Michaelis Menten Kinetics -Enzyme Kinetics, Binding and Cooperativity

Size: px
Start display at page:

Download "Michaelis Menten Kinetics -Enzyme Kinetics, Binding and Cooperativity"

Transcription

1 Michaelis Menten Kinetics -Enzyme Kinetics, Binding and Cooperativity Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9

2 Table of Contents 1 INTRODUCTION EQUILIBRIUM BINDING BINDING CURVE COMPLEXITY IN BINDING COOPERATIVITY AND ALLOSTERY REFERENCE TEXT BOOK LITERATURE REFERENCES... 9 Joint Initiative of IITs and IISc Funded by MHRD Page 2 of 9

3 1 Introduction This module begins initially with enzyme kinetics and chemical equilibrium to make the students familiar with reaction equations that are applicable in the later part of the discussions. Enzymes are group of catalysts and biological macromolecules that have high specificity. Most of the enzymes are involved in cellular metabolism but the precise mechanisms of action of many enzymes are yet to be clearly understood. There is still a long gap in understanding the physiological behaviour of enzymes as experimental studies use only isolated and purified enzymes. Enzymes are involved in complex cascade of events with several intermediate steps. Enzymes reduce the activation energy and hence speed up the reaction without influencing the reaction equilibrium and free energy as in Fig 1. Fig 1: Free energy profile in enzyme catalysis Enzymes either catalyse a single step reaction or a set of complex reactions with several intermediate steps. For an enzymatic reaction to occur, there should be an effective interaction between the substrate and the enzyme. Enzymes bind their substrates through weak non covalent interactions that need specific orientation of the molecules to form a complex. The region of enzyme where the substrate gets Joint Initiative of IITs and IISc Funded by MHRD Page 3 of 9

4 bound is the active site and these are specific for different substrates of a particular enzyme. Two models were proposed to explain the specificity of the enzyme based on the conformational changes occurring in the enzyme to facilitate the binding of substrate Fig 2. i). Lock and key The enzyme s active site has a conformation matching the substrate and hence whenever it comes near the site it can be easily accommodated. ii). Induced fit Once the substrate molecule reaches the vicinity of enzymes active site, it changes its own conformation to accommodate the substrate. Fig 2: Models to support the binding of enzyme and substrate Initially, the substrate binds to the active site of the enzyme after which the conversion of substrate to product happens and finally, unaltered enzyme is detached from the product. This is a strictly physical interaction and the binding substrate, is often referred as ligand. Hence, understanding the specific binding of macromolecule (enzyme) with its ligand (substrate) is essential to analyse the functionality of an enzyme. Binding of an enzyme and substrate is simple in a single substrate reaction, but becomes more complex with the presence of two or more substrates or molecules such as inducers, inhibitors or cofactors in the biological system. Joint Initiative of IITs and IISc Funded by MHRD Page 4 of 9

5 2 Equilibrium Binding A simple enzymatic reaction involves binding of free enzyme (E) to the ligand (A) to form the complex (EA). The reaction is reversible and hence law of mass action can be used to define the binding event with two terms namely association constant (K a ) and dissociation constant (K d ). Where, K 1 Macromolecule (E) + Ligand (A) Macromolecule-ligand complex (EA) K -1 Both association and dissociation constants can be used to describe the equilibrium of the enzymatic reaction. In general, association constant K a is used to explain the equilibrium of the reaction and dissociation constant K d is used to explain the enzyme kinetics. The affinity of binding depends on the concentration of the substrate. Association constant K a is inversely proportional to the concentration of the substrate and hence more K a will lead to more affinity. The dissociation constant K d is directly proportional to concentration and hence lower the value of K d, strong binding affinity will be observed. 2.1 Binding curve The relationship between the fraction of free ligand to the fraction of ligand bound to macromolecule can be arrived at from the expression of K d and usually shown as a binding curve. Initially, only the total enzyme and ligand concentrations are known. So, from law of mass conservation, [E] 0 = [E] + [EA] and Joint Initiative of IITs and IISc Funded by MHRD Page 5 of 9

