flow 39

40 TRANSLATION SYNTHESIS OF POLYPEPTIDES/PROTEINS USING INFORMATION IN mrna mrna IS USED AS TEMPLATE (trna AND rrna ARE NOT TRANSLATED, BUT THEY FUNCTION DIRECTLY LOCATION IN RIBOSOME COMPONENTS THAT ARE REQUIRED mrna RIBOSOME BINDING SITE (RBS) FOR PROKARYOTE AUG (START CODON) UAA, UGA, UAG (STOP CODONS) Genetic information flow 40

41 Genetic information flow 41

42 Stop codons Start codon Genetic information flow 42

43 ORGANIZATION ON OF PROKARYOTIC GENE Coding sequence 5 3 Promoter RBS Inisiation of Start codon transcription Stop codon 3 5 terminator Components of transcription: promotor, terminator, site of transcription initiation Components of translation: RBS, start codon, stop codons Genetic information flow 43

44 Genetic information flow 44

45 Eukaryote vs Prokaryote Genetic information flow 45

46 Genetic information flow 46

47 ORGANIZATION ON OF EUKARYOTIC GENE Genetic information flow 47

48 TRANSCRIP RIPTION (EUKARYOT OTE) DIRECT PRODUCT OF TRANSCRIPTION: PRIMARY RNA (INTRON AND EXON) ADDITION OF CAP (5 END) AND POLY A TAIL (3 END) REMOVAL OF INTRON (SPLICING) MATURE mrna IS TRANSPORTED TO CYTOSOL Genetic information flow 48

49 WHY IS KNOWLEDGE OF TRANSCRIPTION IN EUKARYOTE IMPORTANT? MANY PROTEINS FROM EUKARYOTE ARE USED AS THERAPEUTIC PROTEINS INFORMATION IN PROTEIN MOLECULES IS LOCATED IN MATURE mrna WITHOUT INTRON TO ISOLATE DNA ENCODING FOR PROTEIN IS STARTED BY ISOLATING MATURE mrna THEN CONVERTED TO DNA (mrna DNA) Genetic information flow 49

50 REVERSE TRANSCRIPTION PROBLEM IN EUKARYOTE IS THAT GENE CONTAINS INTRON DAN EXON SYNTHESIS OF DNA USING mrna AS TEMPLATE THE RESULT OF THE DNA IS CALLED cdna, complementary DNA (DOES NOT CONTAIN INTRON) CATALYZED BY REVERSE TRANSCRIPTASE Genetic information flow 50

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Bioinformatics ONE Introduction to Biology Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Biology Review DNA RNA Proteins Central Dogma Transcription Translation

More information

Problem: The GC base pairs are more stable than AT base pairs. Why? 5. Triple-stranded DNA was first observed in 1957. Scientists later discovered that the formation of triplestranded DNA involves a type

More information

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS 1 CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS * Some contents are adapted from Dr. Jean Gao at UT Arlington Mingon Kang, PhD Computer Science, Kennesaw State University 2 Genetics The discovery of

More information

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein This is also known as: The central dogma of molecular biology Protein Proteins are made

More information

36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L-

36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L- 36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L- 37. The essential fatty acids are A. palmitic acid B. linoleic acid C. linolenic

More information

Lecture for Wednesday. Dr. Prince BIOL 1408

Lecture for Wednesday. Dr. Prince BIOL 1408 Lecture for Wednesday Dr. Prince BIOL 1408 THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN Copyright 2009 Pearson Education, Inc. Genes are expressed as proteins A gene is a segment of DNA that

More information

Protein Synthesis. Application Based Questions

Protein Synthesis. Application Based Questions Protein Synthesis Application Based Questions MRNA Triplet Codons Note: Logic behind the single letter abbreviations can be found at: http://www.biology.arizona.edu/biochemistry/problem_sets/aa/dayhoff.html

More information

ENZYMES AND METABOLIC PATHWAYS

ENZYMES AND METABOLIC PATHWAYS ENZYMES AND METABOLIC PATHWAYS This document is licensed under the Attribution-NonCommercial-ShareAlike 2.5 Italy license, available at http://creativecommons.org/licenses/by-nc-sa/2.5/it/ 1. Enzymes build

