Learning Objectives. Learning Objectives. Learning Objectives. Schedule and Announcements. Patterns of Inheritance/Mendelian Genetics Chapter 9, 12

Size: px
Start display at page:

Download "Learning Objectives. Learning Objectives. Learning Objectives. Schedule and Announcements. Patterns of Inheritance/Mendelian Genetics Chapter 9, 12"

Transcription

1 Patterns of Inheritance/Mendelian Genetics Chapter 9, 12 Student Learning Goals & Achievement Scale Biology Mendel s Laws, Genetics, and Patterns of Inheritance SC.912.L.16.1 Goals: Use Mendel s Laws of Segregation and Independent Assortment to analyze patterns of inheritance. 4 - Explore Mendel s Laws of Segregation and Independent Assortment to analyze patterns of inheritance. 3 - Use Mendel s Laws of Segregation and Independent Assortment to analyze patterns of inheritance. 2 - Summarize Mendel s Laws of Segregation and Independent Assortment to analyze patterns of inheritance. 1 Define Mendel s Laws of Segregation and Independent Assortment to analyze patterns of inheritance. 2 Learning Objectives 1. Describe how Mendel was able to control how his pea plants were pollinated. 2. Describe the steps in Mendel s experiments on true-breeding garden peas. 3. Distinguish between dominant and recessive traits. 4. State two laws of heredity that were developed from Mendel s work 5. Describe how Mendel s results can be explained by scientific knowledge of genes and chromosomes 3 Learning Objectives 6. Differentiate between the genotype and phenotype of an organism. 7. Explain how probability is used to predict the results of genetic crosses. 8. Use a Punnett square to predict the results of a monohybrid and dihybrid genetic crosses. 9. Explain how a testcross is used to show the genotype of an individual whose phenotype expresses the dominant trait. 10. Differentiate a monohybrid cross from a dihybrid cross. 11. Distinguish between sex chromosomes and autosomes. 12. Explain the role of sex chromosomes in sex determination. 13. Describe how an X or Y-linked gene affects the inheritance of traits. 14. Explain the effect of crossing-over on the inheritance of genes in linkage groups. 15. Distinguish between chromosome mutations and gene mutations. 4 Learning Objectives 16. Analyze pedigrees to determine how genetic traits and genetic disorders are inherited. 17.Explain the inheritance of the ABO blood type 18.Explain how geneticists can detect and treat genetic disorders. Schedule and Announcements Quiz Thursday December 3 Exam 3- Tuesday December 8 over 9, 12 Semester Exam Tuesday December 2:15 (cumulative) 5 6 1

2 Early Ideas of Heredity Before the 20 th century, 2 concepts were the basis for ideas about heredity: 1.) heredity occurs within species 2.) traits are transmitted directly from parent to offspring (The homunculus myth) This led to the belief that inheritance is a matter of blending traits from the parents. 7 Gregor Mendel Mendel song ( 2xpTz7SUbnc) Born in 1822 Education: University of Vienna Failed exit examinations Returned to monastery Mendel published his work in That work was lost until ca With the rediscovery of Mendel s conceptual work the hunt was on for the physical nature of the gene. What was it and how did it function? These questions were largely answered from 1940 s through the 1960 s and lead to the biotech 8 revolution beginning of the 1970 s. Pisum sativum Easy to grow Produces many varieties Male and female organs in the same flower Self-fertilization Cross-fertilization What if Mendel choose to work with sheep instead? The Garden Pea Early Ideas of Heredity Mendel s experimental method: 1. produce true-breeding strains for each trait he was studying 2. cross-fertilize true-breeding strains having alternate forms of a trait -perform reciprocal crosses as well 3. allow the hybrid offspring to self-fertilize and count the number of offspring showing each form of the trait 9 10 Monohybrid Crosses Monohybrid cross: a cross to study only 2 variations of a single trait Mendel produced true-breeding pea strains for 7 different traits each trait had 2 alternate forms (variations) Mendel cross-fertilized the 2 true-breeding strains for each trait

3 Monohybrid Crosses F 1 generation (1 st filial generation): offspring produced by crossing 2 truebreeding strains For every trait Mendel studied, all F 1 plants resembled only 1 parent no plants with characteristics intermediate between the 2 parents were produced Monohybrid Crosses F 1 generation: offspring resulting from a cross of true-breeding parents F 2 generation: offspring resulting from the self-fertilization of F 1 plants dominant: the form of each trait expressed in the F 1 plants recessive: the form of the trait not seen in the F 1 plants 15 Monohybrid Crosses F 2 plants exhibited both forms of the trait in a very specific pattern: ¾ plants with the dominant form ¼ plant with the recessive form The dominant to recessive ratio was 3 : 1. Mendel discovered the ratio is actually: 1 true-breeding dominant plant 2 not-true-breeding dominant plants 1 true-breeding recessive plant 16 Monohybrid Crosses gene: information for a trait passed from parent to offspring alleles: alternate forms of a gene homozygous: having 2 of the same allele heterozygous: having 2 different alleles Monohybrid Crosses genotype: total set of alleles of an individual PP = homozygous dominant Pp = heterozygous pp = homozygous recessive phenotype: outward appearance of an individual

