A systematic approach to breeding programs for game PART 1

Size: px
Start display at page:

Download "A systematic approach to breeding programs for game PART 1"

Transcription

1 A systematic approach to breeding programs for game PART 1 Japie van der Westhuizen South African Stud Book and Animal Improvement Association japie@studbook.co.za As with many other things in life, the approach followed in breeding game will determine the final destination. One of the current challenges in game breeding is to distinguish myth from useful fact and to use current knowledge on livestock and other breeding, genetics and breeding practices correctly. An open but critical approach will therefore be more likely lead to success. Success is also relative, as it needs to be measured against predetermined benchmarks. The second challenge for a game breeder is therefore to recognize and set these benchmarks. Achieving goals is therefore an on-going process of assessments and adjustments. To be able to reach the highest levels of efficiency animals with the genetic merit for the traits of economic importance should perform under optimum conditions. Figure 1 illustrates the possible different scenarios comparing differences among wildlife in terms of their genetic merit and phenotypic performance. Figure 1. Utilising the genetic merit by creating optimal conditions. From Figure 1 it is clear that not all animals perform according to their genetic merit, simply because the conditions are not optimal. Likewise, some animals with lower merit might outperform the superior animals due to the treatment they receive. Untying nature from nurture (the genetic merit versus the environmental effect on the observation) is therefore fairly complex but very important to establish the value of each individual animal s merit as a potential parent for the next generation. Game breeders should therefore be aware of all the aids available and also endeavour to utilise them optimally.

2 Start where it matters Successful breeding programs start with objectives and criteria. Sometimes the criteria will be linked to biological efficiency that ultimately underpins financial efficiency. In effect it is important to identify those processes that will influence the quantity and quality of the product or products determining the income of the enterprise. On the other hand, those properties or factors that will drive costs should also be considered. Figure 2 depicts the sequence of decisions and actions. Figure 2. Continuing the quest to breed superior animals by following a logical sequence. Figure 2 shows that plans and criteria follows objectives and serve as the building block of ranking animals according to their adherence to these criteria to enable the breeder to cull those not conforming to these norms. Alternatively these rankings enable the breeder to identify top herd sires (and dams) suitable to have large impact where it matters. Any selection and breeding program therefore depends on the setting of objectives, recording of animals and ranking them according to their genetic merit, fitting these objectives, and using them in the breeding program to achieve these objectives optimally. Some basic Genetic principles Differences on the expression of traits are basically due to two major modes of inheritance, that can be described as either qualitative or quantitative gene action. Although there may be some grey areas as to when these gene actions can be classified as one or the other a simple explanation is as follows: Qualitative traits (expression of traits influenced by less complex gene actions). Examples of traits that can be classified as qualitative traits are coat colour, polledness and congenital genetic defects (as caused by simple gene actions). Some of the typical properties of these traits are:

3 Usually simple inheritance one or only few genes will influence the expression of the trait. The expression of the traits can usually be described as discrete classes, eg. colour variants. Therefore very easily recognisable on the phenotype. Sometimes modifying genes might influence or modify the expression of the original gene s influence. Examples will be when the expression of a coat colour is diluted such as a creamy colour rather than, for instance, dark red. The expression of the trait will not be influenced by the environment. Each animal will carry two possible variants (alleles) of the gene influencing the particular trait. The specific variant or the collective effect of the two variants will determine the expression (observation) of the trait. Figure 3 gives some insight into molecular the structure within the nucleus of each body cell. Figure 3. Illustration of die structure of the chromosome and DNA in the nucleus of body cells. From Figure 3 it can be seen that the code determining the genetic differences among animals is the result of the sequence of base pair molecules on the double helix strings wound up to ultimately construct the particular chromosome. Such a sequence will be associated with a specific gene. Chromosomes furthermore exist in pairs in the cell nuclei where each of the paired chromosome will carry one of each gene s form (known as an allele). In the example of Figure 3, these alleles are indicated as either minus (-) or plus (+) indicating the effect of the gene on the expression of a specific trait, for example coat colour. If, for example, the expression of the trait is governed by a single gene (as could be the case for qualitative traits) and one allele dominates the other, the specific expression will be supressed if the animals has a +- (one copy of each allele) combination. If the desired expression, for example a coat colour of high value will only be expressed where both alleles. The inheritance of these traits or properties therefore follow fairly simple patterns as is illustrated in Figure 4.

4 Figure 4. Example of the expression of a trait, eg. Coat colour, influenced by a single gene in the case of dominance. Figure 4 also illustrates the concept of Split (+ - ) animals, namely those carrying the desired allele of the gene but where the specific expression is supressed due to dominance by the corresponding allele of the gene. Currently carriers of desirable genes that but where the expression of the trait is supressed due to dominance (by the other allele) can not be identified by means of a genetic test as these genes have not yet been discovered or tests developed for this purpose. One way of dealing with this problem is to keep proper pedigrees and to accurately record the occurrence of these (and other) traits and properties. Where the mode of inheritance is known, it is then possible to mate carriers ( splits ) that will increase the probability of animals that will express the desired properties. Mating two carriers will result in 25% of the progeny expressing the property and half of the progeny will be carriers. Mating a homozygous animal (one showing the desired trait) with a carrier will result in a 50% probability of the progeny expressing the trait and 25% carriers (the other 25% wil be homozygous for the other, less desirable allele). More complex systems also exist where different levels of gene interactions might influence the expression of certain traits. Such examples are one or more of the following: Modifying genes. Sometimes the expression of certain traits might be modified by genes that are not influencing the trait in the first place. Examples are where colour might be diluted in the presence of certain genes. Allelic series. Some traits are influenced by a possible sieries of alleles that can be present on a specific locus (place) on the chromosome. Each form (allele) will have a position on the dominance chain (eg. A 1 dominant over A that is dominant over a that is dominant over a 1, etc.).

