Cloning genes into animals. Transgenic animal carries foreign gene inserted into its genome.

Size: px
Start display at page:

Download "Cloning genes into animals. Transgenic animal carries foreign gene inserted into its genome."

Transcription

1 Cloning genes into animals Transgenic animal carries foreign gene inserted into its genome.

2 Transgenic goats Ch. 10 pg. 281 Produce human protein (drug) in milk Pharming

3 Transgenic animals to produce human protein in milk Mammary gland-specific promoter Example: Human EPO gene Where is human EPO made in goat?

4 Microinjection 1. Inject gene construct into animal fertilized egg, it integrates into chromosome

5 2. Implant embryo into surrogate mother -> kid How do we know if kid is transgenic (has human EPO gene in its DNA from every cell)?

6 Probed gel of goat kid DNA

7 Or PCR

8 3. Transgenic kid to produces human drug how, where? Mammary tissue specific

9 4. purify drug (protein) from milk One herd can supply the world s need Clean, disease free Pail of milk with EPO

10 Spider silk (BioSteel) The dragline form of spider silk is the strongest material known; 5 times stronger than steel and twice as strong as Kevlar. genus Araneus

11 Mouse model organism HHMI Find the 4 model organisms: mice, yeast, fruit fly, nematode worm Note the Parkinsons mouse Where does injected foreign DNA incorporate into mouse genome What is a pronucleus? What is done with the mouse pup tails?

12 Agriculture This pig is genetically engineered to be able to digest more and produce less manure Other pigs produce meat high in omega 3 fatty acids

13 Medicine This chicken produces a antibody in her eggs

14 Xenotransplantation Pigs have similar sized organs to humans Knock out pig cell surface antigens to prevent hyperacute rejections 100,000 in US await organ transplantation - ~ 20,000 will get organs

15 Fish farming genetically engineered salmon grow faster

16 Patenting Raw products of nature are not patentable. Millions of patents Can patent a gene, a method, an animal etc..

17 3 types of cloning 1. gene cloning Recombinant bacteria (as in lab) Transgenic plants Transgenic animals 2. reproductive cloning Yields an organism Embryo twinning or nuclear transfer 3. therapeutic cloning nuclear transfer for stem cells to treat disease

18 Reproductive cloning

19 Reproductive cloning Embryo twinning 1 sperm + 1 egg - 2 embryos (genetically identical) oning/

20 Nuclear transfer method - The clone is a genetic copy of the donor

21 SCNT = somatic cell nuclear transfer 1997 Ian Wilmut

22 1. Obtain somatic cell from donor ewe Serum starve to induce G o 2. Place nucleus into enucleate egg Somatic cell nuclear transfer videos

23 3. Grow embryo for 6 days in lab 4. Implant into surrogate mother 277 embryos -> 1 lamb (Dolly)

24 Our somatic nuclei (DNA from a differentiated cell) can be reprogrammed to embryonic state!

25 Cloning game gornot/

26 Why clone animals? Models for disease Pharming Endangered species ex. Mouflon sheep, the surrogate mother was a domestic sheep! Reproduce deceased pet Help infertile couples?

27 Problems with reproductive cloning High failure rate < 3% success rate 2003 first horse cloned (Prometea) 22 embryos, 800 eggs Enucleate egg may not function Embryo may not divide Embryo may not implant Miscarriage

28 Large offspring syndrome (LOS) abnormally large organs Abnormal gene expression We don t understand how the nucleus is reprogrammed (its old DNA in a new egg!) Telomere problems Older DNA has shortened telomeres, some clones show lengthened telomeres

29 Ethical implications Is human cloning "playing with nature?" What about in vitro fertilization or hormone treatments? If a clone originated from existing person, who would be parents? Social challenges a cloned child might face Regulation

30 All countries have banned human reproductive cloning. Dark brown = permissive policy light brown = flexible Yellow = no federal government funding

31 The debate Interested in learning more: 2005 Lauren/diabetes/stem cells NOVA video 2006 stem cells NOVA video

32 Obtain embryonic stem (ES) cells Therapeutic cloning 1. Isolate nucleus from a somatic cell which? 2. Enucleate a donor egg Somatic cell nuclear transfer How many chromosomes in nucleus of somatic cell?

33 3. inject somatic cell nucleus into enucleate egg 4. Grow to blastocyst stage 3 day embryo (morula) 5 day blastocyst Cells at this stage are totipotent and undiffferentiated

34 Blastocyst ~ 100 cells, day 4 Hollow ball of cells with inner cell mass ICM -> embryo Blastocyst animation development in vivo

35 5. Take inner cell mass, transfer to flask, and ES cells reproduce. ~100 cells How do we get the cells to differentiate into what we want?