More information

Gene function at the level of traits Gene function at the molecular level

Gene function at the level of traits Gene function at the molecular level Gene expression Gene function at the level of traits Gene function at the molecular level Two levels tied together since the molecular level affects the structure and function of cells which determines

More information

11 questions for a total of 120 points

11 questions for a total of 120 points Your Name: BYS 201, Final Exam, May 3, 2010 11 questions for a total of 120 points 1. 25 points Take a close look at these tables of amino acids. Some of them are hydrophilic, some hydrophobic, some positive

More information

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan Sec. 12-3 RNA and Protein Synthesis Roles of DNA and RNA DNA is the MASTER PLAN RNA is the BLUEPRINT of the Master Plan 1 RNA uses the information from DNA to make proteins Differs from DNA: 1. Ribose

More information

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation 1. DNA, RNA structure 2. DNA replication 3. Transcription, translation DNA and RNA are polymers of nucleotides DNA is a nucleic acid, made of long chains of nucleotides Nucleotide Phosphate group Nitrogenous

More information

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos Daily Agenda Warm Up: Review Translation Notes Protein Synthesis Practice Redos 1. What is DNA Replication? 2. Where does DNA Replication take place? 3. Replicate this strand of DNA into complimentary

More information

DNA.notebook March 08, DNA Overview

DNA.notebook March 08, DNA Overview DNA Overview Deoxyribonucleic Acid, or DNA, must be able to do 2 things: 1) give instructions for building and maintaining cells. 2) be copied each time a cell divides. DNA is made of subunits called nucleotides

More information

Big Idea 3C Basic Review

Big Idea 3C Basic Review Big Idea 3C Basic Review 1. A gene is a. A sequence of DNA that codes for a protein. b. A sequence of amino acids that codes for a protein. c. A sequence of codons that code for nucleic acids. d. The end

More information

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko Chapter 10 The Structure and Function of DNA PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey,

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information

Protein Synthesis: Transcription and Translation

Protein Synthesis: Transcription and Translation Review Protein Synthesis: Transcription and Translation Central Dogma of Molecular Biology Protein synthesis requires two steps: transcription and translation. DNA contains codes Three bases in DNA code

More information

What is necessary for life?

What is necessary for life? Life What is necessary for life? Most life familiar to us: Eukaryotes FREE LIVING Or Parasites First appeared ~ 1.5-2 10 9 years ago Requirements: DNA, proteins, lipids, carbohydrates, complex structure,

More information

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below.

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below. Problem Set Unit 3 Name 1. Which molecule is found in both DNA and RNA? A. Ribose B. Uracil C. Phosphate D. Amino acid 2. Which molecules form the nucleotide marked in the diagram? A. phosphate, deoxyribose

More information

Name. Student ID. Midterm 2, Biology 2020, Kropf 2004

Name. Student ID. Midterm 2, Biology 2020, Kropf 2004 Midterm 2, Biology 2020, Kropf 2004 1 1. RNA vs DNA (5 pts) The table below compares DNA and RNA. Fill in the open boxes, being complete and specific Compare: DNA RNA Pyrimidines C,T C,U Purines 3-D structure

More information

Ch 10 Molecular Biology of the Gene

Ch 10 Molecular Biology of the Gene Ch 10 Molecular Biology of the Gene For Next Week Lab -Hand in questions from 4 and 5 by TUES in my mailbox (Biology Office) -Do questions for Lab 6 for next week -Lab practical next week Lecture Read

More information

PROTEIN SYNTHESIS. copyright cmassengale

PROTEIN SYNTHESIS. copyright cmassengale PROTEIN SYNTHESIS 1 DNA and Genes 2 Roles of RNA and DNA DNA is the MASTER PLAN RNA is the BLUEPRINT of the Master Plan 3 RNA Differs from DNA RNA has a sugar ribose DNA has a sugar deoxyribose 4 Other