5 Regulatory genes of on-off switches There is evidence that some genes may be regulated by other genes in such a way that the expression they are pre-destined to control may be switched on or off by a different gene (or sets of genes) based on some other (for example environmental) influence. The description of traits influenced by quantitative gene action will follow in PART 2 in next month s edition.

6 A systematic approach to breeding programs for game PART 2 Japie van der Westhuizen South African Stud Book and Animal Improvement Association japie@studbook.co.za As mentioned in PART 1, differences on the expression of traits are mainly due to two major modes of inheritance namely qualitative or quantitative gene action. Following the description of qualitative gene action, the detailed explanation of quantitative gene action follows: Qualitative traits (expression of traits are influenced my a multitude of genes) The expression or measurement of these traits are influenced by many genes, each with a small but additive effect. The performance of the animal (the recording) is furthermore influenced by environmental constraints. The expression of these traits are therefore generally described by the following equation: P = G + E Where: P = The expression (measurement) of the trait G = The sum total of all the many genes influencing (positive or negative) this expression E = Environmental influence on the expression of the trait Most traits of economic importance are inherited in this manner. They include traits such as reproduction (age at first calving or lambing, calving or lambing interval, semen quantity and quality), growth rate (weight at a specific age), body characteristics (horn growth rate, body size) and others. Due to the nature of this type of inheritance, the expression or measurement of these traits follow a continuous pattern and is therefore not expressed in distinct categories. Figure 5 illustrates the type of patterns that can be expected for these traits.

7 Figure 5. Example of the expression of a trait, eg. horn growth rate, influenced by many additive genes and also influenced by the environment. Figure 5 illustrates the continuous scale of measurement of quantitative traits. Also important is to note that the measurement will also be influenced by the environment. Environmental influences include one or more of the following: physical constraints (eg. temperature, humidity, elevation), nutrition (quality and quantity of feed and grazing, minerals), dam influences (age of dam, genetic merit of dam as a mother, protection), herd or flock influences (ability of herd/flock to move or change position, protection measures, hierarchy), seasonal effects (rain patterns, relative birth position in the season), etc. The expression (measurement) of these traits also follow a typical normal distribution as illustrated in Figure 6. Typically recordings on most of the animals will be close to the average with less animals with bigger or smaller measurements further away from the average. Figure 6. The expected normal distribution of traits influenced by many additive genes. It can be seën from the Figure 6 illustration that most of the animals will record measurements closer to the average of the group while the top performers will be fewer (the same is true for the bottom group).

8 Typically selection of the more desirable animals as parents for the next generation should therefore take place within an environment where each animal has an equal chance of performing. Differences will then be mostly effected by genetic differences among the group of selection candidates. Figure 7 illustrates the expected differences in performance of groups of animals in different environments (or that have been treated differently). Figure 7. Illustration of the expected normal distribution in the expression of the same trait in two different environments. The mere fact that one environment puts a bigger constraint on the expression of a trait does not mean that those animals are of inferior genetic merit. The inferior performance could simply be due to these environmental constraints. This creates a unique challenge for game breeders to overcome. In the livestock industry, systems and methodologies have been developed to deal with this. It is based on the fact that families share the same genes. The, so called Mixed Models result in the prediction of each animal s genetic merit free from known environmental influence (such as location, year of birth, age of dam, season, sex, etc.). The prerequisite is, however, that the traits considered should be recorded on as many animals as possible. This, in itself poses some careful planning for game breeders and tot make optimum use of darting events to record as many as possible important traits. Steps to establish a similar system for game breeders will be in the first place to record the parentage of individuals (even if DNA markers are used to confirm dams and sires) and recording of the traits, as mentioned.

9 SA Stud Book renders such a service to the livestock industry and has been instrumental in the development and application of sophisticated mathematical mixed models for the prediction of genetic merit for farm animals (Beef Cattle, Dairy Cattle, Sheep, Goats, Pigs and lately, Boxer Dogs). These developments are also based on a reliable data set designed and managed in accordance with international standards set by the International Committee for Animal Recording (ICAR). Stud Book s system and genetic evaluation conform to ICAR s Certificate of Quality. The initial uptake of game data has taken place on Stud Book s logix Game system. Once enough data has been collected the research team will engage in determining the genetic component in the expression of these traits (also called the heritability) followed by the first genetic predictions. Notes on Inbreeding and outcrossing. Inbreeding is defined as Mating animals that are more related to each other than the average of the population. The main result of inbreeding is that the homozygosity (proportion of identical alleles of the gene on the chromosomes) is increased, therefore reducing genetic variation (a larger portion of the animals in the population have identical gene-pairs). It therefore also increases the chance that some gene will be fixated, meaning that the lack of diversity could cause a situation where all animals will carry exactly the same alleles, including deleterious genes. In many cases this in turn leads to lower fitness (fertility and survivability) and no breeding escape routes in terms of natural selection ( survival of the fittest ) due to the sameness of all animals. Sometimes a milder form of inbreeding is the result of continuous selection of superior animals and concentrating on one or only a few traits as breeding goals. Genetically superior animals tend to produce offspring that are also genetically superior when compared to others. Basically these offspring also tend to have higher inbreeding but are particularly more related to the superior common ancestors. This is known as linebreeding as these ancestors form family lines. The, so called, eco types in the same species are prime examples of lines that occur in nature, primarily due to mating behaviour in certain species or due to the isolation of sub populations for various reasons. A golden rule of thumb is to avoid inbreeding at all cost, if possible or to at least keep the rate of increase low. Numerous research projects and scientific reports show that nothing really good result from inbreeding, especially when natural selection is unable to counter the harmful effects due to a rapid increase in inbreeding over generations. A quick way to fix this is the, so called, outcrossing. These are mating plans where animals from different unrelated lines are mated. The result is progeny where the inbreeding coefficient is drastically reduced or even nullified within one generation. Good breeding practices will also ensure regular changes of breeding (hopefully with unrelated) males before sires will be mated to own offspring.