36 Stem cells

37 Questions Sperm? Fertilization? Embryo?

38 Types of stem cells Totipotent stem cells (ES) can differentiate into any cell type including placenta Example: early embryo Pluripotent stem cells (ES) - 5 day embryo blastocyst cells can differentiate into any body cell type

39 Multipotent stem cells give rise to a number of cell types example: stem cells in bone marrow

40 Sources of stem cells 1. Therapeutic cloning (SCNT) Advantage = no immune rejection Not dependent on transplant from another person 2. Left over in vitro fertilization embryos 3. Donated sperm and eggs 4. Umbilical cord blood, placental blood, bone marrow

41

42 Therapeutic cloning is not reproductive cloning ES cells/embryo Reproductive cloning -> Implant into female (uterus)->- birth ILLEGAL, rarely successful in animals Therapeutic cloning Cells divide to produce more ES cells Use to treat /cure disease

43 Uses of ES cells 1. tissue transplants new liver cells, pancreas cells 2. Replace lost cells: Alzheimer disease, spinal cord injury, Parkinson s disease, multiple sclerosis, diabetes, burned tissue, stroke, lung disease, heart disease, arthritis NOTE ES cells cannot develop into a fetus why?

44 A woman cannot have biological children and would like one. Her eggs are mixed with her husband s sperm in a dish and a resulting embryo is implanted A woman cannot have biological children and would like one. One of her nuclei is mixed in a dish with an enucleate egg and a resulting embryo is implanted

45 A person with diabetes is near death due to kidney failure. Even though he took insulin throughout life, the toll of the disease on his organs is critical. He is on a waiting list for a kidney transplant. A person with diabetes uses one of his nuclei to make stem cells which are induced to form pancreatic cells in a Petri dish. His diabetes is cured at age 5.

46 Libraries Ch 10 How to find a gene to clone If sequence is known PCR If sequence is not known library

47 Genomic library = Collection of clones that contain entire genome Need > 50,000 bacterial clones to hold the entire human genome

48 Each colony contains different fragment of DNA fragments unordered Need many plates

49 Caveats 1. Restriction enzymes may cut within genes 2. Need a lot of rbacteria to represent entire genome

50 cdna library Isolate mrna cdna Coding regions only Tissue specific

51 Tissue specific expression Alcohol dehydrogenase Lane 1 RNA marker Lane 2 total RNA (Liver) Lane 3 Brain Lane 4 Cerebellum Lane 5 Cerebrum Lane 6 Kidney Lane 7 Liver Lane 8 Lung Lane 9 Spleen Lane 10 Thymus Lane 11 Testis Northern blot to assay mrna levels in various tissues 51

52 Chromosome specific library

Biotechnology. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc., unless otherwise noted

Biotechnology. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc., unless otherwise noted Biotechnology Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc., unless otherwise noted Biotechnology Any technical procedure used to isolate, analyze or manipulate genes

More information

Chapter 8 Healthcare Biotechnology

Chapter 8 Healthcare Biotechnology Chapter 8 Healthcare Biotechnology Outline: 8.1 Introduction 8.2 Biopharming 8.3 Models of Human Disease 8.4 Detecting and Diagnosing Human Disease 8.5 Monoclonal Antibodies 8.6 Gene Therapy 8.7 Tissue

More information

13-1 Changing the Living World

13-1 Changing the Living World 13-1 Changing the Living World In the past, variation was limited to the variations already in nature or random variations that resulted from mutations. Now, scientists can change DNA and swap genes from

More information

Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics. BIT 220 End of Chapter 22 (Snustad/Simmons)

Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics. BIT 220 End of Chapter 22 (Snustad/Simmons) Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics BIT 220 End of Chapter 22 (Snustad/Simmons) Nucleic Acids as Therapeutic Agents Many diseases (cancer, inflammatory diseases) from

More information

Stem Cel s Key Words:

Stem Cel s Key Words: Stem Cells Key Words: Embryonic stem cells, Adult stem cells, ips cells, self-renewal, differentiation, pluripotent, multipotent, Inner cell mass, Nuclear transfer (Therapeutic cloning), Feeder cells,

More information

BIOTECHNOLOGY. Unit 8

BIOTECHNOLOGY. Unit 8 BIOTECHNOLOGY Unit 8 PART 1 BASIC/FUNDAMENTAL SCIENCE VS. APPLIED SCIENCE! Basic/Fundamental Science the development and establishment of information to aid our understanding of the world.! Applied Science

More information

Lecture 24 Differentiation and stem cells

Lecture 24 Differentiation and stem cells Lecture 24 Differentiation and stem cells *Stem cells and differentiation in plants Totipotency Stem cells in animals Therapeutic use Cloning Therapeutic Reproductive Therapeutic cloning in humans Stem

More information

Stem Cells & Neurological Disorders. Said Ismail Faculty of Medicine University of Jordan

Stem Cells & Neurological Disorders. Said Ismail Faculty of Medicine University of Jordan Stem Cells & Neurological Disorders Said Ismail Faculty of Medicine University of Jordan Outline: - Introduction - Types & Potency of Stem Cells - Embryonic Stem Cells - Adult Stem Cells - ipscs -Tissue

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

- What is Animal Biotechnology?