4 Monohybrid Crosses Principle of Segregation Two alleles for a gene segregate during gamete formation and are rejoined at random, one from each parent, during fertilization Dihybrid Crosses Dihybrid cross: examination of 2 separate traits in a single cross for example: RR YY x rryy The F 1 generation of a dihybrid cross (RrYy) shows only the dominant phenotypes for each trait. Dihybrid Crosses The F 2 generation is produced by crossing members of the F 1 generation with each other or allowing self-fertilization of the F 1. for example RrYy x RrYy The F 2 generation shows all four possible phenotypes in a set ratio: 9 : 3 : 3 : Dihybrid Crosses Principle of Independent Assortment In a dihybrid cross, the alleles of each gene assort independently

5 Probability Predicting Results Rule of addition: the probability of 2 mutually exclusive events occurring simultaneously is the sum of their individual probabilities. When crossing Pp x Pp, the probability of producing Pp offspring is probability of obtaining Pp (1/4), PLUS probability of obtaining pp (1/4) ¼ + ¼ = ½ Probability Predicting Results Rule of multiplication: the probability of 2 independent events occurring simultaneously is the PRODUCT of their individual probabilities. When crossing Rr Yy x RrYy, the probability of obtaining rr yy offspring is: probability of obtaiing rr = ¼ probability of obtaining yy = ¼ probability of rr yy = ¼ x ¼ = 1/ Testcross Testcross: a cross used to determine the genotype of an individual with dominant phenotype cross the individual with unknown genotype (e.g. P_) with a homozygous recessive (pp) the phenotypic ratios among offspring are different, depending on the genotype of the unknown parent Extensions to Mendel Mendel s model of inheritance assumes that: each trait is controlled by a single gene each gene has only 2 alleles there is a clear dominant-recessive relationship between the alleles Most genes do not meet these criteria. Degrees of Dominance Complete dominance occurs when phenotypes of the heterozygote and dominant homozygote are identical In incomplete dominance, the phenotype of F 1 hybrids is somewhere between the phenotypes of the two parental varieties In codominance, two dominant alleles affect the phenotype in separate, distinguishable ways 29 5

6 Extensions to Mendel Incomplete dominance: the heterozygote is intermediate in phenotype between the 2 homozygotes. Codominance: the heterozygote shows some aspect of the phenotypes of both homozygotes Multiple Alleles Tay-Sachs disease is fatal; a dysfunctional enzyme causes an accumulation of lipids in the brain At the organismal level, the allele is recessive At the biochemical level, the phenotype (i.e., the enzyme activity level) is incompletely dominant At the molecular level, the alleles are codominant Most genes exist in populations in more than two allelic forms For example, the four phenotypes of the ABO blood group in humans are determined by three alleles of the gene: I A, I B, and i. The enzyme (I) adds specific carbohydrates to the surface of blood cells The enzyme encoded by I A adds the A carbohydrate, and the enzyme encoded by I B adds the B carbohydrate; the enzyme encoded by the i allele adds neither Figure (a) The three alleles for the ABO blood groups and their carbohydrates Allele Carbohydrate (b) Blood group genotypes and phenotypes Genotype Red blood cell appearance A I A I A I A or I A i B I B I B or I B i I B I A I B i none ii Extensions to Mendel Polygenic inheritance occurs when multiple genes are involved in controlling the phenotype of a trait. The phenotype is an accumulation of contributions by multiple genes. These traits show continuous variation and are referred to as quantitative traits. For example human height Phenotype (blood group) A B AB O 36 6

7 Epistasis Figure BbEe BbEe In epistasis, a gene at one locus alters the phenotypic expression of a gene at a second locus For example, in Labrador retrievers and many other mammals, coat color depends on two genes One gene determines the pigment color (with alleles B for black and b for brown) The other gene (with alleles C for color and c for no color) determines whether the pigment will be deposited in the hair Eggs ¼ BE BBEE ¼ be ¼ Be Sperm ¼ BE ¼ be BbEE ¼ Be BBEe ¼ be BbEe BbEE bbee BbEe bbee BBEe BbEe BBee Bbee ¼ be BbEe bbee Bbee 9 : 3 : 4 bbee Polygenic Traits Extensions to Mendel Pleiotropy refers to an allele which has more than one effect on the phenotype. This can be seen in human diseases such as cystic fibrosis or sickle cell anemia. In these diseases, multiple symptoms can be traced back to one defective allele Extensions to Mendel Extensions to Mendel The expression of some genes can be influenced by the environment. for example: coat color in Himalayan rabbits and Siamese cats an allele produces an enzyme that allows pigment production only at temperatures below 30 o C