6 [A] 0 = [A] + [EA] Concentration of bound ligand can be determined through experiments. When a ligand has only one binding site for an enzyme, its concentration in bound form will be, However, in real conditions, most of the enzymes have more than one binding site for a specific ligand. For e.g., Haemoglobin (Hb) has 4 distinct binding sites for oxygen molecule. Haemoglobin present in our blood has the ability to bind oxygen and it carries it from lungs to the tissues. The partial pressure of oxygen plays important role in binding of oxygen to haemoglobin. Also, the concentration of Haemoglobin present in blood is essential to determine its binding efficiency. When all the binding sites in Hb molecules are occupied, the blood is said to be 100% saturated and cannot carry any more oxygen. Under the different partial pressures of oxygen the saturation level of haemoglobin is influenced Fig 3. Fig3: Binding curve for Haemoglobin showing the %saturation at different partial pressures of oxygen In certain situations, one of the reactant might be available at huge amount and hence we can neglect the change in concentration of that reactant throughout the reaction. Consider any hydrolysis reaction, where hydrogen ions will be present in Joint Initiative of IITs and IISc Funded by MHRD Page 6 of 9

7 excess amount, making it difficult to detect any change in its concentration. In these situations, the K d for excess reactant is not considered and an apparent K d will be calculated which is concentration of the reactant times K d. In biological processes, the genetic material either DNA/RNA, requires proper binding with specific proteins for their active mechanisms like transcription and translation to be executed. RNA polymerase enzyme complex should bind to DNA efficiently to initiate and proceed with transcription. In addition, binding of small molecules such as transcription factors, activators/repressors to this enzyme complex is crucial for the process to take over. This will give a clear idea on the importance of binding. 3 Complexity in Binding Binding of a single protein molecule to DNA is complex and is difficult to understand while the binding of multiple protein complexes that are non-equivalent makes the binding process much more complex Fig 4. Fig4. Complexity in analysis of protein-dna binding at equilibrium It is essential to optimise the conditions for effective binding between DNA and protein. To achieve this, we should concentrate on quantitative analysis on the Joint Initiative of IITs and IISc Funded by MHRD Page 7 of 9

8 binding affinity and the occupancy of the binding site (either fully or partially occupied); number of protein molecules binding to each DNA molecule; equilibrium binding constants and specificity of the binding; Cooperativity of binding in case of multiple proteins binding to same DNA molecule, etc., 4 Cooperativity and Allostery In most biological events the enzyme has the ability to bind another substrate molecule in a site different from that of the active site where the first substrate has been bound. In such conditions, binding of first substrate might have some influence over the binding of second substrate/ligand at a different site of the enzyme, where this indirect influence at a different site is called Co-operativity. The binding of another substrate at a different site apart from its active site is called allostery and enzymes showing this property are termed allosteric enzymes (allo other). Certain molecules or ligands that bind to the binding site can either be activators or inhibitors, depending on how they influence the binding at the second site when bound to the enzyme. Cooperativity of the ligands towards the enzyme can be either positive where the binding of the first ligand facilitates binding of other or negative where the condition is reverse. Whenever the number of binding sites in the enzyme is limited, the affinity of ligand is critical to determine the binding. So far, we have seen the advantages of an enzymatic reaction and the steps involved, equilibrium of the binding, its complexity and the cooperative behaviour in enzymes. We shall discuss the kinetics of a simple single substrate enzymatic reaction, in the next lecture. Joint Initiative of IITs and IISc Funded by MHRD Page 8 of 9

9 5 Reference 5.1 Text Book 1. Bisswanger H, Enzyme Kinetics, Principles and Methods, WILEY-VCH (2002) 5.2 Literature References 1. Rippe K et al., Analysis of protein-dna binding at equilibrium, B. I. F. Futura, (1997), 12, Athel Cornish-Bowden, Two centuries of catalysis, J. Biosci., (1997), 2, Joint Initiative of IITs and IISc Funded by MHRD Page 9 of 9

Conformational properties of enzymes

Conformational properties of enzymes Conformational properties of enzymes; Physics of enzyme substrate interactions; Electronic conformational interactions, cooperative properties of enzymes Mitesh Shrestha Conformational properties of enzymes

More information

Allosteric Effects & Cooperative Binding

Allosteric Effects & Cooperative Binding Allosteric Effects & Cooperative Binding The shape of the binding curve for oxygen to myoglobin is hyperbolic and follows the equation for non-cooperative binding: Y=[L]/(KD + [L]). The binding curve for

More information

6 Enzymes II W. H. Freeman and Company

6 Enzymes II W. H. Freeman and Company 6 Enzymes II 2017 W. H. Freeman and Company The role of an enzyme in an enzyme-catalyzed reaction is to: A. bind a transition state intermediate, such that it cannot be converted back to substrate. B.