- What is Animal Biotechnology? Animal Biotechnology - What is Animal Biotechnology? - Animal biotechnology is the application of scientific and engineering principles to the processing or production of materials by animals or aquatic

More information

Asexu. Figure 6 A small glass tube, called a micropipette, is used to remove the nucleus from a cell and later introduce a new nucleus.

Asexu. Figure 6 A small glass tube, called a micropipette, is used to remove the nucleus from a cell and later introduce a new nucleus. While plant cloning experiments were being conducted, Robert Briggs and Thomas King were busy investigating nuclear transplants in frogs. Working with the common grass frog, the scientists extracted the

More information

Stem Cell Research 101

Stem Cell Research 101 Stem Cell Research : A promising type of bioscience research The Stem Cell debate and the impact of the induced pluripotent stem cell procedure Why Is Vocabulary Important? Key terms frame the debate Mature

More information

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko Chapter 11 How Genes Are Controlled PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and

More information

Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Here s one thing genetic engineers do: Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Cloning means to make copies, in this case, copies

More information

Social and Ethical Issues in Systems Biology. HW: pg 120 #1-5, 9-11, 14

Social and Ethical Issues in Systems Biology. HW: pg 120 #1-5, 9-11, 14 Social and Ethical Issues in Systems Biology HW: pg 120 #1-5, 9-11, 14 Transplanting Organs Organ transplantation involves the removal of an organ from donor body and placement in a recipient body, wherein

More information

Stem Cells. Part 1: What is a Stem Cell? STO Stem cells are unspecialized. What does this mean?

Stem Cells. Part 1: What is a Stem Cell? STO Stem cells are unspecialized. What does this mean? STO-120 Stem Cells Part 1: What is a Stem Cell? Stem cells differ from other kinds of cells in the body. When a stem cell divides by mitosis, each new cell has the potential to either remain a stem cell

More information

ANAT 2341 Embryology Lecture 18 Stem Cells

ANAT 2341 Embryology Lecture 18 Stem Cells ANAT 2341 Embryology Lecture 18 Stem Cells 29 September 2010 Dr Antonio Lee Neuromuscular & Regenera

More information

John Gurdon was testing the hypothesis of genomic equivalence or that when cells divide they retain a full genomic compliment.

John Gurdon was testing the hypothesis of genomic equivalence or that when cells divide they retain a full genomic compliment. 1. (15 pts) John Gurdon won the 2012 Nobel Prize in Physiology or Medicine for work he did in the 1960 s. What was the major developmental hypothesis he set out to test? What techniques did he development

More information

What are clones? Genetically identical copies

What are clones? Genetically identical copies Cloning What are clones? Genetically identical copies The possibility of human cloning was raised when Scottish scientists at Roslin Institute created the much-celebrated sheep "Dolly" Cloning Cloning

More information

Which of the following comes closest to your view? no genetic engineering whatsoever should be performed on humans.

Which of the following comes closest to your view? no genetic engineering whatsoever should be performed on humans. Which of the following comes closest to your view? GREEN: BLUE: RED: YELLOW: no genetic engineering whatsoever should be performed on humans. gene therapy is OK, but nothing else. I m OK with gene therapy

More information

Genetic Engineering- GMO S and Clones

Genetic Engineering- GMO S and Clones Genetic Engineering- GMO S and Clones I) Medical Applications A) Genetic Engineering is unraveling the mysteries of gene function during development and may eventually provide therapies for disease. B)

More information

Molecular Medicine. Stem cell therapy Gene therapy. Immunotherapy Other therapies Vaccines. Medical genomics

Molecular Medicine. Stem cell therapy Gene therapy. Immunotherapy Other therapies Vaccines. Medical genomics Molecular Medicine Molecular Medicine Stem cell therapy Gene therapy Tumor therapy Immunotherapy Other therapies Vaccines Genetic diagnostics Medical genomics Medication Diagnostics medicine: old desire

More information

What is Biotechnology? 15.1 What is Biotechnology? Transgenic Biotechnology Transgenic Biotechnology. Biotechnology. Transgenic organism

What is Biotechnology? 15.1 What is Biotechnology? Transgenic Biotechnology Transgenic Biotechnology. Biotechnology. Transgenic organism What is Biotechnology? 15.1 What is Biotechnology? Biotechnology the use of technology to control biological processes as a means of meeting societal needs Gene therapy Genetic engineering Bioremediation

More information

Name: Date: IF YOU GOT BELOW A 70% RETAKING THE TEST IS MANDATORY.

Name: Date: IF YOU GOT BELOW A 70% RETAKING THE TEST IS MANDATORY. IF YOU GOT BELOW A 70% RETAKING THE TEST IS MANDATORY. 1. What is a mutation? Any change in a DNA sequence 2. Name and describe the two categories types of gene mutations. Point: substitution, one nucleotide

More information

Exam 3 4/25/07. Total of 7 questions, 100 points.