8 Figure Key Male 1st generation (grandparents) 3rd generation (two sisters) Female Ww ww Widow s peak Affected male WW or Ww ww 2nd generation (parents, aunts, and uncles) Ww ww ww Ww Ww ww Affected female Ww ww No widow s peak (a) Is a widow s peak a dominant or recessive trait? Mating FF or ff Attached earlobe ff ff Offspring, in birth order (first-born on left) ff FF or ff Free earlobe (b) Is an attached earlobe a dominant or recessive trait? The Behavior of Recessive Alleles Recessively inherited disorders show up only in individuals homozygous for the allele Carriers are heterozygous individuals who carry the recessive allele but are phenotypically normal Most people who have recessive disorders are born to parents who are carriers of the disorder Figure Eggs A a Normal Aa Sperm A AA Normal Aa Normal (carrier) Parents Normal Aa a Aa Normal (carrier) aa Albino Sickle-Cell Disease: A Genetic Disorder with Evolutionary Implications Sickle-cell disease affects one out of 400 African-Americans The disease is caused by the substitution of a single amino acid in the hemoglobin protein in red blood cells In homozygous individuals, all hemoglobin is abnormal (sickle-cell) Symptoms include physical weakness, pain, organ damage, and even paralysis Figure 11.UN05 Relationship among alleles of a single gene Description Example Heterozygotes (said to have sickle-cell trait) are usually healthy but may suffer some symptoms About one out of ten African-Americans has sickle-cell trait, an unusually high frequency of an allele with detrimental effects in homozygotes Heterozygotes are less susceptible to the malaria parasite, so there is an advantage to being heterozygous Complete dominance of one allele Incomplete dominance of either allele Codominance Multiple alleles Pleiotropy Heterozygous phenotype same as that of homozygous dominant Heterozygous phenotype intermediate between the two homozygous phenotypes Both phenotypes expressed in heterozygotes In the whole population, some genes have more than two alleles One gene is able to affect multiple phenotypic characters PP Pp C R C R C R C W C W C W I A I B ABO blood group alleles I A, I B, i Sickle-cell disease 8

9 Figure 11.UN06 Relationship among two or more genes Epistasis Description The phenotypic expression of one gene affects the expression of another gene Example BbEe BbEe BE be Be be BE Chromosomes, Mapping, and the Meiosis-Inheritance Connection be Be be 9 : 3 : 4 Polygenic inheritance A single phenotypic character is affected by two or more genes AaBbCc AaBbCc Chromosome Theory Chromosomal theory of inheritance developed in 1902 by Walter Sutton proposed that genes are present on chromosomes based on observations that homologous chromosomes pair with each other during meiosis supporting evidence was provided by work with fruit flies Chromosome Theory T.H. Morgan isolated a mutant white-eyed Drosophila red-eyed female X white-eyed male gave a F 1 generation of all red eyes Morgan concluded that red eyes are dominant Chromosome Theory Morgan crossed F 1 females X F 1 males F 2 generation contained red and whiteeyed flies but all white-eyed flies were male testcross of a F 1 female with a white-eyed male showed the viability of white-eyed females Morgan concluded that the eye color gene is linked to the X chromosome 53 Chromosomal basis of sex linkage White-eyed male flies X red-eyed females F1 flies all have red eyes F2 flies, all of the white-eyed flies are males because the Y chromosome lacks the white gene 54 9

10 Sex Chromosomes Sex determination in Drosophila is based on the number of X chromosomes 2 X chromosomes = female 1 X and 1 Y chromosome = male Sex determination in humans is based on the presence of a Y chromosome 2 X chromosomes = female having a Y chromosome (XY) = male 55 Sex Chromosomes In many organisms, the Y chromosome is greatly reduced or inactive. genes on the X chromosome are present in only 1 copy in males sex-linked traits: controlled by genes present on the X chromosome Human X-linked disorders Color blindness, Muscular dystrophy, Hemophilia, Fragile X syndrome Sex-linked traits show inheritance patterns different than those of genes on autosomes. 56 Royal Hemophilia Pedigree Sex Chromosomes Dosage compensation ensures an equal expression of genes from the sex chromosomes even though females have 2 X chromosomes and males have only 1. In each female cell, 1 X chromosome is inactivated and is highly condensed into a Barr body. Females heterozygous for genes on the X chromosome are genetic mosaics Genetic basis behind a calico cat Chromosome Theory Exceptions Mitochondria and chloroplasts contain genes. traits controlled by these genes do not follow the chromosomal theory of inheritance genes from mitochondria and chloroplasts are often passed to the offspring by only one parent

11 Chromosome Theory Exceptions Maternal inheritance: uniparental (oneparent) inheritance from the mother the mitochondria in a zygote are from the egg cell; no mitochondria come from the sperm during fertilization in plants, the chloroplasts are often inherited from the mother, although this is species dependent Human X Chromosome Gene Map Human Genetic Disorders Sickle-Cell Anemia Some human genetic disorders are caused by altered proteins. the altered protein is encoded by a mutated DNA sequence the altered protein does not function correctly, causing a change to the phenotype the protein can be altered at only a single amino acid (e.g. sickle cell anemia) Human Genetic Disorders Down Syndrome Some genetic disorders are caused by a change in the number of chromosomes. nondisjunction during meiosis can create gametes having one too many or one too few chromosomes fertilization of these gametes creates trisomic or monosomic individuals Down syndrome is trisomy of chromosome