More information

G = H (T S) I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism

G = H (T S) I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism Metabolism represents the sum total of ALL chemical reactions within the cell. These reactions can be regarded as either catabolic or anabolic

More information

AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA

AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA Encodes hereditary information Used to specify the amino

More information

Enzymes and Coenzymes I. Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology

Enzymes and Coenzymes I. Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology Enzymes and Coenzymes I Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology What are Enzymes? Enzymes are biological catalysts that speed up the rate of a reaction without being changed in

More information

A. Incorrect! Enzymes are not altered or consumed by the reactions they catalyze.

A. Incorrect! Enzymes are not altered or consumed by the reactions they catalyze. CLEP Biology - Problem Drill 04: Enzymes and Cellular Metabolism No. 1 of 10 1. Which of the following statements about enzymes is correct? (A) Enzymes are consumed in a reaction. (B) Enzymes act by lowering

More information

Lecture 7: 9/7. CHAPTER 7 Kinetics and Regulation

Lecture 7: 9/7. CHAPTER 7 Kinetics and Regulation Lecture 7: 9/7 CHAPTER 7 Kinetics and Regulation Chapter 7 Outline The rate or velocity of an enzymatic reaction Consider a simple reaction: The velocity or rate of the reaction is determined by measuring

More information

Enzymes. Most known enzymes are large globular proteins.

Enzymes. Most known enzymes are large globular proteins. Chapter 10 Enzymes Enzymes Most known enzymes are large globular proteins. There are 27,383 proteins in the human genome. 12,000 have unknown functions and 6,000 behave as enzymes. Enzymes are necessary

More information

ENZYMES. Unit 3 - Energy

ENZYMES. Unit 3 - Energy ENZYMES Unit 3 - Energy What is an enzyme? What do they do? What is an enzyme? What do they do? Key Things to remember: They are proteins They are catalysts They are reusable - not consumed in reaction

More information

Enzyme kinetics. Irreversible inhibition inhibitor is bound tightly to enzyme - very slow dissociation can be covalent or non covalently bound

Enzyme kinetics. Irreversible inhibition inhibitor is bound tightly to enzyme - very slow dissociation can be covalent or non covalently bound Enzymes can be regulated by acceleration and inhibition inhibition very common - several different mechanisms competitive / non competitive reversible / irreversible Irreversible inhibition inhibitor is

More information

Dr. Jeffrey P. Thompson bio350

Dr. Jeffrey P. Thompson bio350 Chapter 8 Enzymes Green light GFP Blue light Modern day catalysis Catalysis (reaction promotion) may have gotten its beginning g in an RNA- dominated world. Most catalysis today has evolved into using

More information

Lab Module 2 -- ENZYME FUNCTION BIOL116L Spring 2008

Lab Module 2 -- ENZYME FUNCTION BIOL116L Spring 2008 Lab Module 2 -- ENZYME FUNCTION BIOL116L Spring 2008 (Note to students: this Module covers two weeks, starting the week of Feb. 18) Introduction Life depends on many biochemical reactions. Nearly all of

More information

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules بسمه تعالی کارشناسی ارشد بیوشیمی و بیولوژي سلول آنزیم ابراهیم قاسمی Enzyme Proteins with catalytic properties A small group of catalytic RNA molecules Catalyze reactions (degrade, conserve and transform

More information

BIOLOGY NOTES. CHAPTER 5 : BIOCATALYSIS SUBTOPIC : 5.1 Properties of enzymes and mechanism of actions