10 Important considerations for sensible game breeding programs. All successful breeding programs rely on accurate information and very clear objectives. This is only possible when proper reliable records are kept. If possible, the first step will be to keep accurate pedigrees. Observations and recordings of economically important traits or properties should also be based on objective measurements or at least be repeatable placing the potential breeding animals in the same ranking with successive evaluations. Due to the nature of game farming and breeding, the maximum number of observations and measurements should take place when darting or when animals are contained. This includes taking biological samples for the necessary DNA (mostly for parentage verification or proof of identification) or other tests. Evaluation of suitable candidates as breeding stock should be done within contemporary (treatment or environmental influence) groups where ranking reflects the genetic merit for the desirable trait. Like all good business practices, any breeding program should also be assessed regularly and objectively by comparing outcomes to predetermined goals. Breeding goals should at least be based on longer term sustainability of the enterprise. Although relatively high prices may influence profitability in the short term, this should not be the longer term deterrent to take into consideration. Generally goals should include cost of production relative to total output. Game, like other farm animals, have requirements related to maintenance (mainly feed resources) and show certain limitations regarding reproduction rate and growth parameters. Inclusion of these properties, together with others of economic importance, should always be considered in when setting up breeding objectives and mating plans.

THE STUDY OF GENETICS is extremely

THE STUDY OF GENETICS is extremely Exploring Animal Genetics and Probability THE STUDY OF GENETICS is extremely valuable to several areas of science. From medical to agricultural applications, the development of new techniques in studying

More information

Strategy for Applying Genome-Wide Selection in Dairy Cattle

Strategy for Applying Genome-Wide Selection in Dairy Cattle Strategy for Applying Genome-Wide Selection in Dairy Cattle L. R. Schaeffer Centre for Genetic Improvement of Livestock Department of Animal & Poultry Science University of Guelph, Guelph, ON, Canada N1G

More information

Fertility Factors Fertility Research: Genetic Factors that Affect Fertility By Heather Smith-Thomas

Fertility Factors Fertility Research: Genetic Factors that Affect Fertility By Heather Smith-Thomas Fertility Factors Fertility Research: Genetic Factors that Affect Fertility By Heather Smith-Thomas With genomic sequencing technology, it is now possible to find genetic markers for various traits (good

More information

Genetics of dairy production

Genetics of dairy production Genetics of dairy production E-learning course from ESA Charlotte DEZETTER ZBO101R11550 Table of contents I - Genetics of dairy production 3 1. Learning objectives... 3 2. Review of Mendelian genetics...

More information

Genomic selection for sheep and beef systems, dispelling the myths for farmers. Dewi Jones January 2016

Genomic selection for sheep and beef systems, dispelling the myths for farmers. Dewi Jones January 2016 Genomic selection for sheep and beef systems, dispelling the myths for farmers Dewi Jones January 2016 First things first Selective culling Selective culling First things first Selective culling Performance

More information

Dr. Gatot Ciptadi. Fac. Of Animal Husbandry, UB. gatotciptadi.lecture.ub.ac.id. Dr.Gatot Ciptadi,Fac.Of Anim.

Dr. Gatot Ciptadi. Fac. Of Animal Husbandry, UB.   gatotciptadi.lecture.ub.ac.id. Dr.Gatot Ciptadi,Fac.Of Anim. Dr. Gatot Ciptadi Fac. Of Animal Husbandry, UB Email: ciptadi@ub.ac.id gatotciptadi.lecture.ub.ac.id Animal Breeding Practices Genetic Impact Breeding has an important impact on animal production, as breeding

More information

Dr. Gatot Ciptadi. Fac. Of Animal Husbandry, UB. gatotciptadi.lecture.ub.ac.id.

Dr. Gatot Ciptadi. Fac. Of Animal Husbandry, UB.   gatotciptadi.lecture.ub.ac.id. Dr. Gatot Ciptadi Fac. Of Animal Husbandry, UB Email: ciptadi@ub.ac.id gatotciptadi.lecture.ub.ac.id Animal Breeding Practices Genetic Impact Breeding has an important impact on animal production, as breeding

More information

Genomic selection in the Australian sheep industry

Genomic selection in the Australian sheep industry Genomic selection in the Australian sheep industry Andrew A Swan Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, 2351, AGBU is a joint venture between NSW Department

More information

Section 9- Guidelines for Dairy Cattle Genetic Evaluation

Section 9- Guidelines for Dairy Cattle Genetic Evaluation - Guidelines for Dairy Cattle Genetic Evaluation Section 9 Table of Contents Section 9 1 Background... 4 2 Pre-evaluation steps... 4 2.1 Assignment to a breed of evaluation... 4 2.2 Animal identification...