12 Human Genetic Disorders Nondisjunction of sex chromosomes can result in: Syndrome Sex Disorder Chromosome Spontaneous # abortions Live births Abnormalities in the # of sex chromosomes Turner F XO 45 1/18 1/ 2,500 Klinefelter M XXY OR XXXY Poly-X F XXX OR XXXX 47 or 48 1/300 1/ or / 1,500 Jacobs M XYY 47? 1/1,000 Down M or F Trisomy /40 1/ Human Genetic Disorders Amniocentesis Genetic counseling can use pedigree analysis to determine the probability of genetic disorders in the offspring. Some genetic disorders can be diagnosed during pregnancy. amniocentesis collects fetal cells from the amniotic fluid for examination chorionic villi sampling collects cells from the placenta for examination Chorionic villi sampling 71 12

Early Ideas of Heredity. Early Ideas of Heredity. Early Ideas of Heredity. Early Ideas of Heredity. Patterns of Inheritance.

Early Ideas of Heredity. Early Ideas of Heredity. Early Ideas of Heredity. Early Ideas of Heredity. Patterns of Inheritance. Patterns of Inheritance Chapter 12 Before the 20 th century, 2 concepts were the basis for ideas about heredity: -heredity occurs within species -traits are transmitted directly from parent to offspring

More information

It s the Small Things That Make the Big Differences Mendelian Genetics

It s the Small Things That Make the Big Differences Mendelian Genetics It s the Small Things That Make the Big Differences Mendelian Genetics Mendel and the Garden Pea Heredity is the tendency for traits to be passed from parent to offspring heritable features are called

More information

Chapter 14. Mendel and the Gene Idea

Chapter 14. Mendel and the Gene Idea Chapter 14 Mendel and the Gene Idea Overview: Drawing from the Deck of Genes What genetic principles account for the passing of traits from parents to offspring? The blending hypothesis is the idea that

More information

Mendelian & Non Mendelian Genetics. Copy Dr. M. A. Fouad

Mendelian & Non Mendelian Genetics. Copy Dr. M. A. Fouad Mendelian & Non Mendelian Genetics Copy right @ Dr. M. A. Fouad Mendelian Genetics Mendel s Law of Austrian monk born in 1822 in monastery known for research and teaching after his death (1884) acknowledgment

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Chapter 4: Mendel and the Gene Idea. The Experiments of Gregor Mendel 2. Beyond Mendelian Genetics 3. Human Genetics . The Experiments of Gregor Mendel Chapter Reading pp. 268-276 TECHNIQUE Parental generation

More information

The Relation Between Dominance and Phenotype. A dominant allele does not subdue a recessive allele; alleles don t interact

The Relation Between Dominance and Phenotype. A dominant allele does not subdue a recessive allele; alleles don t interact The Relation Between Dominance and Phenotype A dominant allele does not subdue a recessive allele; alleles don t interact Alleles are simply variations in a gene s nucleotide sequence For any character,

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 4 Mendel and the Gene Idea Lectures

More information

11 Mendel and the Gene Idea

11 Mendel and the Gene Idea CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 11 Mendel and the Gene Idea Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Drawing from the Deck of Genes

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 14 Mendel and the Gene Idea Lectures

More information

Gregor Mendel solved the puzzle of heredity

Gregor Mendel solved the puzzle of heredity 11.1 Mendel and the Garden Pea Heredity: the tendency for traits to be passed from parent to offspring heritable features: characters traits are alternative forms of a character Genes Alleles loci Gregor

More information

of heritable factor ). 1. The alternative versions of genes are called alleles. Chapter 9 Patterns of Inheritance

of heritable factor ). 1. The alternative versions of genes are called alleles. Chapter 9 Patterns of Inheritance Chapter 9 Biology and Society: Our Longest-Running Genetic Experiment: Dogs Patterns of Inheritance People have selected and mated dogs with preferred traits for more than 15,000 years. Over thousands

More information

Why peas? Pea S by Mendel. F 1 generation

Why peas? Pea S by Mendel. F 1 generation Fig. 07.0 Mendelian Genetics Mendelian Genetics Outline I. Mendel s Ideas About Genetics. Experimental Design with garden peas 2. Monohybrid Crosses. Principle of Segregation 2. Principle of Dominance

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

BIOLOGY. Mendel and the Gene Idea. Drawing from the Deck of Genes

BIOLOGY. Mendel and the Gene Idea. Drawing from the Deck of Genes 4 CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Mendel and the Gene Idea Drawing from the Deck of Genes What principles account for the passing of traits from parents to offspring?