BIOLOGY NOTES. CHAPTER 5 : BIOCATALYSIS SUBTOPIC : 5.1 Properties of enzymes and mechanism of actions BIOLOGY CHAPTER 5 : BIOCATALYSIS SUBTOPIC : 5.1 Properties of enzymes and mechanism of actions LEARNING OUTCOMES: a) State the properties of enzymes. b) State the six classes of enzyme according to IUB

More information

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation I Dr. Mamoun Ahram Summer, 2017 Mechanisms of regulation Expression of isoenzymes Regulation of enzymatic activity Inhibitors Conformational changes Allostery Modulators Reversible

More information

Protein Structure/Function

Protein Structure/Function Protein Structure/Function C483 Spring 2013 1. Proteins segments which fold first can promote the folding of other sections of the protein into the native conformation by a process known as A) renaturation.

More information

Definition of enzyme. Enzymes are biological catalysts. ACatalystisdefinedas"asubstancethatincreasestherate. process.

Definition of enzyme. Enzymes are biological catalysts. ACatalystisdefinedasasubstancethatincreasestherate. process. Enzyme Definition of enzyme Enzymes are biological catalysts. ACatalystisdefinedas"asubstancethatincreasestherate of a chemical reaction without being itself changed in the process. Enzymes are proteins

More information

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

catalyst substrate active site

catalyst substrate active site Enzymes ENZYMES Enzyme is protein in nature, it acts as an organic catalyst which speeds up many chemical reactions in organisms. Enzyme works on a substance called substrate and change it into product.

More information

Enzymes and Coenzymes I

Enzymes and Coenzymes I Enzymes and Coenzymes I Objectives :- What are enzymes? Classification of enzymes and naming. Coenzymes, Cofactors, Isoenzymes. Enzyme activity and specificity. Factors affecting enzyme activity. Enzyme

More information

(6) 1. Describe three major structural differences between DNA and RNA

(6) 1. Describe three major structural differences between DNA and RNA BCH 4053 July 20, 2001 HOUR TEST 3 NAME (6) 1. Describe three major structural differences between DNA and RNA. Page Points 1 2 3 4 5 (6) 2. Which form of DNA (A, B, or Z) (Put answer in blank) Total has

More information

Nucleic Acids, Proteins, and Enzymes

Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Metabolism BIOL 3702: Chapter 10

Metabolism BIOL 3702: Chapter 10 Metabolism BIOL 3702: Chapter 10 Introduction to Metabolism u Metabolism is the sum total of all the chemical reactions occurring in a cell u Two major parts of metabolism: v Catabolism Ø Large, more complex

More information

Kyoto Encyclopedia of Genes and Genomes (KEGG)

Kyoto Encyclopedia of Genes and Genomes (KEGG) NPTEL Biotechnology -Systems Biology Kyoto Encyclopedia of Genes and Genomes (KEGG) Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded

More information

Lecture of October 15, 2018 Chapter 4: Hemoglobin and Cooperativity; Proof of Grand Central Dogma

Lecture of October 15, 2018 Chapter 4: Hemoglobin and Cooperativity; Proof of Grand Central Dogma Lecture of October 15, 2018 Chapter 4: Hemoglobin and Cooperativity; Proof of Grand Central Dogma Apichart Linhananta Department of Physics Lakehead University Section 4.1: Size Exclusion Chromatography;

More information

Paper No.: 01. Paper Title: FOOD CHEMISTRY. Module 22: Enzymes: General nature and Kinetics of. enzyme reactions

Paper No.: 01. Paper Title: FOOD CHEMISTRY. Module 22: Enzymes: General nature and Kinetics of. enzyme reactions Paper No.: 01 Paper Title: FOOD CHEMISTRY Module 22: Enzymes: General nature and Kinetics of enzyme reactions Enzymes: General nature and kinetics of enzyme reactions INTRODUCTION Enzymes are defined as

More information

My Question Paper. Copyright WJEC CBAC Ltd. All rights reserved Page 1 of 23

My Question Paper. Copyright WJEC CBAC Ltd. All rights reserved Page 1 of 23 My Question Paper Copyright WJEC CBAC Ltd. All rights reserved Page 1 of 23 1. The graph below shows the energy changes that take place during a chemical reaction. (a) (i) What is represented by X on the