More information

DNA & Protein Synthesis UNIT D & E

DNA & Protein Synthesis UNIT D & E DNA & Protein Synthesis UNIT D & E How this Unit is broken down Chapter 10.1 10.3 The structure of the genetic material Chapter 10.4 & 10.5 DNA replication Chapter 10.6 10.15 The flow of genetic information

More information

A Zero-Knowledge Based Introduction to Biology

A Zero-Knowledge Based Introduction to Biology A Zero-Knowledge Based Introduction to Biology Konstantinos (Gus) Katsiapis 25 Sep 2009 Thanks to Cory McLean and George Asimenos Cells: Building Blocks of Life cell, membrane, cytoplasm, nucleus, mitochondrion

More information

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated to synthesize

More information

DNA is normally found in pairs, held together by hydrogen bonds between the bases

DNA is normally found in pairs, held together by hydrogen bonds between the bases Bioinformatics Biology Review The genetic code is stored in DNA Deoxyribonucleic acid. DNA molecules are chains of four nucleotide bases Guanine, Thymine, Cytosine, Adenine DNA is normally found in pairs,

More information

CH 17 :From Gene to Protein

CH 17 :From Gene to Protein CH 17 :From Gene to Protein Defining a gene gene gene Defining a gene is problematic because one gene can code for several protein products, some genes code only for RNA, two genes can overlap, and there

More information

Fundamentals of Protein Structure

Fundamentals of Protein Structure Outline Fundamentals of Protein Structure Yu (Julie) Chen and Thomas Funkhouser Princeton University CS597A, Fall 2005 Protein structure Primary Secondary Tertiary Quaternary Forces and factors Levels

More information

Chapter 8: DNA and RNA

Chapter 8: DNA and RNA Chapter 8: DNA and RNA Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 8-1 DNA and the Importance of Proteins Proteins play

More information

Key Concept Translation converts an mrna message into a polypeptide, or protein.

Key Concept Translation converts an mrna message into a polypeptide, or protein. 8.5 Translation VOBLRY translation codon stop codon start codon anticodon Key oncept Translation converts an mrn message into a polypeptide, or protein. MIN IDES mino acids are coded by mrn base sequences.

More information

7.2 Protein Synthesis. From DNA to Protein Animation

7.2 Protein Synthesis. From DNA to Protein Animation 7.2 Protein Synthesis From DNA to Protein Animation Proteins Why are proteins so important? They break down your food They build up muscles They send signals through your brain that control your body They

More information

PROTEIN SYNTHESIS. copyright cmassengale

PROTEIN SYNTHESIS. copyright cmassengale PROTEIN SYNTHESIS 1 DNA and Genes 2 Roles of RNA and DNA DNA is the MASTER PLAN RNA is the BLUEPRINT of the Master Plan 3 RNA Differs from DNA RNA has a sugar ribose DNA has a sugar deoxyribose 4 Other

More information

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! Protein Synthesis/Gene Expression Why do we need to make proteins? To build parts for our body as

More information

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein?

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein? Lesson 1 - RNA Do you remember What is a gene? What is RNA? How does it differ from DNA? What is protein? Gene Segment of DNA that codes for building a protein DNA code is copied into RNA form, and RNA

More information

Biology: The substrate of bioinformatics

Biology: The substrate of bioinformatics Bi01_1 Unit 01: Biology: The substrate of bioinformatics What is Bioinformatics? Bi01_2 handling of information related to living organisms understood on the basis of molecular biology Nature does it.

More information

Hello! Outline. Cell Biology: RNA and Protein synthesis. In all living cells, DNA molecules are the storehouses of information. 6.