More information

Overview: Drawing from the Deck of Genes

Overview: Drawing from the Deck of Genes Chapter 4 Mendel and the Gene Idea Overview: Drawing from the Deck of Genes What genetic principles account for the passing of traits from parents to offspring? The blending hypothesis is the idea that

More information

BIOLOGY - CLUTCH CH.14 - MENDELIAN GENETICS.

BIOLOGY - CLUTCH CH.14 - MENDELIAN GENETICS. !! www.clutchprep.com CONCEPT: MENDEL S EXPERIMENT Gregor Mendel designed an experiment to study inheritance in pea plants. Character a feature that can be inherited, and shows variation between individuals

More information

Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!)

Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!) Genetics Early Ideas about Heredity People knew that sperm and eggs transmitted information about traits Blending theory mother and father s traits blended together Problem: Would expect variation to disappear

More information

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance Gregor Mendel Austrian monk * Studied science and mathematics

More information

Chapter 14. Mendel and the Gene Idea

Chapter 14. Mendel and the Gene Idea Chapter 14 Mendel and the Gene Idea Gregor Mendel Gregor Mendel documented a particular mechanism for inheritance. Mendel developed his theory of inheritance several decades before chromosomes were observed

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 4 Mendel and the Gene Idea Lectures

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Mendel & Inheritance SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment Mendel s Law of Segregation: gene pairs separate when gametes (sex cells) are formed; each gamete as only

More information

Mendel and the Gene Idea

Mendel and the Gene Idea CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 11 Mendel and the Gene Idea Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION Overview:

More information

CHAPTER 10: Patterns of Inheritance

CHAPTER 10: Patterns of Inheritance CHAPTER 10: Patterns of Inheritance BIO 121 Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Puppies Punchstock/Banana Stock RF Genetics

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits 13.1 How Do Alleles Contribute to Traits? Blending inheritance 19th century idea Failed to explain

More information

#3: Random Fertilization. If DNA replication and cell division are both so precise, and so accurate, why are we all so unique??

#3: Random Fertilization. If DNA replication and cell division are both so precise, and so accurate, why are we all so unique?? Today: Microbial Genetics Wrap-up Mendelian Genetics Adding Chromosomes to the Mix?? Tomorrow: UW Fieldtrip! Back to Eukaryotes: Bringing in Mendel If DNA replication and cell division are both so precise,

More information

Observing Patterns in Inherited Traits. Chapter 11

Observing Patterns in Inherited Traits. Chapter 11 Observing Patterns in Inherited Traits Chapter 11 Impacts, Issues: The Color of Skin Like most human traits, skin color has a genetic basis; more than 100 gene products affect the synthesis and deposition

More information

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses Objective 8: Predict the results of dihybrid genetic crosses by using Punnett squares Exploring Mendelian Genetics 11.3 Dihybrid cross--a cross that involves two pairs of contrasting traits. A cross between

More information

Genetics and Human Inheritance

Genetics and Human Inheritance BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 20 Genetics and Human Inheritance Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

Observing Patterns In Inherited Traits

Observing Patterns In Inherited Traits Observing Patterns In Inherited Traits Ø Where Modern Genetics Started/ Gregor Mendel Ø Law of Segregation Ø Law of Independent Assortment Ø Non-Mendelian Inheritance Ø Complex Variations in Traits Genetics:

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 4 Mendel and the Gene Idea Lectures

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 14 Mendel and the Gene Idea Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts for Chapter 14 1. Mendel used the scientific approach to identify two laws of inheritance. 2. The

More information

AP Biology. Extending Mendelian genetics. Chapter 14. Beyond Mendel s Laws of Inheritance. Incomplete dominance. Incomplete dominance.

AP Biology. Extending Mendelian genetics. Chapter 14. Beyond Mendel s Laws of Inheritance. Incomplete dominance. Incomplete dominance. female / eggs Chapter 14. Beyond Mendel s Laws of Inheritance Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single gene each

More information

Unit 10: Genetics. Chapter 9: Read P

Unit 10: Genetics. Chapter 9: Read P Unit 10: Genetics Chapter 9: Read P. 145-167 10.0 Genetics The Definition of Genetics The study of heredity and how traits are passed on through generations. Gregor Mendel: The Father of Genetics Gregor

More information

Chapter 4. Modification of Mendelian Ratios

Chapter 4. Modification of Mendelian Ratios Chapter 4. Modification of Mendelian Ratios Inheritance Patterns are Often More Complex than Predicted by Simple Mendelian Genetics The relationship between genotype and phenotype is rarely as simple as

More information

Mendel and The Gene Idea

Mendel and The Gene Idea Mendel and The Gene Idea Gregor Mendel was a monk who experimented with pea plants and was also a scientist He is known as the Father of Genetics. Mendel s two fundamental principles of heredity are now

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Complex inheritance of traits does not follow inheritance patterns described by Mendel.