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

S P E E D I N G U P C H E M I C A L R E AC T I O N S

S P E E D I N G U P C H E M I C A L R E AC T I O N S ENZYMES S P E E D I N G U P C H E M I C A L R E AC T I O N S TEKS 9C: Students will identify and investigate the role of enzymes WHAT ARE ENZYMES? Enzymes are proteins (what is their monomer?) These proteins

More information

I. Enzyme Action Figure 1: Activation Energy (Ea) Activation Energy (Ea):

I. Enzyme Action Figure 1: Activation Energy (Ea) Activation Energy (Ea): I. Enzyme Action Figure 1: Activation Energy (Ea) *Activation energy represents an energy barrier that reactant molecules must overcome in order to react & form products. Think of an Olympic track star

More information

An enzyme is a protein that acts as a biological catalyst that is, it speeds up a metabolic reaction without itself being permanently charged.

An enzyme is a protein that acts as a biological catalyst that is, it speeds up a metabolic reaction without itself being permanently charged. Enzyme Enzymes are globular proteins. Like all globular proteins, enzyme molecules are coiled into a precise three dimensional shape, with hydrophilic R groups (side chains) on the outside of the molecule

More information

Metabolism. BIOL 3702: Chapter 10. Introduction to Metabolism. Energy and Work. BIOL 3702: Chapter 10 AY Dr. Cooper 1. Metabolism (cont.

Metabolism. BIOL 3702: Chapter 10. Introduction to Metabolism. Energy and Work. BIOL 3702: Chapter 10 AY Dr. Cooper 1. Metabolism (cont. Metabolism BIOL 3702: Chapter 10 Introduction to Metabolism u Metabolism is the sum total of all the chemical reactions occurring in a cell u Two major parts of metabolism: v Catabolism Ø Large, more complex

More information

Unit title: Protein Structure and Function (SCQF level 8)

Unit title: Protein Structure and Function (SCQF level 8) Higher National Unit specification General information Unit code: H92J 35 Superclass: RH Publication date: May 2015 Source: Scottish Qualifications Authority Version: 01 Unit purpose This Unit is designed

More information

Biology Eighth Edition Neil Campbell and Jane Reece

Biology Eighth Edition Neil Campbell and Jane Reece BIG IDEA IV Biological systems interact, and these systems and their interactions possess complex properties. Enduring Understanding 4.B Competition and cooperation are important aspects of biological

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final. Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 50% midterm, 50% final Midterm: 5/15 History Atom Earth, Air, Water Fire SEM: 20-40 nm Silver 66.2% Gold

More information

Quick Review of Protein Synthesis

Quick Review of Protein Synthesis Collin College BIOL. 2401 Quick Review of Protein Synthesis. Proteins and Protein Synthesis Proteins are the molecular units that do most of the work in a cell. They function as molecular catalysts, help

More information

Problem Set No. 3 Due: Thursday, 11/04/10 at the start of class

Problem Set No. 3 Due: Thursday, 11/04/10 at the start of class Department of Chemical Engineering ChE 170 University of California, Santa Barbara Fall 2010 Problem Set No. 3 Due: Thursday, 11/04/10 at the start of class Objective: To understand and develop models

More information

Coherent Feed Forward Loops

Coherent Feed Forward Loops Coherent Feed Forward Loops Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1 INTRODUCTION...

More information

A New Cellular and Molecular Engineering Curriculum at Rice University

A New Cellular and Molecular Engineering Curriculum at Rice University Session A New Cellular and Molecular Engineering Curriculum at Rice University Ka-Yiu San, Larry V. McIntire, Ann Saterbak Department of Bioengineering, Rice University Houston, Texas 77005 Abstract The

More information

Cell and Tissue Culture

Cell and Tissue Culture Cell and Tissue Culture S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative of IITs

More information

TEKS and S.E.s. B.9C identify and investigate the role of enzymes

TEKS and S.E.s. B.9C identify and investigate the role of enzymes Enzymes TEKS and S.E.s B.9C identify and investigate the role of enzymes Vocabulary Enzyme Catalyst Substrate Active site Substrate-enzyme complex Activation energy Inhibitor Catabolic Anabolic Reactant