Exam 3 4/25/07. Total of 7 questions, 100 points. Exam 3 4/25/07 BISC 4A P. Sengupta Total of 7 questions, 100 points. QUESTION 1. Circle the correct answer. Total of 40 points 4 points each. 1. Which of the following is typically attacked by the antibody-mediated

More information

BIOTECHNOLOGY. Understanding the Application

BIOTECHNOLOGY. Understanding the Application BIOTECHNOLOGY Understanding the Application GENETIC ENGINEERING Genetic engineering refers to any process in which man alters an organism s DNA Examples: cloning, genetically modified organisms (GMO),

More information

Lecture 17. Transgenics. Definition Overview Goals Production p , ,

Lecture 17. Transgenics. Definition Overview Goals Production p , , Lecture 17 Reading Lecture 17: p. 251-256, 260-261 & 264-266 Lecture 18: p. 258-264, 508-524 Transgenics Definition Overview Goals Production p.251-256, 260-261, 264-266 315 Definition A transgenic animal

More information

Genetic Engineering. Genetically Modified Organisms (GMO s)

Genetic Engineering. Genetically Modified Organisms (GMO s) Genetic Engineering The manipulation of genetic material for practical purposes Involves the changing of DNA in an organism Genetically Modified Organisms (GMO s) An organism whose genetic make up has

More information

Stem Cell review/cloning Section. If false, correct only one of the underlined words to make the statement true.

Stem Cell review/cloning Section. If false, correct only one of the underlined words to make the statement true. MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Stem Cell review/cloning Section A. True/False: Circle

More information

BIOTECHNOLOGY. Understanding the Application

BIOTECHNOLOGY. Understanding the Application BELLRINGER-5/4/15 1. What method would you guess forensic scientists use to identify criminals at crime scenes? 2. What do you think we mean by the term biotechnology? BIOTECHNOLOGY Understanding the Application

More information

Genetic Technologies

Genetic Technologies Genetic Technologies Distinguish the terms biotechnology, recombinant DNA technology, transgenic organisms, genetic engineering Understand the two basic techniques to obtain selective fragments of DNA

More information

Genetics Lecture 19 Stem Cells. Stem Cells 4/10/2012

Genetics Lecture 19 Stem Cells. Stem Cells 4/10/2012 Genetics Lecture 19 Stem Cells Stem Cells Much of the excitement about stem cells in the scientific and medical communities comes from their largely untapped and unproven potential for treating human conditions)

More information

2 Gene Technologies in Our Lives

2 Gene Technologies in Our Lives CHAPTER 15 2 Gene Technologies in Our Lives SECTION Gene Technologies and Human Applications KEY IDEAS As you read this section, keep these questions in mind: For what purposes are genes and proteins manipulated?

More information

Historical Background and Scientific Foundations

Historical Background and Scientific Foundations Human Cloning Biotechnology: In Context, 2012 Introduction A clone is an exact genetic copy. Bacteria and plants can be cloned naturally, but animal cloning is much more difficult. When Dolly the sheep

More information

Student Learning Outcomes (SLOS) - Advanced Cell Biology

Student Learning Outcomes (SLOS) - Advanced Cell Biology Course objectives The main objective is to develop the ability to critically analyse and interpret the results of the scientific literature and to be able to apply this knowledge to afford new scientific

More information

LIFE. How-to 2 Cloning and Epigenetics. More great student questions of the day. 1. Reproductive vs therapeutic cloning

LIFE. How-to 2 Cloning and Epigenetics. More great student questions of the day. 1. Reproductive vs therapeutic cloning More great student questions of the day. Q: Are all cells that are pluripotent also stem cells? A: No! Many early embryonic cells are pluripotent, but do not self-renew, and eventually differentiate. Q:

More information

PhysicsAndMathsTutor.com. Question Number. Answer Additional guidance Mark. 1(a) 1. reference to stem cells being {totipotent / pluripotent} ;

PhysicsAndMathsTutor.com. Question Number. Answer Additional guidance Mark. 1(a) 1. reference to stem cells being {totipotent / pluripotent} ; 1(a) 1. reference to stem cells being {totipotent / pluripotent} ; 2. can specialise or differentiate / can give rise to {differentiated / specialised} cells ; 3. idea that these can replace damaged cells

More information

Human Genome Project

Human Genome Project Human Genome Project How they did it DNA from 5 humans 2 males, 3 females 2 caucasians, one each of asian, african, hispanic Cut up DNA with restriction enzymes Ligated into BACs & YACs, then grew them

More information

Recombinant DNA. Lesson Overview. Lesson Overview Recombinant DNA

Recombinant DNA. Lesson Overview. Lesson Overview Recombinant DNA Lesson Overview 15.2 Finding Genes In 1987, Douglas Prasher, a biologist at Woods Hole Oceanographic Institute in Massachusetts, wanted to find a specific gene in a jellyfish that codes for a molecule