Complex inheritance of traits does not follow inheritance patterns described by Mendel. Section 2: Complex inheritance of traits does not follow inheritance patterns described by Mendel. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the differences

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Name Period Chapter 14: Mendel and the Gene Idea If you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

Mendel. History Mendel and His Peas. Charles Darwin

Mendel. History Mendel and His Peas. Charles Darwin Chapter 14 and 15 - Genetics History Mendel and His Peas When Mendel lived no one knew about DNA or meiosis. It was known that offspring inherited traits from the parents but no one knew how It was thought

More information

Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck!

Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck! NAME DATE Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck! 1. Could the characteristic followed in the pedigree be caused by an autosomal dominant

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Chapter 11 Complex Inheritance and Human Heredity

Chapter 11 Complex Inheritance and Human Heredity Chapter 11 Complex Inheritance and Human Heredity 11.1 Basic Patterns of Human Inheritance o The inheritance of a trait over can be shown in a o Pedigrees can help us to track and understand Genetic Disorders

More information

Mendelian Genetics 1

Mendelian Genetics 1 Mendelian Genetics Genetics Mendel and the Gene Idea Genetics: The study of heredity. 2 Heredity Two possible explanations for heredity: The Blending Hypothesis Genetic material from the parents mix. Similar

More information

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question.

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question. Chapter Test A CHAPTER 11 Complex Inheritance and Human Heredity Part A: Multiple Choice In the space at the left, write the letter of the term or phrase that best completes each statement or answers each

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Chapter 14. Beyond Mendel s Laws of Inheritance 1 Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single gene each gene has only

More information

Observing Patterns in Inherited Traits. Chapter 11 Updated Reading Not

Observing Patterns in Inherited Traits. Chapter 11 Updated Reading Not Observing Patterns in Inherited Traits Chapter 11 Updated Reading 11.1-11.3 Not 11.5-11.7 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles,

More information

GENETICS AND MENDEL 2/4/2018. Mendel s Experiment. Genetic Terms. Genetic Terms. Mendel: Experiment 1 HISTORY OF DISCOVERERY OF HEREDITY

GENETICS AND MENDEL 2/4/2018. Mendel s Experiment. Genetic Terms. Genetic Terms. Mendel: Experiment 1 HISTORY OF DISCOVERERY OF HEREDITY HISTORY OF DISCOVERERY OF HEREDITY 1851: Gregor Mendel, father of heredity studied pea plants GENETICS AND MENDEL prevented self pollination used cross pollination brought experimental and quantitative

More information

This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group.

This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group. Biology 160 NAME: Reading Guide 12: Population Dynamics, Humans, Part II This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group. *As before, please turn in only the Critical

More information

5. Alternate versions of the same gene, like purple and white flower color, are termed.

5. Alternate versions of the same gene, like purple and white flower color, are termed. Name Period If you have completed a first- year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics. For other students, this may be your

More information

Campbell Biology 10. Chapter 14 Mendelian Genetics. A Global Approach. Chul-Su Yang, Ph.D., Lecture on General Biology 2

Campbell Biology 10. Chapter 14 Mendelian Genetics. A Global Approach. Chul-Su Yang, Ph.D., Lecture on General Biology 2 Lecture on General Biology 2 Campbell Biology 0 A Global Approach th edition Chapter 4 Mendelian Genetics Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life

More information

GENETICS AND MENDEL 2/20/2013. Mendel s Experiment. Genetic Terms. How is each group the same? How is each group different?

GENETICS AND MENDEL 2/20/2013. Mendel s Experiment. Genetic Terms. How is each group the same? How is each group different? GENETICS AND MENDEL How is each group the same? How is each group different? Heredity transmission of traits from parents to offspring Genetics study of heredity HISTORY OF DISCOVERERY OF HEREDITY Up to

More information

Scrambling information

Scrambling information Scrambling information Introduction to Genetics GENETICS branch of biology that deals with heredity and variation of organisms. Chromosomes carry the hereditary information (genes) Arrangement of nucleotides

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Chapter 14. Beyond Mendel s Laws of Inheritance Modified from Kim Foglia Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single

More information

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Genetics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 41. Situations in which one allele for a gene is not completely dominant over another allele

More information

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics Genetics Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics Blending Theory offspring have a blend of traits of their parents Problems with blending theory

More information

Genetics is the study of inheritance The field of genetics began with the work of Gregor Mendel He had no knowledge of chromosomes, meiosis, or DNA

Genetics is the study of inheritance The field of genetics began with the work of Gregor Mendel He had no knowledge of chromosomes, meiosis, or DNA Inheritance 1 Mendel and the Black Box 2 The Experimental Subjects: Pisum sativum 3 Starting the Experiments: Purple and White Flowers 4 Mendel s Generations Illustrated 5 Crosses Involving Two Characters

More information

Chapter 9. Objectives. Table of Contents. Gregor Mendel. Gregor Mendel, continued. Section 1 Mendel s Legacy. Section 2 Genetic Crosses

Chapter 9. Objectives. Table of Contents. Gregor Mendel. Gregor Mendel, continued. Section 1 Mendel s Legacy. Section 2 Genetic Crosses Fundamentals of Genetics Table of Contents Objectives Describe how Mendel was able to control how his pea plants were pollinated. Describe the steps in Mendel s experiments on true-breeding garden peas.