More information

1. Page 90: Cellular Metabolism Explain what the everyday use of the word metabolism means to you.

1. Page 90: Cellular Metabolism Explain what the everyday use of the word metabolism means to you. Biology 100 Winter 2013 North Seattle Community College Reading Guide 10 Metabolism, Enzymes, and Building a Protein Reading: 1) Chapter 5 (various pages) in Microbiology Demystified 2) Chapter 7 (various

More information

CHEM 761. Advanced Topics in Biochemistry

CHEM 761. Advanced Topics in Biochemistry CHEM 761 Advanced Topics in Biochemistry Goals: Up until this point, you have learned many of the basic pathways and concepts that are relevant to the cellular metabolism of all species. These include

More information

Each enzyme has a unique 3-D shape and recognizes and binds only the specific substrate of a reaction.

Each enzyme has a unique 3-D shape and recognizes and binds only the specific substrate of a reaction. 1 Enzyme = protein molecule that serves as a biological catalyst. allow life to go on. speed up and regulate metabolic reactions. Catalyst= a chemical that speeds up the rate of a reaction without itself

More information

What can you remember about enzymes? Mr W

What can you remember about enzymes? Mr W What can you remember about enzymes? Mr W Human Cells (f) Enzymes and Metabolism Learning Intentions Describe metabolism, synthetic (energy requiring) and breakdown (energy releasing) pathways Cell Metabolism

More information

Bioreaction Kinetics Seungwook Kim Chem. & Bio. Eng.

Bioreaction Kinetics Seungwook Kim Chem. & Bio. Eng. Bioreaction Kinetics 2 2004 Seungwook Kim Chem. & Bio. Eng. Reference Chemistry and the Living Organism, 6 th edition, Molly M. Bloomfield, Lawrence J. Stephens, John Wiley & Sons, Inc. Enzymes 1. Most

More information

From Gene to Protein. Wednesday, 26th July

From Gene to Protein. Wednesday, 26th July From Gene to Protein Wednesday, 26th July Overview During this session, you will explore the following questions: What are the building blocks of DNA? What are proteins made of? How does genes get translated

More information

Protein shape and function is determined by the sequence of amino acids that make up the protein. Amino acids are held together by peptide bonds to

Protein shape and function is determined by the sequence of amino acids that make up the protein. Amino acids are held together by peptide bonds to Protein shape and function is determined by the sequence of amino acids that make up the protein. Amino acids are held together by peptide bonds to form peptides. Peptides are held together by hydrogen

More information

20.320, notes for 9/18

20.320, notes for 9/18 20.320 Notes Page 1 20.320, notes for 9/18 Tuesday, September 18, 2012 9:37 AM Last time We covered the graph of RU vs. time during an SPR experiment. We see a different graph from the association and

More information

Starter: Match the graph with the factors that affect enzymes. Reaction Rate. Reaction Rate. Jun 21 12:04 p.m.

Starter: Match the graph with the factors that affect enzymes. Reaction Rate. Reaction Rate. Jun 21 12:04 p.m. Starter: Match the graph with the factors that affect enzymes Reaction Rate Reaction Rate Reaction Rate Reaction Rate Temperature ph Enzyme Concentration Substrate Concentration Jun 21 12:04 p.m. Quick

More information

Enzyme function Catabolism Anabolism -

Enzyme function Catabolism Anabolism - We will look at: Function, Structure + Specificity Enzymes and energy Models of enzyme action Cofactors + coenzymes Factors affecting enzyme activity Enzyme inhibitors Experiments and enzyme immobilisation

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *2249654089* BIOLOGY 9700/21 Paper 2 AS Level Structured Questions October/November 2016 1 hour 15 minutes

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 5

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 5 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 5 SPECIFICITY OF ENZYME ACTION You may recall that earlier we have outlined

More information

Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015

Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015 Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015 PHRM 836 Exam I - 1 Name: Instructions 1. Check your exam to make certain that it has 9 pages including this cover

More information

Biochemistry 2000 Midterm 2 1 of 5. Student Name : KEY Student ID :