Hello! Outline. Cell Biology: RNA and Protein synthesis. In all living cells, DNA molecules are the storehouses of information. 6. Cell Biology: RNA and Protein synthesis In all living cells, DNA molecules are the storehouses of information Hello! Outline u 1. Key concepts u 2. Central Dogma u 3. RNA Types u 4. RNA (Ribonucleic Acid)

More information

RNA : functional role

RNA : functional role RNA : functional role Hamad Yaseen, PhD MLS Department, FAHS Hamad.ali@hsc.edu.kw RNA mrna rrna trna 1 From DNA to Protein -Outline- From DNA to RNA From RNA to Protein From DNA to RNA Transcription: Copying

More information

DNA Begins the Process

DNA Begins the Process Biology I D N A DNA contains genes, sequences of nucleotide bases These Genes code for polypeptides (proteins) Proteins are used to build cells and do much of the work inside cells DNA Begins the Process

More information

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Biology Multiple Choice 016074 BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Test Code: 016074 Directions: Each of the questions or incomplete statements below is followed by five suggested

More information

Chapter 10: Gene Expression and Regulation

Chapter 10: Gene Expression and Regulation Chapter 10: Gene Expression and Regulation Fact 1: DNA contains information but is unable to carry out actions Fact 2: Proteins are the workhorses but contain no information THUS Information in DNA must

More information

BIO 311C Spring Lecture 36 Wednesday 28 Apr.

BIO 311C Spring Lecture 36 Wednesday 28 Apr. BIO 311C Spring 2010 1 Lecture 36 Wednesday 28 Apr. Synthesis of a Polypeptide Chain 5 direction of ribosome movement along the mrna 3 ribosome mrna NH 2 polypeptide chain direction of mrna movement through

More information

THE GENETIC CODE Figure 1: The genetic code showing the codons and their respective amino acids

THE GENETIC CODE Figure 1: The genetic code showing the codons and their respective amino acids THE GENETIC CODE As DNA is a genetic material, it carries genetic information from cell to cell and from generation to generation. There are only four bases in DNA and twenty amino acids in protein, so

More information

Lecture Overview. Overview of the Genetic Information. Marieb s Human Anatomy and Physiology. Chapter 3 DNA & RNA Protein Synthesis Lecture 6

Lecture Overview. Overview of the Genetic Information. Marieb s Human Anatomy and Physiology. Chapter 3 DNA & RNA Protein Synthesis Lecture 6 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 3 DNA & RNA Protein Synthesis Lecture 6 Lecture Overview The Genetic Information Structure of DNA/RNA DNA Replication Overview of protein synthesis

More information

Protein Synthesis & Gene Expression

Protein Synthesis & Gene Expression DNA provides the instructions for how to build proteins Each gene dictates how to build a single protein in prokaryotes The sequence of nucleotides (AGCT) in DNA dictates the order of amino acids that

More information

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words).

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words). 1 Quiz1 Q1 2011 Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words) Value Correct Answer 1 noncovalent interactions 100% Equals hydrogen bonds (100%) Equals H-bonds

More information

C. Incorrect! Threonine is an amino acid, not a nucleotide base.

C. Incorrect! Threonine is an amino acid, not a nucleotide base. MCAT Biology - Problem Drill 05: RNA and Protein Biosynthesis Question No. 1 of 10 1. Which of the following bases are only found in RNA? Question #01 (A) Ribose. (B) Uracil. (C) Threonine. (D) Adenine.

More information

LABS 9 AND 10 DNA STRUCTURE AND REPLICATION; RNA AND PROTEIN SYNTHESIS

LABS 9 AND 10 DNA STRUCTURE AND REPLICATION; RNA AND PROTEIN SYNTHESIS LABS 9 AND 10 DNA STRUCTURE AND REPLICATION; RNA AND PROTEIN SYNTHESIS OBJECTIVE 1. OBJECTIVE 2. OBJECTIVE 3. OBJECTIVE 4. Describe the structure of DNA. Explain how DNA replicates. Understand the structure

More information

Bundle 5 Test Review

Bundle 5 Test Review Bundle 5 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? _Nucleic

More information

Using DNA sequence, distinguish species in the same genus from one another.

Using DNA sequence, distinguish species in the same genus from one another. Species Identification: Penguins 7. It s Not All Black and White! Name: Objective Using DNA sequence, distinguish species in the same genus from one another. Background In this activity, we will observe

More information

UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS

UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS Nucleic acids are extremely large molecules that were first isolated from the nuclei of cells. Two kinds of nucleic acids are found in cells: RNA (ribonucleic

More information

Protein Synthesis. DNA to RNA to Protein

Protein Synthesis. DNA to RNA to Protein Protein Synthesis DNA to RNA to Protein From Genes to Proteins Processing the information contained in DNA into proteins involves a sequence of events known as gene expression and results in protein synthesis.