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 12 The Chromosomal Basis of Inheritance Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance Name Biol 211 - Group Number Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance Reference: Chapter 14-15 (Biology by Campbell/Reece, 8 th ed.) Note: In addition to the

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It was not until 1900 that biology finally caught up with Gregor Mendel. Let s read Short History 391-393 3 guys made him famous. Factors = genes located on chromosomes, which are made of

More information

Non Mendelian Genetics

Non Mendelian Genetics Non Mendelian Genetics TEKS 6 Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: 6F

More information

Chapter 11 Reading Guide: Mendel and the Gene Idea

Chapter 11 Reading Guide: Mendel and the Gene Idea Chapter 11 Reading Guide: Mendel and the Gene Idea Since you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

Name: Review HW 20 Mendelian Genetics and Humn Inheritance

Name: Review HW 20 Mendelian Genetics and Humn Inheritance Name: Review HW 20 Bio AP Mendelian Genetics and Humn Inheritance 1. Four genes on a chromosome C are mapped and their crossover frequencies were determined. Genes Crossover Frequency K and J 10 J and

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Chapter 14: Mendel and the Gene Idea Name Period If you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

Genetics, Fall 2005 TEST 2, 11/16/05 Page 1

Genetics, Fall 2005 TEST 2, 11/16/05 Page 1 Genetics, Fall 2005 TEST 2, 11/16/05 Page 1 STUDENT NAME: Give a brief definition of the following terms (5 points each; only nine definitions count for the grade): 1. phenotype 2. homozygous 3. codominance

More information

Ch. 14 Mendel and the Gene Idea

Ch. 14 Mendel and the Gene Idea Ch. 14 Mendel and the Gene Idea 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

. Definition The passing down of characteristics from generation to generation resulting in continuity and variation within a species

. Definition The passing down of characteristics from generation to generation resulting in continuity and variation within a species Section 3: The Basics of genetics. Definition The passing down of characteristics from generation to generation resulting in continuity and variation within a species Important Terms. Genes A specific

More information

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells.

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells. The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells. Mendelian Genetics Gregor Mendel was an Austrian monk, who,

More information

Genetics. What DNA is telling us!

Genetics. What DNA is telling us! Genetics What DNA is telling us! Learning Goals The student will investigate and understand common mechanisms of inheritance and protein synthesis. Key concepts include: 1. prediction of inheritance of

More information

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above?

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above? Review 0 Genotype: alleles that are present 0 Phenotype: physical appearance 0 Rr 0 RR 0 rr 0 If Red is dominant to white, what is the phenotype of the above? 2 Vocab to Remember! 0 Allele 0 Gene 0 Trait

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It was not until 1900 that biology finally caught up with Gregor Mendel. 3 guys made him famous. Factors = genes located on chromosomes, which are made of the chemical DNA, whose function

More information

Name: Bio AP Mendelian Genetics & Chromosomal Inheritance

Name: Bio AP Mendelian Genetics & Chromosomal Inheritance Name: Bio AP Mendelian Genetics & Chromosomal Inheritance 1 ESSENTIAL KNOWLEDGE 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Punnett Square with Heterozygous Cross (Video clip) There is a glaring error with this video clip. Can you spot it???

Punnett Square with Heterozygous Cross (Video clip) There is a glaring error with this video clip. Can you spot it??? Section 3: Studying Heredity Objectives Predict the results of monohybrid genetic crosses by using Punnett squares. Apply a test cross to determine the genotype of an organism with a dominant phenotype.

More information

Chp 10 Patterns of Inheritance

Chp 10 Patterns of Inheritance Chp 10 Patterns of Inheritance Dogs, one of human s longest genetic experiments Over 1,000 s of years, humans have chosen and mated dogs with specific traits. A process called -artificial selection The

More information

GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/27. Monohybrid Cross Practice Problems HW CHECK: 2/3

GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/27. Monohybrid Cross Practice Problems HW CHECK: 2/3 GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 Cell Cycle & Meiosis Post Test Review Intro to Genetics 2/1 Non Mendelian Genetics: Codominance Problems 1/26 Mendelian

More information

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue Benjamin A. Pierce Genetics Essentials Concepts and Connections SECOND EDITION CHAPTER 3 Basic Principles of Heredity CHAPTER 3 OUTLINE 3.1 Gregor Mendel Discovered the Basic Principles of Heredity, 44

More information

Classical (Mendelian) Genetics. Gregor Mendel

Classical (Mendelian) Genetics. Gregor Mendel Classical (Mendelian) Genetics Gregor Mendel Vocabulary Genetics: The scientific study of heredity Allele: Alternate forms of a gene/factor. Genotype: combination of alleles an organism has. Phenotype:

More information

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology. Biology 1 of 31 11-3 Exploring Mendelian Exploring Genetics Mendelian Genetics 2 of 31 What is the principle of independent assortment? 3 of 31 1 The principle of independent assortment states that genes