More information

What are the origins of medical practice? Humans have been involved with medical biotechnology

What are the origins of medical practice? Humans have been involved with medical biotechnology Name: Score: / Quiz 8 on Medical Biotechnology Part 1 What are the origins of medical practice? Humans have been involved with medical biotechnology A. since the cloning of the insulin gene in the 1980s

More information

Genetic Technologies.notebook March 05, Genetic Technologies

Genetic Technologies.notebook March 05, Genetic Technologies Genetic Testing Genetic Technologies Tests can be used to diagnose disorders and/or identify those individuals with an increased risk of inheriting a disorder. Prenatal Screening A fetus may be screened

More information

Pick up 3 handout from back. Draw this on the back side of the handout called Concepts of biotechnology. After you have read and highlighted

Pick up 3 handout from back. Draw this on the back side of the handout called Concepts of biotechnology. After you have read and highlighted Pick up 3 handout from back. Draw this on the back side of the handout called Concepts of biotechnology. After you have read and highlighted important information from the reading, see if you cann identify

More information

Will Stem Cells Finally Deliver Without Controversy?

Will Stem Cells Finally Deliver Without Controversy? Will Stem Cells Finally Deliver Without Controversy? Keith Gary, Ph.D. Director of Program Development Kansas City Area Life Sciences Institute Olathe North Life Sciences 1 February 2012 What s the Buzz?

More information

Cloning. 1. What is cloning: Natural and artificial 2. Cloning of what? 3. Embryonic development of multi-cellular organisms:

Cloning. 1. What is cloning: Natural and artificial 2. Cloning of what? 3. Embryonic development of multi-cellular organisms: Cloning 1. What is cloning: Natural and artificial 2. Cloning of what? 3. Embryonic development of multi-cellular organisms: cell division, morphogenesis, differentiation 2. Plant cloning 3. Animal cloning

More information

GENE EXPRESSSION. Promoter sequence where RNA polymerase binds. Operator sequence that acts as a switch (yellow) OPERON

GENE EXPRESSSION. Promoter sequence where RNA polymerase binds. Operator sequence that acts as a switch (yellow) OPERON GENE EXPRESSSION 1 GENE REGULATION IN PROKARYOTES Bacteria can turn genes on or off depending on their environment Prokaryotes have operons clusters of related genes and regulatory sequences Promoter sequence

More information

Passing on characteristics

Passing on characteristics 1 of 50 Boardworks Ltd 2006 2 of 50 Boardworks Ltd 2006 Passing on characteristics 3 of 50 Boardworks Ltd 2006 What makes this baby human? What determines its gender? In all living things, characteristics

More information

CLASSIC BREEDING. Artificially select on already-present variation in the trait of interest

CLASSIC BREEDING. Artificially select on already-present variation in the trait of interest CLASSIC BREEDING Artificially select on already-present variation in the trait of interest TRUNCATED SELECTION NO BREED BREED f TRAIT VALUE A FACT Molecular biology provides: a means of combining genetic

More information

ANAT 3231 Cell Biology Lecture 21 Stem Cells

ANAT 3231 Cell Biology Lecture 21 Stem Cells ANAT 3231 Cell Biology Lecture 21 Stem Cells Outline What are Stem Cells? Totipotency - Pluripotency - Multipotency What are different sources of Stem Cells? Embryonic vs Adult Pros and Cons for each type

More information

Embryonic development, epigenics and somatic cell nuclear transfer - The science and its social implications -

Embryonic development, epigenics and somatic cell nuclear transfer - The science and its social implications - Embryonic development, epigenics and somatic cell nuclear transfer - The science and its social implications - Moshe Yaniv Unité d Expression Génétique et Maladies, Institut Pasteur, Paris, France September

More information

Transgenic animals. Animals which have been genetically engineered to contain one or more genes from an exogenous source.

Transgenic animals. Animals which have been genetically engineered to contain one or more genes from an exogenous source. Transgenic animals Transgenic animals Animals which have been genetically engineered to contain one or more genes from an exogenous source. Transgenes are integrated into the genome. A large number of

More information

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology.

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology. Name: 1117 1 Page 1 1) A small amount of DNA was taken from a fossil of a mammoth found frozen in glacial ice. Genetic technology can be used to produce a large quantity of identical DNA from this mammoth's

More information

DNA Technology Outline

DNA Technology Outline I) Tools of DNA technology A. PCR (Polymerase Chain Reaction): method of copying DNA sequences 1. DNA is copied in a similar way to natural replication in our cells, but much faster. 2.PCR consists of

More information

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology 1 Biotechnology is defined as the technology that involves the use of living organisms

More information

Cloning from plant cells

Cloning from plant cells Cloning plants, animals, and cells Take a cutting from a plant, put it in a pot of soil, and you have cloned an organism. The plant that grows from the cutting will be genetically identical to the one

More information

Differentiation = Making specialized cells. Self-renewal = copying. What is a stem cell?