More information

6-Foot Mini Toober Activity

6-Foot Mini Toober Activity Big Idea The interaction between the substrate and enzyme is highly specific. Even a slight change in shape of either the substrate or the enzyme may alter the efficient and selective ability of the enzyme

More information

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes? Bio11 Announcements TODAY Genetics (review) and quiz (CP #4) Structure and function of DNA Extra credit due today Next week in lab: Case study presentations Following week: Lab Quiz 2 Ch 21: DNA Biology

More information

UNIT I RNA AND TYPES R.KAVITHA,M.PHARM LECTURER DEPARTMENT OF PHARMACEUTICS SRM COLLEGE OF PHARMACY KATTANKULATUR

UNIT I RNA AND TYPES R.KAVITHA,M.PHARM LECTURER DEPARTMENT OF PHARMACEUTICS SRM COLLEGE OF PHARMACY KATTANKULATUR UNIT I RNA AND TYPES R.KAVITHA,M.PHARM LECTURER DEPARTMENT OF PHARMACEUTICS SRM COLLEGE OF PHARMACY KATTANKULATUR RNA, as previously mentioned, is an acronym for ribonucleic acid. There are many forms

More information

Chapter 17. From Gene to Protein. AP Biology

Chapter 17. From Gene to Protein. AP Biology Chapter 17. From Gene to Protein Metabolism teaches us about genes Metabolic defects studying metabolic diseases suggested that genes specified proteins alkaptonuria (black urine from alkapton) PKU (phenylketonuria)

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

TRANSCRIPTION AND TRANSLATION

TRANSCRIPTION AND TRANSLATION TRANSCRIPTION AND TRANSLATION Bell Ringer (5 MINUTES) 1. Have your homework (any missing work) out on your desk and ready to turn in 2. Draw and label a nucleotide. 3. Summarize the steps of DNA replication.

More information

Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering

Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering DNA Introduction Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering At the most basic level DNA is a set of instructions for protein construction. Structural

More information

DNA Function: Information Transmission

DNA Function: Information Transmission DNA Function: Information Transmission DNA is called the code of life. What does it code for? *the information ( code ) to make proteins! Why are proteins so important? Nearly every function of a living

More information

Chapter 12. DNA TRANSCRIPTION and TRANSLATION

Chapter 12. DNA TRANSCRIPTION and TRANSLATION Chapter 12 DNA TRANSCRIPTION and TRANSLATION 12-3 RNA and Protein Synthesis WARM UP What are proteins? Where do they come from? From DNA to RNA to Protein DNA in our cells carry the instructions for making

More information

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. The difference between replication, transcription, and translation. How

More information

Chapter 13. From DNA to Protein

Chapter 13. From DNA to Protein Chapter 13 From DNA to Protein Proteins All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequenceof a gene The Path From Genes to

More information

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Name: Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Part A: Multiple Choice (15 marks) Circle the letter of choice that best completes the statement or answers the question. One mark for each correct

More information

Just one nucleotide! Exploring the effects of random single nucleotide mutations

Just one nucleotide! Exploring the effects of random single nucleotide mutations Dr. Beatriz Gonzalez In-Class Worksheet Name: Learning Objectives: Just one nucleotide! Exploring the effects of random single nucleotide mutations Given a coding DNA sequence, determine the mrna Based

More information

Chapter 11. Gene Expression and Regulation. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc..