Biochemistry 2000 Midterm 2 1 of 5. Student Name : KEY Student ID : Biochemistry 2000 Midterm 2 1 of 5 Student Name : KEY 2014-03-28 Student ID : Instructions: Write neatly and clearly. Cross out with a single line any material you do not wish to have marked. Marks will

More information

Unit 6: Biomolecules

Unit 6: Biomolecules Unit 6: Biomolecules Name: Period: Test 1 Table of Contents Title of Page Page Number Due Date Unit 6 Warm-Ups 3-4 Unit 6 KUDs 5-6 Biomolecules Cheat Sheet 7 Biomolecules Sorting Review 8-9 Unit 6 Vocabulary

More information

Final exam. Please write your name on the exam and keep an ID card ready.

Final exam. Please write your name on the exam and keep an ID card ready. Biophysics of Macromolecules Prof. R. Jungmann and Prof. J. Lipfert SS 2017 Final exam Final exam First name: Last name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an

More information

Chemistry 1050 Exam 4 Study Guide

Chemistry 1050 Exam 4 Study Guide Chapter 19 Chemistry 1050 Exam 4 Study Guide 19.1 and 19.2 Know there are 20 common amino acids that can polymerize into proteins. Know why amino acids are called alpha amino acids. Identify the charges

More information

Chemistry 1120 Exam 3 Study Guide

Chemistry 1120 Exam 3 Study Guide Chemistry 1120 Exam 3 Study Guide Chapter 9 9.1 and 9.2 Know there are 20 common amino acids that can polymerize into proteins. Know why amino acids are called alpha amino acids. Identify the charges of

More information

Objectives: Slide No.9. Slide No.5. Slide No.6. Slides (10-12)

Objectives: Slide No.9. Slide No.5. Slide No.6. Slides (10-12) Objectives: Slide No.9 Slide No.5 Slide No.6 Slides (10-12) 1. Understand how enzymes are able to speed up the rate of biochemical reactions in the body. 2. Identify classes of enzymes based on the type

More information

Growth factor delivery

Growth factor delivery Growth factor delivery S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative of IITs

More information

BC 367, Exam 2 November 13, Part I. Multiple Choice (3 pts each)- Please circle the single best answer.

BC 367, Exam 2 November 13, Part I. Multiple Choice (3 pts each)- Please circle the single best answer. Name BC 367, Exam 2 November 13, 2008 Part I. Multiple Choice (3 pts each)- Please circle the single best answer. 1. The enzyme pyruvate dehydrogenase catalyzes the following reaction. What kind of enzyme

More information

What can you tell me about this picture?

What can you tell me about this picture? What can you tell me about this picture? ENZYMES A protein with catalytic properties due to its power of specific activation 1. Anabolic reactions: Define the following terms: Reactions that build up molecules

More information

Developmental Biology BY1101 P. Murphy

Developmental Biology BY1101 P. Murphy Developmental Biology BY1101 P. Murphy Lecture 7 Cellular differentiation and the regulation of gene expression. In this lecture we looked at two main questions: How is gene expression regulated? (revision

More information

Chapter 8: DNA and RNA

Chapter 8: DNA and RNA Chapter 8: DNA and RNA Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 8-1 DNA and the Importance of Proteins Proteins play

More information

Microscale Thermophoresis

Microscale Thermophoresis AN INTRODUCTION Microscale Thermophoresis A sensitive method to detect and quantify molecular interactions OCTOBER 2012 CHAPTER 1 Overview Microscale thermophoresis (MST) is a new method that enables the

More information

Globins. The Backbone structure of Myoglobin 2. The Heme complex in myoglobin. Lecture 10/01/2009. Role of the Globin.