Differentiation = Making specialized cells. Self-renewal = copying. What is a stem cell? Differentiation = Making specialized cells What is a stem cell? What the photo shows A lump of metal and lots of different kinds of screws that can be made from it. Things to think about What is a specialized

More information

Fundamental properties of Stem Cells

Fundamental properties of Stem Cells Stem cells Learning Goals: Define what a stem cell is and describe its general properties, using hematopoietic stem cells as an example. Describe to a non-scientist the current progress of human stem cell

More information

Hybridization - the act or process of mating organisms of varieties or species to create a hybrid. Insecticide crops

Hybridization - the act or process of mating organisms of varieties or species to create a hybrid. Insecticide crops Genetic Engineering Genetic engineering is the alteration of genetic code by means, and is therefore different from traditional selective breeding. Only allowing desired characteristics to reproduce. Scorpion

More information

Chapter 15 Gene Technologies and Human Applications

Chapter 15 Gene Technologies and Human Applications Chapter Outline Chapter 15 Gene Technologies and Human Applications Section 1: The Human Genome KEY IDEAS > Why is the Human Genome Project so important? > How do genomics and gene technologies affect

More information

Lesson 7A Specialized Cells, Stem Cells & Cellular Differentiation

Lesson 7A Specialized Cells, Stem Cells & Cellular Differentiation Lesson 7A Specialized Cells, Stem Cells & Cellular Differentiation Learning Goals I can explain the concept of cell differentiation and cell specialization. I can explain how the cell structure relates

More information

Biotechnology: Genomics: field that compares the entire DNA content of different organisms

Biotechnology: Genomics: field that compares the entire DNA content of different organisms Biotechnology: New Terms Today: Genome Genetic engineering, transgenic organisms, GM food, Reproductive and therapeutic cloning Stem cells, plouripotent, totipotent Gene therapy Genomics: field that compares

More information

REPRODUCTIVE CLONING OF HUMAN BEINGS: CURRENT SITUATION. Report of the Regional Director

REPRODUCTIVE CLONING OF HUMAN BEINGS: CURRENT SITUATION. Report of the Regional Director WORLD HEALTH ORGANIZATION REGIONAL OFFICE FOR AFRICA ORGANISATION MONDIALE DE LA SANTE BUREAU REGIONAL DE L AFRIQUE ORGANIZAÇÃO MUNDIAL DE SAÚDE ESCRITÓRIO REGIONAL AFRICANO PROGRAMME SUBCOMMITTEE Fifty-fifth

More information

Produced by Chloe Williams

Produced by Chloe Williams Biological systems: stems: Biotechnology - Cloning ng Links to curriculum learning outcomes: Biotechnology Fourth (SCN 4-13c): o I can debate the moral and ethical issues associated with some controversial

More information

3/9/04 Cloning/Stem Cells

3/9/04 Cloning/Stem Cells 3/9/04 Cloning/Stem Cells 1 Meet (left to right): Rainbow, Allie and cc (carbon copy) who is a genetic clone of Rainbow. Allie is cc s surrogate mom 2 To see entire article: http://fire.biol.wwu.edu/trent/trent/2.14.02nytcat.pdf

More information

Thebiotutor.com A2 Biology OCR Unit F215: Control, genomes and environment Module 2.1 Cloning in plants and animals Notes & Questions

Thebiotutor.com A2 Biology OCR Unit F215: Control, genomes and environment Module 2.1 Cloning in plants and animals Notes & Questions Thebiotutor.com A2 Biology OCR Unit F215: Control, genomes and environment Module 2.1 Cloning in plants and animals Notes & Questions Andy Todd 1 Outline the differences between reproductive and non-reproductive

More information

3. In vitro- Cell culture (IVM, IVF, IVG) GC Class Discussion

3. In vitro- Cell culture (IVM, IVF, IVG) GC Class Discussion No Subject : Cellular Lecturer Note 1. Introduction-Recent dev of. Anim Biotech:Mol-Cell 2 Basic Mol-Cell Laboratory Practice, In vitro. 3 Chromosome Bio-Cell Analysis GC GC Class Discussion Class Discussion

More information

Duncanrig Secondary School

Duncanrig Secondary School National 4 Biology Unit 1Topic 3: Therapeutic Uses of Cells, Duncanrig Secondary School Duncanrig Secondary School National 4 Biology Unit 1 Topic 3: Therapeutic Uses of Cells Pupils Activity Booklet National

More information

Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development

Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development The only way to get from genotype to phenotype is through developmental processes. - Remember the analogy that the zygote contains

More information

Explain why the scientists used the same restriction endonuclease enzymes on each DNA sample

Explain why the scientists used the same restriction endonuclease enzymes on each DNA sample Q1.Some populations of flies are becoming resistant to insecticides intended to kill them. Scientists developed a method for finding out whether a fly was carrying a recessive allele, r, that gives resistance

More information

Lecture 8: Transgenic Model Systems and RNAi

Lecture 8: Transgenic Model Systems and RNAi Lecture 8: Transgenic Model Systems and RNAi I. Model systems 1. Caenorhabditis elegans Caenorhabditis elegans is a microscopic (~1 mm) nematode (roundworm) that normally lives in soil. It has become one

More information

Chapter 11: Applications of Biotechnology

Chapter 11: Applications of Biotechnology Chapter 11: Applications of Biotechnology Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 11-1 Why Biotechnology Works 11-2 Biotechnology

More information

If you had 3 clones, what would you get them to do?! Aim high: How would you clone yourself?!