Chapter 11. Gene Expression and Regulation. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.. Chapter 11 Gene Expression and Regulation Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc.. 11.1 How Is The Information In DNA Used In A Cell? Most genes contain

More information

Fig Ch 17: From Gene to Protein

Fig Ch 17: From Gene to Protein Fig. 17-1 Ch 17: From Gene to Protein Basic Principles of Transcription and Translation RNA is the intermediate between genes and the proteins for which they code Transcription is the synthesis of RNA

More information

Biomolecules: lecture 6

Biomolecules: lecture 6 Biomolecules: lecture 6 - to learn the basics on how DNA serves to make RNA = transcription - to learn how the genetic code instructs protein synthesis - to learn the basics on how proteins are synthesized

More information

Ch. 10 From DNA to Protein. AP Biology

Ch. 10 From DNA to Protein. AP Biology Ch. 10 From DNA to Protein Protein Synthesis Metabolism and Gene Expression n Inheritance of metabolic diseases suggests that genes coded for enzymes n Diseases (phenotypes) caused by non-functional gene

More information

Honors packet Instructions

Honors packet Instructions Honors packet Instructions The following are guidelines in order for you to receive FULL credit for this bio packet: 1. Read and take notes on the packet in full 2. Answer the multiple choice questions

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 17 Practice Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Garrod hypothesized that "inborn errors of metabolism" such as alkaptonuria

More information

Bundle 6 Test Review

Bundle 6 Test Review Bundle 6 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? Deoxyribonucleic

More information

Chapter 10 - Molecular Biology of the Gene

Chapter 10 - Molecular Biology of the Gene Bio 100 - Molecular Genetics 1 A. Bacterial Transformation Chapter 10 - Molecular Biology of the Gene Researchers found that they could transfer an inherited characteristic (e.g. the ability to cause pneumonia),

More information

Deoxyribonucleic Acid DNA. Structure of DNA. Structure of DNA. Nucleotide. Nucleotides 5/13/2013

Deoxyribonucleic Acid DNA. Structure of DNA. Structure of DNA. Nucleotide. Nucleotides 5/13/2013 Deoxyribonucleic Acid DNA The Secret of Life DNA is the molecule responsible for controlling the activities of the cell It is the hereditary molecule DNA directs the production of protein In 1953, Watson

More information

From Gene to Protein. How Genes Work (Ch. 17)

From Gene to Protein. How Genes Work (Ch. 17) From Gene to Protein How Genes Work (Ch. 17) What do genes code for? How does DNA code for cells & bodies? how are cells and bodies made from the instructions in DNA DNA proteins cells bodies The Central

More information

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins KEY CONCEPT Section 1 DNA was identified as the genetic material through a series of experiments. Griffith finds a transforming principle. Griffith experimented with the bacteria that cause pneumonia.

More information

Flow of Genetic Information

Flow of Genetic Information Flow of Genetic Information Transcription and Translation Links to the Next Generation Standards Scientific and Engineering Practices: Asking Questions (for science) and Defining Problems (for engineering)

More information

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base DNA,, RNA,, AND PROTEIN SYNTHESIS DNA Deoxyribonucleic Acid Enables cells to have different forms and perform different functions Primary functions of DNA: Store and transmit genetic information that tells

More information

From mechanism to medicne

From mechanism to medicne From mechanism to medicne a look at proteins and drug design Chem 342 δ δ δ+ M 2009 δ+ δ+ δ M Drug Design - an Iterative Approach @ DSU Structural Analysis of Receptor Structural Analysis of Ligand-Receptor

More information

Molecular Genetics. Before You Read. Read to Learn

Molecular Genetics. Before You Read. Read to Learn 12 Molecular Genetics section 3 DNA,, and Protein DNA codes for, which guides protein synthesis. What You ll Learn the different types of involved in transcription and translation the role of polymerase

More information

From Gene to Protein Transcription and Translation

From Gene to Protein Transcription and Translation Name: Hour: From Gene to Protein Transcription and Translation Introduction: In this activity you will learn how the genes in our DNA influence our characteristics. For example, how can a gene cause albinism

More information

RNA and Protein Synthesis

RNA and Protein Synthesis RNA and Protein Synthesis CTE: Agriculture and Natural Resources: C5.3 Understand various cell actions, such as osmosis and cell division. C5.4 Compare and contrast plant and animal cells, bacteria, and

More information

CHAPTER 1. DNA: The Hereditary Molecule SECTION D. What Does DNA Do? Chapter 1 Modern Genetics for All Students S 33