More information

(Contents of the regulation)

(Contents of the regulation) REGULATION ON CONSERVATION OF FARM ANIMAL GENETIC RESOURCES Having regard to paragraph 4 of Article 24, paragraph 4 of Article 41, of paragraph 3 of Article 66, of paragraph 5 of Article 68, of paragraph

More information

Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth

Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth Current Reality of the Ayrshire Breed and the Opportunity of Technology for Future Growth First Current Reality August 2016 US CDCB-AGIL Genetic Breed Difference From Holstein Breed Milk Fat Protein Productive

More information

BLUP and Genomic Selection

BLUP and Genomic Selection BLUP and Genomic Selection Alison Van Eenennaam Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis, USA alvaneenennaam@ucdavis.edu http://animalscience.ucdavis.edu/animalbiotech/

More information

The what, why and how of Genomics for the beef cattle breeder

The what, why and how of Genomics for the beef cattle breeder The what, why and how of Genomics for the beef cattle breeder Este van Marle-Köster (Pr. Anim. Sci) 25 January 2019 Waguy info day 2 Today s talk Focus on what is genomics Brief definition & references

More information

Implementing direct and indirect markers.

Implementing direct and indirect markers. Chapter 16. Brian Kinghorn University of New England Some Definitions... 130 Directly and indirectly marked genes... 131 The potential commercial value of detected QTL... 132 Will the observed QTL effects

More information

11/30/2018. Introduction to Genomic Selection OUTLINE. 1. What is different between pedigree based and genomic selection? 2.

11/30/2018. Introduction to Genomic Selection OUTLINE. 1. What is different between pedigree based and genomic selection? 2. Introduction to Genomic Selection imagefriend.com OUTLINE 1. What is different between pedigree based and genomic selection? 2. Selection tools - Selection Indexes - Genotyping resources 3. DNA-based markers

More information

Chapter 20 Biotechnology and Animal Breeding

Chapter 20 Biotechnology and Animal Breeding Source: NILGS (Japan) I. Reproductive Technologies II. Molecular Technologies Learning Objective: To learn about recent biotechnologies that are currently available and are likely to affect animal breeding.

More information

Livestock straight-breeding system structures for the sustainable intensification of extensive grazing systems

Livestock straight-breeding system structures for the sustainable intensification of extensive grazing systems Livestock straight-breeding system structures for the sustainable intensification of extensive grazing systems J. Van der Werf DLO-Institute of Animal Science and Health, P.O. Box 65, Edelhertweg 15, NL

More information

2/22/2012. Impact of Genomics on Dairy Cattle Breeding. Basics of the DNA molecule. Genomic data revolutionize dairy cattle breeding

2/22/2012. Impact of Genomics on Dairy Cattle Breeding. Basics of the DNA molecule. Genomic data revolutionize dairy cattle breeding Impact of Genomics on Dairy Cattle Breeding Bennet Cassell Virginia Tech 2012 VSFA/VA Tech Nutrition Cow College Genomic data revolutionize dairy cattle breeding Accuracy of selection prior to progeny

More information

Modern Genetic Evaluation Procedures Why BLUP?

Modern Genetic Evaluation Procedures Why BLUP? Modern Genetic Evaluation Procedures Why BLUP? Hans-Ulrich Graser 1 Introduction The developments of modem genetic evaluation procedures have been mainly driven by scientists working with the dairy populations

More information

Breeding your cows for genetic gain. Max Tweedie, B+LNZ Genetics

Breeding your cows for genetic gain. Max Tweedie, B+LNZ Genetics Breeding your cows for genetic gain Max Tweedie, B+LNZ Genetics Genetic improvement Genetic improvement should be the key objective for a stud breeder. Occurs when the sire team you select are of higher

More information

Farm Management Decisions in the Era of Genomics

Farm Management Decisions in the Era of Genomics Farm Management Decisions in the Era of Genomics Brian Van Doormaal and Gerrit Kistemaker Canadian Dairy Network, Guelph, Ontario. E-mail: Brian@cdn.ca Take Home Messages Genomics has had a major impact

More information

Genomic management of animal genetic diversity

Genomic management of animal genetic diversity Genomic management of animal genetic diversity 15.00 hrs Welcome by Roel Veerkamp 15.05 hrs Kor Oldenbroek: Introduction & challenges 15.20 hrs Jesús Fernández: Genomic tools to define genetic diversity

More information

Genetics Effective Use of New and Existing Methods

Genetics Effective Use of New and Existing Methods Genetics Effective Use of New and Existing Methods Making Genetic Improvement Phenotype = Genetics + Environment = + To make genetic improvement, we want to know the Genetic value or Breeding value for

More information

Introduction to Animal Breeding & Genomics

Introduction to Animal Breeding & Genomics Introduction to Animal Breeding & Genomics Sinead McParland Teagasc, Moorepark, Ireland Sinead.McParland@teagasc.ie Overview Changes to traditional animal breeding Using DNA in animal breeding What is

More information

Genetics of Beef Cattle: Moving to the genomics era Matt Spangler, Assistant Professor, Animal Science, University of Nebraska-Lincoln

Genetics of Beef Cattle: Moving to the genomics era Matt Spangler, Assistant Professor, Animal Science, University of Nebraska-Lincoln Genetics of Beef Cattle: Moving to the genomics era Matt Spangler, Assistant Professor, Animal Science, University of Nebraska-Lincoln Several companies offer DNA marker tests for a wide range of traits

More information

Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies

Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies Implementation of dairy cattle breeding policy in Ethiopia some reflections on complementary strategies Sipke Joost Hiemstra 13 April 2018, Addis, Ethiopia Centre for Genetic Resources, the Netherlands