More information

GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/27. Monohybrid Cross. HW CHECK: Part A Q 1-2 2/3

GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/27. Monohybrid Cross. HW CHECK: Part A Q 1-2 2/3 GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/26 1/27 1/28 1/29 Cell Cycle & Meiosis Test Corrections Mendelian s & Monohybrid Cross Intro Monohybrid Cross Part A

More information

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene Genetics The Study of Inherited Characteristics Meiosis in the Gonads makes gametes: Sperm Meiotic cell division Egg Chromosome DNA Code for Gene Segments of DNA Code Code for a trait Hair Color Eye Color

More information

Chapter 02 Mendel s Principles of Heredity

Chapter 02 Mendel s Principles of Heredity Chapter 02 Mendel s Principles of Heredity Multiple Choice Questions 1. What was the importance of Mendel performing reciprocal crosses? To be able to breed plants all year round To obtain enough plants

More information

12 The Chromosomal Basis of Inheritance

12 The Chromosomal Basis of Inheritance CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 12 The Chromosomal Basis of Inheritance Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Locating Genes

More information

What DNA is telling us!

What DNA is telling us! Genetics What DNA is telling us! Learning Goals The student will investigate and understand common mechanisms of inheritance and protein synthesis. Key concepts include: 1. prediction of inheritance of

More information

Genetics & Human Inheritance

Genetics & Human Inheritance Genetics & Human Inheritance BIO 105 Chapter 20 Vocabulary Alleles alternate forms of a gene Trait some characteristic Homozygous individuals that contain two copies of the same allele Heterozygous individuals

More information

Genetics Patterns of Inheritance. Biology 20

Genetics Patterns of Inheritance. Biology 20 Genetics Patterns of Inheritance Biology 20 Genetics Study of heredity Aristotle Pangenes Von Leewenhoek Homounculus de Graff ovarian follicle is a miniature person Blended Theory Genetic material mixes

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel He studied at the University of Vienna from 1851 to 1853 where he was influenced by a physicist who encouraged experimentation and the application of mathematics to science

More information

Genetics: Mendelian Genetics (1) Patterns of Inheritance

Genetics: Mendelian Genetics (1) Patterns of Inheritance Genetics: Mendelian Genetics (1) Patterns of Inheritance Outline 1. Key concepts 2. A few terms 3. Mendel s Experimental Approach 4. Monohybrid 5. Dihybrid 6. Extending Medelian Genetics 7. Mendilian Inheritance

More information

Complex Inheritance and Human Heredity

Complex Inheritance and Human Heredity Complex Inheritance and Human Heredity Before You Read Use the What I Know column to list the things you know about human heredity and genetics. Then list the questions you have about these topics in the

More information

WORKSHEET BIO 208 Unit 2. Also review list of objectives, notes, textbook, and homework assignments

WORKSHEET BIO 208 Unit 2. Also review list of objectives, notes, textbook, and homework assignments Also review list of objectives, notes, textbook, and homework assignments 1. Animals can teach us genetics. Match Heterozygotes exhibit two distinct proteins on red blood cells Show a dominant and recessive

More information

Q.2: Write whether the statement is true or false. Correct the statement if it is false.

Q.2: Write whether the statement is true or false. Correct the statement if it is false. Solved Exercise Biology (II) Q.1: Fill In the blanks. i. is the basic unit of biological information. ii. A sudden change in the structure of a gene is called. iii. is the chance of an event to occur.

More information

Fall 2004 Animal Science 213 Animal Genetics EXAM Points Exam must be completed in INK!

Fall 2004 Animal Science 213 Animal Genetics EXAM Points Exam must be completed in INK! Fall 2004 Animal Science 213 Animal Genetics EXAM 3 125 Points Exam must be completed in INK! Name: KEY Multiple Choice (4 points each) 1. If an individual plant homozygous dominant for the single gene

More information

Gregor Mendel traits Heredity Genetics

Gregor Mendel traits Heredity Genetics Unit 6 Notes In 1851, Gregor Mendel (a priest from Europe) taught high school and maintained the monastery s garden In the garden, Mendel grew hundreds of pea plants and began noticing that they had different

More information

January 11, Genetics with DNA.notebook. Genetics

January 11, Genetics with DNA.notebook. Genetics Genetics 1.DNA (deoxyribonucleic acid) is a chemical code that contains information for an organisms growth and function. It is found in the nucleus of all cells. 2. A gene is a section of DNA on a chromosome.the

More information

AP Biology Review Chapters Review Questions Chapter 11: Mendelian Patterns of Inheritance Chapter 12: Molecular Biology of the Gene

AP Biology Review Chapters Review Questions Chapter 11: Mendelian Patterns of Inheritance Chapter 12: Molecular Biology of the Gene AP Biology Review Chapters 11-12 Review Questions Chapter 11: Mendelian Patterns of Inheritance a) Know genotypes and phenotypes of a monohybrid cross in the P, F1, and F2 generations. Be familiar with

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2011-2012 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information