CHAPTER 1. DNA: The Hereditary Molecule SECTION D. What Does DNA Do? Chapter 1 Modern Genetics for All Students S 33 HPER 1 DN: he Hereditary Molecule SEION D What Does DN Do? hapter 1 Modern enetics for ll Students S 33 D.1 DN odes For Proteins PROEINS DO HE nitty-gritty jobs of every living cell. Proteins are the molecules

More information

GENE EXPRESSION AT THE MOLECULAR LEVEL. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

GENE EXPRESSION AT THE MOLECULAR LEVEL. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. GENE EXPRESSION AT THE MOLECULAR LEVEL Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gene expression Gene function at the level of traits Gene function

More information

Protein Synthesis Notes

Protein Synthesis Notes Protein Synthesis Notes Protein Synthesis: Overview Transcription: synthesis of mrna under the direction of DNA. Translation: actual synthesis of a polypeptide under the direction of mrna. Transcription

More information

DNA Structure and Replication, and Virus Structure and Replication Test Review

DNA Structure and Replication, and Virus Structure and Replication Test Review DNA Structure and Replication, and Virus Structure and Replication Test Review What does DNA stand for? Deoxyribonucleic Acid DNA is what type of macromolecule? DNA is a nucleic acid The building blocks

More information

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7)

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7) Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7) I. General Principles (Chapter 7 introduction) a. Morse code distinct series of dots and dashes encode the 26 letters of the

More information

Gene Expression Transcription/Translation Protein Synthesis

Gene Expression Transcription/Translation Protein Synthesis Gene Expression Transcription/Translation Protein Synthesis 1. Describe how genetic information is transcribed into sequences of bases in RNA molecules and is finally translated into sequences of amino

More information

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München Structure formation and association of biomolecules Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München Motivation Many biomolecules are chemically synthesized

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

Protein Synthesis Making Proteins

Protein Synthesis Making Proteins Protein Synthesis Making Proteins 2009-2010 Bodies Cells DNA Bodies are made up of cells All cells run on a set of instructions spelled out in DNA DNA Cells Bodies How does DNA code for cells & bodies?

More information

Why are proteins important?

Why are proteins important? PROTEIN SYNTHESIS Why are proteins important? proteins help build cell structures some proteins are enzymes that promote biological reactions Proteins are found in muscles, blood, bones, etc.. RNA RNA

More information

Neurospora mutants. Beadle & Tatum: Neurospora molds. Mutant A: Mutant B: HOW? Neurospora mutants

Neurospora mutants. Beadle & Tatum: Neurospora molds. Mutant A: Mutant B: HOW? Neurospora mutants Chapter 10: Central Dogma Gene Expression and Regulation Mutant A: Neurospora mutants Mutant B: Not made Not made Fact 1: DNA contains information but is unable to carry out actions Fact 2: Proteins are

More information

RNA and PROTEIN SYNTHESIS. Chapter 13

RNA and PROTEIN SYNTHESIS. Chapter 13 RNA and PROTEIN SYNTHESIS Chapter 13 DNA Double stranded Thymine Sugar is RNA Single stranded Uracil Sugar is Ribose Deoxyribose Types of RNA 1. Messenger RNA (mrna) Carries copies of instructions from

More information

RNA & PROTEIN SYNTHESIS

RNA & PROTEIN SYNTHESIS RNA & PROTEIN SYNTHESIS DNA & RNA Genes are coded DNA instructions that control the production of proteins within the cell. The first step in decoding these genetic messages is to copy part of the nucleotide

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Chapter 17 Genes to Proteins Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The following questions refer to Figure 17.1, a simple metabolic

More information

Topic 10 Molecular Biology of the Gene

Topic 10 Molecular Biology of the Gene Topic 10 Molecular Biology of the Gene Sabotage Inside Our Cells Viruses are invaders that sabotage our cells Viruses have genetic material surrounded by a protein coat and, in some cases, a membranous

More information

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype)

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Question#1: One-Gene, One-Polypeptide The figure below shows the results of feeding trials with one auxotroph strain of Neurospora

More information