More information

Benefits of genomic selection in Merino, Terminal and Maternal indexes

Benefits of genomic selection in Merino, Terminal and Maternal indexes Benefits of genomic selection in Merino, Terminal and Maternal indexes By Tom Granleese - Sheep CRC, University of New England Key points Genomic testing is available for Merino, Poll Dorset, White Suffolk

More information

T.J. Lawlor *, C. Kuehn, P. Cole, J. Motycka, S. Harding and L. Markle

T.J. Lawlor *, C. Kuehn, P. Cole, J. Motycka, S. Harding and L. Markle World Congress on Genetics Applied to Livestock Production Management of genetic trait information in the genomic era T.J. Lawlor *, C. Kuehn, P. Cole, J. Motycka, S. Harding and L. Markle World Holstein

More information

Genomic selection in cattle industry: achievements and impact

Genomic selection in cattle industry: achievements and impact Genomic selection in cattle industry: achievements and impact Dr. Fritz Schmitz-Hsu Senior Geneticist Swissgenetics CH-3052 Zollikofen Scientific Seminar WBFSH 2016 1 Source: https://i.ytimg.com/vi/cuvjxlhu79a/hqdefault.jpg

More information

Understanding and Using Expected Progeny Differences (EPDs)

Understanding and Using Expected Progeny Differences (EPDs) Agriculture and Natural Resources FSA3068 Understanding and Using Expected Progeny Differences (EPDs) Brett Barham Associate Professor Animal Science Arkansas Is Our Campus Visit our web site at: http://www.uaex.edu

More information

Strategy for applying genome-wide selection in dairy cattle

Strategy for applying genome-wide selection in dairy cattle J. Anim. Breed. Genet. ISSN 0931-2668 ORIGINAL ARTICLE Strategy for applying genome-wide selection in dairy cattle L.R. Schaeffer Department of Animal and Poultry Science, Centre for Genetic Improvement

More information

Alison Van Eenennaam, Ph.D.

Alison Van Eenennaam, Ph.D. Marker Assisted Selection Current and Future Applications Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics alvaneenennaam@ucdavis.edu Overview Introduction

More information

Unit 3: Sustainability and Interdependence

Unit 3: Sustainability and Interdependence Unit 3: Sustainability and Interdependence Sub-topic 3.2 Plant and Animal Breeding Page 1 of 17 On completion of this sub-topic I will be able to: understand that plant and animal breeding involves the

More information

15. Breeding Program Design Principles

15. Breeding Program Design Principles 15. Breeding Program Design Principles Julius van der Werf and Brian Kinghorn Learning objectives On completion of this topic you should be able to: Understand the issues involved in breeding program design

More information

Alison Van Eenennaam, Ph.D.

Alison Van Eenennaam, Ph.D. The Value of Accuracy Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis alvaneenennaam@ucdavis.edu (530) 752-7942 animalscience.ucdavis.edu/animalbiotech

More information

Individual Genomic Prediction Report

Individual Genomic Prediction Report Interpreting Holstein Association USA s Individual Prediction Report When you genomic test an animal through Holstein Association USA, you will receive a report with a variety of traits and their genomic

More information

Estimated Breeding Values (EBVs): How they are calculated and what it means to producers

Estimated Breeding Values (EBVs): How they are calculated and what it means to producers Estimated reeding Values (EVs): How they are calculated and what it means to producers In today s modern agriculture with limited feed supplies, drought, regulations and tight margins, livestock producers

More information

Section 4 - Guidelines for DNA Technology. Version October, 2017

Section 4 - Guidelines for DNA Technology. Version October, 2017 Section 4 - Guidelines for DNA Technology Section 4 DNA Technology Table of Contents Overview 1 Molecular genetics... 4 1.1 Introduction... 4 1.2 Current and potential uses of DNA technologies... 4 1.2.1

More information

Haplotypes, recessives and genetic codes explained

Haplotypes, recessives and genetic codes explained Haplotypes, recessives and genetic codes explained This document is designed to help explain the current genetic codes which are found after the names of registered Holstein animals on pedigrees, web factsheets

More information

GENOMICS AND YOUR DAIRY HERD

GENOMICS AND YOUR DAIRY HERD GENOMICS AND YOUR DAIRY HERD Genomics uses DNA information to predict the genetic merit of bulls and cows. Available in Australia since 2011, genomic information is routinely used to calculate genomic

More information

MateSel: A Software Mating Tool to Aid in Selection for Improved Fertility

MateSel: A Software Mating Tool to Aid in Selection for Improved Fertility MateSel: A Software Mating Tool to Aid in Selection for Improved Fertility Alison Van Eenennaam Animal Genomics and Biotechnology Cooperative Extension Specialist Department of Animal Science University

More information

15. Breeding Program Design Principles

15. Breeding Program Design Principles 15. Breeding Program Design Principles Julius van der Werf and Brian Kinghorn Learning objectives On completion of this topic you should be able to: Understand the issues involved in breeding program design

More information

Developments in the Genetic Improvement of a Large Commercial Population in the New Zealand Sheep Industry

Developments in the Genetic Improvement of a Large Commercial Population in the New Zealand Sheep Industry Developments in the Genetic Improvement of a Large Commercial Population in the New Zealand Sheep Industry G B Nicoll Landcorp Farming Ltd Rotorua, New Zealand Landcorp Farming Ltd State Owned Enterprise.