If you had 3 clones, what would you get them to do?! Aim high: How would you clone yourself?! If you had 3 clones, what would you get them to do?! Aim high: How would you clone yourself?! Genetic engineering Genetic and environmental differences B1.6 Variation Inheritance Types of reproduction

More information

UNIT III: Genetics Chapter 9 Frontiers of Biotechnology

UNIT III: Genetics Chapter 9 Frontiers of Biotechnology UNIT III: Genetics Chapter 9 Frontiers of Biotechnology I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA 1. DNA is a very large molecule 2. Still to small to see or work

More information

Genetic Basis of Development & Biotechnologies

Genetic Basis of Development & Biotechnologies Genetic Basis of Development & Biotechnologies 1. Steps of embryonic development: cell division, morphogenesis, differentiation Totipotency and pluripotency 2. Plant cloning 3. Animal cloning Reproductive

More information

Future of Stem Cell Engineering. Jaeseung Jeong, Ph.D Department of Bio and Brain Engineering KAIST

Future of Stem Cell Engineering. Jaeseung Jeong, Ph.D Department of Bio and Brain Engineering KAIST Future of Stem Cell Engineering i Jaeseung Jeong, Ph.D Department of Bio and Brain Engineering KAIST Keywords of Stem Cell Engineering g Embryo and Fetus (Foetus) Adult stem cells and embryonic stem cells

More information

9.4. Genetic Engineering. Entire organisms can be cloned. Web

9.4. Genetic Engineering. Entire organisms can be cloned. Web 9.4 Genetic Engineering VOCABULARY clone genetic engineering recombinant DNA plasmid transgenic gene knockout 3D, 3D evaluate the impact of scientific research on society and the environment and 6H describe

More information

Guided Notes Unit 5: Molecular Genetics

Guided Notes Unit 5: Molecular Genetics Name: Date: Block: Chapter 8: From DNA to Protein I. Concept 8.4: Transcription a. Central Dogma of Molecular Biology i. Information flows in one direction: ii. How? Guided Notes Unit 5: Molecular Genetics

More information

Transgenesis. Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission

Transgenesis. Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission Transgenic Mice Transgenesis Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission integrates into all cells including sperm or egg Knockin mice DNA

More information

12/31/16. I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA. 1. DNA is a very large molecule

12/31/16. I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA. 1. DNA is a very large molecule I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA 1. DNA is a very large molecule 3. Led to many biotechnology applications- genetic engineering, DNA fingerprinting, cloning,

More information

KEY Reproductive cloning Therapeutic cloning

KEY Reproductive cloning Therapeutic cloning 1. (20 pts) Define Reproductive and Therapeutic cloning. Make sure your descriptions clearly distinguish the critical differences between them. Describe an example of each. Reproductive cloning refers

More information

Cloning and Epigenetics. Developmental Readout. Foundations. Human issues. Stem cells. Cloning. Axon guidance.

Cloning and Epigenetics. Developmental Readout. Foundations. Human issues. Stem cells. Cloning. Axon guidance. 7.72 12.4.06 Cloning and Epigenetics Human issues Cloning Stem cells Developmental Readout Axes Organ formation Axon guidance 3D structure Analysis Model + + organisms Foundations Principles 1 1 Cloning:

More information

MAGNIFICATION? Human Embryonic Stem Cell

MAGNIFICATION? Human Embryonic Stem Cell Stem Cells: The Silver Lining Behind the Dark Clouds by Fr. Robert Gahl Associate Professor of Ethics Pontifical University of the Holy Cross Human Embryonic Stem Cell MAGNIFICATION? Stem Cells: The Silver

More information

CHAPTER 13. Genetic Engineering

CHAPTER 13. Genetic Engineering CHAPTER 13 Genetic Engineering 13-1 Changing the Living World Choosing the best traits for breeding Most domestic animals are products of SB Even Cows, Sheep, & Pigs All Products of Selective Breeding

More information

Fig. 5.1(a) and Fig. 5.1(b), on page 3 of the insert, show some changes that take place in the fermenter over the first 6 days.

Fig. 5.1(a) and Fig. 5.1(b), on page 3 of the insert, show some changes that take place in the fermenter over the first 6 days. 1 A batch fermenter is used during the production of beer. Fig. 5.1(a) and Fig. 5.1(b), on page 3 of the insert, show some changes that take place in the fermenter over the first 6 days. (a) (i) Describe

More information

It s All in the Hands Genetic Engineering

It s All in the Hands Genetic Engineering It s All in the Hands Genetic Engineering Genetic Engineering Genetic Engineering is the technique of modifying the genome of an organism by using recombinant DNA technology. Recombinant DNA (rdna) technology

More information

Stem Cells: Introduction and Prospects in Regenerative Medicine.