More information

Genomic selection applies to synthetic breeds

Genomic selection applies to synthetic breeds Genomic selection applies to synthetic breeds Jérémie Vandenplas, Mario P.L. Calus 21 November 2015 Traditional selection Aim Selection of the best animals to create the next generation Based on estimated

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 10M Open access books available International authors and editors Downloads Our authors

More information

Validating Genetic Markers

Validating Genetic Markers Validating Genetic Markers Dick Quaas, Cornell University Mark Thallman, USMARC Alison Van Eenennaam, UC Davis Cooperative Extension Specialist Animal Biotechnology and Genomics alvaneenennaam@ucdavis.edu

More information

Possible principles for breed association models in the genomics era, with reference to beef cattle and sheep breeds

Possible principles for breed association models in the genomics era, with reference to beef cattle and sheep breeds Possible principles for breed association models in the genomics era, with reference to beef cattle and sheep breeds R.G. Banks Animal Genetics and Breeding Unit, University of New England, 2351, Armidale,

More information

Economic Weighting of Traits

Economic Weighting of Traits Economic Weighting of Traits 1 Introduction The breeding objective in any livestock species is to improve the overall economic merit of the animals. Many traits contribute to the Total Economic Value of

More information

Economic Impact of Bull Choices... A.I. Or Otherwise

Economic Impact of Bull Choices... A.I. Or Otherwise Economic Impact of Bull Choices... A.I. Or Otherwise By Dr. Ben McDaniel Animal Science Department North Carolina State University P.O. Box 7621 Raleigh, NC 27695-7621 919-515-4023 fax 919-515-7780 Email:

More information

Introduction to Indexes

Introduction to Indexes Introduction to Indexes Robert L. (Bob) Weaber, Ph.D. University of Missouri, Columbia, MO 65211 Why do we need indexes? The complications of multiple-trait selection and animal breeding decisions may

More information

THE CEFN IN HOUSE NUCLEUS PROGRAM. Rolf Sokolinski and Andrew Jones. CEFN PTY LTD, 54 King Street, Clifton, QLD 4361

THE CEFN IN HOUSE NUCLEUS PROGRAM. Rolf Sokolinski and Andrew Jones. CEFN PTY LTD, 54 King Street, Clifton, QLD 4361 THE CEFN IN HOUSE NUCLEUS PROGRAM Rolf Sokolinski and Andrew Jones CEFN PTY LTD, 54 King Street, Clifton, QLD 4361 CEFN HISTORY CEFN PTY LTD is a family owned Australian pig genetics company. It supplies

More information

Got Dairy? A brief introduction to dairy cattle genetics

Got Dairy? A brief introduction to dairy cattle genetics Got Dairy? A brief introduction to dairy cattle genetics 1 2 Essential Information External Anatomy Jersey. Said to have the highest quality milk: 15-20% more protein, 15-18% more calcium. The cow is typically

More information

The potential for the application of genomic selection approaches for small ruminants in developing countries

The potential for the application of genomic selection approaches for small ruminants in developing countries The potential for the application of genomic selection approaches for small ruminants in developing countries Raphael Mrode, Getinet Mekuriaw, Joram M. Mwacharo and Appolinaire Djikeng 67th Annual Meeting

More information

University of York Department of Biology B. Sc Stage 2 Degree Examinations

University of York Department of Biology B. Sc Stage 2 Degree Examinations Examination Candidate Number: Desk Number: University of York Department of Biology B. Sc Stage 2 Degree Examinations 2016-17 Evolutionary and Population Genetics Time allowed: 1 hour and 30 minutes Total

More information

TSB Collaborative Research: Utilising i sequence data and genomics to improve novel carcass traits in beef cattle

TSB Collaborative Research: Utilising i sequence data and genomics to improve novel carcass traits in beef cattle TSB Collaborative Research: Utilising i sequence data and genomics to improve novel carcass traits in beef cattle Dr Mike Coffey SAC Animal Breeding Team 1 Why are we doing this project? 1 BRITISH LIMOUSIN

More information

Breeding Programs Review of approaches in Australia

Breeding Programs Review of approaches in Australia Breeding Programs Review of approaches in Australia Col Langford NSW DPI, PO Box 389, Goulburn NSW 2580. colin.langford@dpi.nsw.gov.au Abstract This paper discusses the range of genetic breeding programs

More information

Practical integration of genomic selection in dairy cattle breeding schemes

Practical integration of genomic selection in dairy cattle breeding schemes 64 th EAAP Meeting Nantes, 2013 Practical integration of genomic selection in dairy cattle breeding schemes A. BOUQUET & J. JUGA 1 Introduction Genomic selection : a revolution for animal breeders Big

More information

Whole Genome-Assisted Selection. Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist

Whole Genome-Assisted Selection. Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Whole Genome-Assisted Selection Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics UC Davis alvaneenennaam@ucdavis.edu http://animalscience.ucdavis.edu/animalbiotech/

More information

Genetic Evaluations. Stephen Scott Canadian Hereford Association

Genetic Evaluations. Stephen Scott Canadian Hereford Association Genetic Evaluations Stephen Scott Canadian Hereford Association Canadian Hereford Association Herefords were first imported into Canada in 1860 The CHA was incorporated in 1902 under the Government of

More information

Peul, Touabire and Djallonke sheep breeding programmes in Senegal

Peul, Touabire and Djallonke sheep breeding programmes in Senegal Fall Peul, Touabire and Djallonke sheep breeding programmes in Senegal A. Fall ISRA, Route des Hydrocarbures, Bel-Air, BP-3120, Dakar, Senegal This paper reports on the plan, design and operational aspects

More information

Understanding genomic selection in poultry breeding

Understanding genomic selection in poultry breeding doi:10.1017/s0043933914000324 Understanding genomic selection in poultry breeding A. WOLC 1, 2 1 Hy-Line International, Dallas Center, IA, USA; 2 Iowa State University, Ames, IA, USA Corresponding author:

More information

Genetics 472. Heritability. Heritability estimates 12/7/2015. Round Two

Genetics 472. Heritability. Heritability estimates 12/7/2015. Round Two Genetics 472 Round Two Heritability Phenotype=Genotype + Environment Genotype is the measure of heritability, the measure of genetic merit of one individual Milk 25 40% Fat 27 43% Fat% 32 87% Prot. % 48

More information

Longhorn Cattle Performance Recording

Longhorn Cattle Performance Recording Longhorn Cattle Performance Recording Lucy Webb-Wilson Signet Breeding Consultant Outline Who is Signet Creating EBVs and the Importance of Selective Breeding What traits do we produce? How to record Longhorn

More information

Chp 10 Patterns of Inheritance

Chp 10 Patterns of Inheritance Chp 10 Patterns of Inheritance Dogs, one of human s longest genetic experiments Over 1,000 s of years, humans have chosen and mated dogs with specific traits. A process called -artificial selection The

More information

Marker Assisted Selection Where, When, and How. Lecture 18

Marker Assisted Selection Where, When, and How. Lecture 18 Marker Assisted Selection Where, When, and How 1 2 Introduction Quantitative Genetics Selection Based on Phenotype and Relatives Information ε µ β + + = d Z d X Y Chuck = + Y Z Y X A Z Z X Z Z X X X d

More information

DNA Technologies and Production Markers

DNA Technologies and Production Markers DNA Technologies and Production Markers Alison Van Eenennaam, PhD Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis, USA Email: alvaneenennaam@ucdavis.edu

More information

agrodok Beef production

agrodok Beef production agrodok Beef production 55 agrodok Beef production 55 Agromisa Foundation and CTA, Wageningen 2016 All rights reserved. No part of this book may be reproduced in any form, by print, photocopy, microfilm

More information

Where can the greatest economic value of genomic testing be found?

Where can the greatest economic value of genomic testing be found? Where can the greatest economic value of genomic testing be found? Albert De Vries Department of Animal Sciences University of Florida Gainesville, FL 32611 devries@ufl.edu Dairy Genomics Workshop, Twin

More information

Understanding EPDs and Accuracies

Understanding EPDs and Accuracies Understanding EPDs and Accuracies Expected Progeny Differences (EPDs) Expected Progeny Differences (EPDs) are used to compare the genetic merit of animals in various traits. An EPD predicts the difference

More information

Goal Oriented Use of Genetic Prediction

Goal Oriented Use of Genetic Prediction Goal Oriented Use of Genetic Prediction Mark Johnson Inheritance of Quantitative Traits P = G + E Phenotype = Genotype + Environment Genotype Additive due to individual genes Non-additive due to combinations

More information

The Australian Poll Gene Marker test

The Australian Poll Gene Marker test The Australian Poll Gene Marker test Frequently Asked Questions (FAQ) The new Australian Poll Gene Marker test has been developed and? tested for use in Australian commercial cattle populations. Works

More information

Use of marker information in PIGBLUP v5.20

Use of marker information in PIGBLUP v5.20 Use of marker information in PIGBLUP v5.20 Ron Crump and Bruce Tier Animal Genetics and Breeding Unit, a joint venture of NSW Department of Primary Industries and The University of New England. Introduction

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

6 Breeding your cows and heifers

6 Breeding your cows and heifers 6 Breeding your cows and heifers 6 Breeding your cows and heifers Regardless of the bulls you use, breeding your herd replacements from your best cows and heifers is essential if you want to achieve the

More information

Crossbreeding in Beef Cattle

Crossbreeding in Beef Cattle W 471 Crossbreeding in Beef Cattle F. David Kirkpatrick, Professor Department of Animal Science Improving the productivity and efficiency of a commercial beef production operation through genetic methods

More information

Genomic selection and its potential to change cattle breeding

Genomic selection and its potential to change cattle breeding ICAR keynote presentations Genomic selection and its potential to change cattle breeding Reinhard Reents - Chairman of the Steering Committee of Interbull - Secretary of ICAR - General Manager of vit,

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Danika Bannasch DVM PhD. School of Veterinary Medicine University of California Davis

Danika Bannasch DVM PhD. School of Veterinary Medicine University of California Davis Genetics 101 Danika Bannasch DVM PhD Maxine Adler Endowed Chair in Genetics School of Veterinary Medicine University of California Davis Outline Basic genetics: The Rules Not so basic genetics: The exceptions

More information

Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and 3, 2009, Casper, WY USING INFORMATION TO MAKE INFORMED SELECTION DECISIONS

Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and 3, 2009, Casper, WY USING INFORMATION TO MAKE INFORMED SELECTION DECISIONS Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and 3, 2009, Casper, WY Formatted: Right: 1.25" USING INFORMATION TO MAKE INFORMED SELECTION DECISIONS Matt Spangler Department of Animal Science

More information

Canadian Hereford Association

Canadian Hereford Association Canadian Hereford Association Pan American Hereford Cattle Evaluation Fall 2017 EPD Averages, Tools and Trends Includes: Introduction to Genomically Enhanced EPD Post-Weaning Gain EPD Residual Feed Intake

More information

IMPACT OF SEED STOCK SELECTION ON THE ECONOMICS OF A COW-CALF OPERATION

IMPACT OF SEED STOCK SELECTION ON THE ECONOMICS OF A COW-CALF OPERATION IMPACT OF SEED STOCK SELECTION ON THE ECONOMICS OF A COW-CALF OPERATION Timothy D. Hewitt and John Holt North Florida Research and Education Center University of Florida, Marianna; and Food and Resource

More information

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both?