Stem Cells: Introduction and Prospects in Regenerative Medicine. Stem Cells: Introduction and Prospects in Regenerative Medicine www.gothamgazette.com/.../stemcell/stem_cell.jpg Ode to a Stem Cell, Part II by VCW There once was stem cell stuck in the hood Dividing endlessly,

More information

Revision Based on Chapter 15 Grade 10

Revision Based on Chapter 15 Grade 10 Revision Based on Chapter 15 Grade 10 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following has the disadvantage of possibly bringing

More information

Biology. Biology. Slide 1 of 24. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 24. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 24 2 of 24 Transgenic Organisms Transgenic Organisms An organism described as transgenic, contains genes from other species. 3 of 24 Transgenic Organisms How are transgenic organisms

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 7: Modern Genetics Notes Using Gene Sequencing Genome = all of an organism s DNA, including mitochondrial/chloroplast DNA. Polymerase chain reaction (PCR) is used to amplify

More information

7.03, 2005, Lecture 25 Transgenes and Gene Targeting in Mice II

7.03, 2005, Lecture 25 Transgenes and Gene Targeting in Mice II 7.03, 2005, Lecture 25 Transgenes and Gene Targeting in Mice II In the last lecture we discussed sickle cell disease (SCD) in humans, and I told you the first part of a rather long, but interesting, story

More information

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10 INTERNATIONAL TURKISH HOPE SCHOOL 2014 2015 ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10 Name :... Date:... Selective Breeding Selective breeding

More information

DB3230 Midterm 1 11/15/2013 Name:

DB3230 Midterm 1 11/15/2013 Name: 1. (15 pts) Nuclear cloning by John Gurdon was rarely successful in producing fertile adults. Why not? Explain why serial transplantation improves the success rate. What else could you do to improve the

More information

Unit 1: DNA and the Genome. Sub-Topic (1.4) Cellular Differentiation

Unit 1: DNA and the Genome. Sub-Topic (1.4) Cellular Differentiation Unit 1: DNA and the Genome Sub-Topic (1.4) Cellular Differentiation Duncanrig 2016 Unit 1: DNA and the Genome Sub-Topic (1.4) Cellular Differentiation On completion of this subtopic I will be able to Cellular

More information

What information does the nucleus of a cell contain? Why is it so important? What is a donor animal? Why don t clones grow in the same way?

What information does the nucleus of a cell contain? Why is it so important? What is a donor animal? Why don t clones grow in the same way? CLONING- EXERCISES 1 ANSWER THE FOLLOWING QUESTIONS IN YOUR OWN WORDS AS FAR AS POSSIBLE! What information does the nucleus of a cell contain? Why is it so important? What is a donor animal? Why don t

More information

Developmental Biology 3230 Exam 1 (Feb. 6) NAME

Developmental Biology 3230 Exam 1 (Feb. 6) NAME DevelopmentalBiology3230Exam1(Feb.6)NAME 1. (10pts) What is a Fate Map? How would you experimentally acquire the data to draw a Fate Map? Explain what a Fate Map does and does not tell you about the mechanisms

More information

Stem cell: a cell capable of 1) tissue plasticity - make different cell types 2) infinite self renewal through asymmetric division

Stem cell: a cell capable of 1) tissue plasticity - make different cell types 2) infinite self renewal through asymmetric division Stem cell: a cell capable of 1) tissue plasticity - make different cell types 2) infinite self renewal through asymmetric division stem cell stem cell skin muscle nerve Properties of STEM cells Plasticity

More information

Biosc10 schedule reminders

Biosc10 schedule reminders Biosc10 schedule reminders Review of molecular biology basics DNA Is each person s DNA the same, or unique? What does DNA look like? What are the three parts of each DNA nucleotide Which DNA bases pair,

More information

Biology 3201 Genetics Unit #8

Biology 3201 Genetics Unit #8 Biology 3201 Genetics Unit #8 Diagnosis and Treatment of Genetic Disorders Genetic Engineering The Human Genome Project GMOs and GMFs Cloning Diagnosis of Genetic Disorders Detection of genetics disorders-

More information

Cloning and Genetic Engineering

Cloning and Genetic Engineering Cloning and Genetic Engineering Bởi: OpenStaxCollege Biotechnology is the use of artificial methods to modify the genetic material of living organisms or cells to produce novel compounds or to perform

More information

Learning Objectives. What is genomics?

Learning Objectives. What is genomics? What is genomics? Learning Objectives Sequencing basics Very basic mechanics of genetic engineering Understanding the relationship between cdna and mrna What is reverse transcriptase? Restriction endonucleases

More information