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both? Frequency 10/6/2014 Variation Chapter 9 Some terms Genotype Allele form of a gene, distinguished by effect on phenotype Haplotype form of a gene, distinguished by DNA sequence Gene copy number of copies

More information

Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck!

Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck! NAME DATE Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck! 1. Could the characteristic followed in the pedigree be caused by an autosomal dominant

More information

Profiting from Information Management and Genomics

Profiting from Information Management and Genomics Profiting from Information Management and Genomics AARD Workshop Lethbridge 13 th Fed 2015 John J. Crowley Research Associate, University of Alberta Director of Science, Canadian Beef Breeds Council Livestock

More information

What is heredity? Information passed down from parents to children through their DNA

What is heredity? Information passed down from parents to children through their DNA Heredity What is heredity? Information passed down from parents to children through their DNA Which are some examples of hereditary traits? -you can curl your tongue -you have naturally brown hair -you

More information

How might DNA-based information generate value in the beef cattle sector?

How might DNA-based information generate value in the beef cattle sector? How might DNA-based information generate value in the beef cattle sector? Animal Biotechnology & Genomics Cooperative Extension Specialist Department of Animal Science University of California, Davis Davis,

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission 2015. M40 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2015 AGRICULTURAL SCIENCE HIGHER LEVEL THURSDAY, 18 JUNE MORNING, 9.30 12.00 Answer any six questions.

More information

DAFWA comments on AWI Industry Consultation Document

DAFWA comments on AWI Industry Consultation Document DAFWA comments on AWI Industry Consultation Document General Genetic improvement, whether it is related to crops, trees or animals, is a key component of improved profitability of all farming systems.

More information

TO IDENTIFY EASY CALVING, SHORT GESTATION BEEF BULLS WITH MORE SALEABLE CALVES USE THE DAIRY BEEF INDEX

TO IDENTIFY EASY CALVING, SHORT GESTATION BEEF BULLS WITH MORE SALEABLE CALVES USE THE DAIRY BEEF INDEX TO IDENTIFY EASY CALVING, SHORT GESTATION BEEF BULLS WITH MORE SALEABLE CALVES USE THE DAIRY BEEF INDEX WHAT IS THE DAIRY BEEF INDEX? The Dairy Beef Index (DBI) is a breeding goal for Irish dairy and beef

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

Advances in Genetics Lesson 5

Advances in Genetics Lesson 5 Advances in Genetics Lesson 5 May 16 6:43 PM How can organisms be produced with desired traits? May 16 6:44 PM 1 I. How can organisms be produced with desired traits A. With advance in genetics, DNA evidence

More information

Use of New Breeding Techniques applied to cattle

Use of New Breeding Techniques applied to cattle 17 May 2018 Use of New Breeding Techniques applied to cattle European Parliament Committee on Agriculture and Rural Development Pôle de Lanaud, headquarter of the french Limousin breed 2 The breeding program

More information

João Dürr Interbull Centre Director. Animal identification and traceability Interbull s s and Interbeef s perspectives

João Dürr Interbull Centre Director. Animal identification and traceability Interbull s s and Interbeef s perspectives João Dürr Interbull Centre Director Animal identification and traceability Interbull s s and Interbeef s perspectives Summary Interbull & Interbeef Genetic improvement essentials Globalization of cattle

More information

The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland. Kevin Downing 27 th October, 2016

The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland. Kevin Downing 27 th October, 2016 The benefits of genotyping at farm level & the impact across the wider dairy herd in Ireland Kevin Downing 27 th October, 2016 Introduction Working with ICBF since 2002 in the farm services area Owner

More information

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem Population Genetics A Population is: a group of same species organisms living in an area An allele is: one of a number of alternative forms of the same gene that may occur at a given site on a chromosome.

More information

Improving Genetics in the Suckler Herd by Noirin McHugh & Mark McGee

Improving Genetics in the Suckler Herd by Noirin McHugh & Mark McGee Section 4 23 by Noirin McHugh & Mark McGee Introduction Carefully identifying better animals and breeding them with other superior animals will gradually improve the genetics of a herd. Enhanced genetics

More information

RECOLAD. Introduction to the «atelier 1» Genetic approaches to improve adaptation to climate change in livestock

RECOLAD. Introduction to the «atelier 1» Genetic approaches to improve adaptation to climate change in livestock RECOLAD. Introduction to the «atelier 1» Genetic approaches to improve adaptation to climate change in livestock Ahmed El Beltagy (ahmed_elbeltagi@yahoo.com and D. Laloë (denis.laloe@jouy.inra.fr) Introduction

More information

EPD Info 1/5. Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs)

EPD Info 1/5. Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs) EPD Info gelbvieh.org/genetic-technology/epd-info/ Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs) Expected progeny differences (EPDs) can be used to predict the average

More information

Population and Community Dynamics. The Hardy-Weinberg Principle

Population and Community Dynamics. The Hardy-Weinberg Principle Population and Community Dynamics The Hardy-Weinberg Principle Key Terms Population: same species, same place, same time Gene: unit of heredity. Controls the expression of a trait. Can be passed to offspring.

More information