Globins. The Backbone structure of Myoglobin 2. The Heme complex in myoglobin. Lecture 10/01/2009. Role of the Globin. Globins Lecture 10/01/009 The Backbone structure of Myoglobin Myoglobin: 44 x 44 x 5 Å single subunit 153 amino acid residues 11 residues are in an a helix. Helices are named A, B, C, F. The heme pocket

More information

Globular proteins. Myoglobin and hemoglobin. Dr. Mamoun Ahram Summer semester,

Globular proteins. Myoglobin and hemoglobin. Dr. Mamoun Ahram Summer semester, Globular proteins Myoglobin and hemoglobin Dr. Mamoun Ahram Summer semester, 2017-2018 Functions of myoglobin and hemoglobin Myoglobin is storage of O 2 in muscles. During periods of oxygen deprivation,

More information

The Structure and Genetic Map of Lambda phage

The Structure and Genetic Map of Lambda phage NPTEL Biotechnology - Systems Biology The Structure and Genetic Map of Lambda phage Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded

More information

The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name:

The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name: The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name: 1 Course title Introductory Biochemistry for Medical Students 2 Course number 0501112 3 Credit hours (theory,

More information

Prac Results: Alkaline Phosphatase

Prac Results: Alkaline Phosphatase The Steady State Assumption BMED282 U2L3 Enzyme s and Regulation [conc] Product Substrate Time (min) The Steady State Assumption Prac Results: Alkaline Phosphatase [conc] Total Enzyme added = [] + [Efree]

More information

Chem Lecture 4 Enzymes Part 3

Chem Lecture 4 Enzymes Part 3 Chem 452 - Lecture 4 Enzymes Part 3 Question of the Day: What are the three major types of enzyme inhibition and how can kinetics be used to distinguish between them? Most Reactions involve multiple substrates.

More information

Unit 1 Human cells. 1. Division and differentiation in human cells

Unit 1 Human cells. 1. Division and differentiation in human cells Unit 1 Human cells 1. Division and differentiation in human cells Stem cells Describe the process of differentiation. Explain how differentiation is brought about with reference to genes. Name the two

More information

DNA & Protein Synthesis. The source and the process!

DNA & Protein Synthesis. The source and the process! DNA & Protein Synthesis The source and the process! Agenda I. DNA and Genes II. Protein Synthesis III. The Genetic Code I. DNA & Genes: The beauty of DNA Remember: DNA is a macromolecule that stores information

More information

BIOLOGY 311C - Brand Spring 2008

BIOLOGY 311C - Brand Spring 2008 BIOLOGY 311C - Brand Spring 2008 NAME (printed very legibly) Key UT-EID EXAMINATION 3 Before beginning, check to be sure that this exam contains 7 pages (including front and back) numbered consecutively,

More information

Biochemistry. Protein Biochemistry and Enzymology. Models for Enzyme Action

Biochemistry. Protein Biochemistry and Enzymology. Models for Enzyme Action 1 Description of Module Subject Name Paper Name Module Name/Title Biochemstry 08 Dr. Vinutha T and Dr. Rama Prashat 2 1. Objectives 2. To understand the mode of action of enzymes. 3. To discuss different

More information

Protein Synthesis. OpenStax College

Protein Synthesis. OpenStax College OpenStax-CNX module: m46032 1 Protein Synthesis OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will

More information

UNIT 2 HUMAN BIOLOGY NOTES

UNIT 2 HUMAN BIOLOGY NOTES DNA, genes and chromosomes CHAPTER 13 DNA THE CODE FOR LIFE - DNA is short for deoxyribonucleic acid found in cells of organisms. The DNA is embedded within the nucleus of a cell. - DNA is a long stranded

More information

Biology Enzymes. Slide 1 / 64. Slide 2 / 64. Slide 3 / 64. Vocabulary Click on each word below to go to the definition

Biology Enzymes. Slide 1 / 64. Slide 2 / 64. Slide 3 / 64. Vocabulary Click on each word below to go to the definition Slide 1 / 64 Slide 2 / 64 iology Enzymes 2015-08-28 www.njctl.org Vocabulary lick on each word below to go to the definition. Slide 3 / 64 activation energy active site allosteric regulation catalyst coenzyme

More information

CHMI 2227E Biochemistry I

CHMI 2227E Biochemistry I CHMI 2227E Biochemistry I Proteins: - Quaternary structure CHMI 2227 - E.R. Gauthier, Ph.D. 1 CHMI 2227 - E.R. Gauthier, Ph.D. 2 hydrophobic Quaternary structure involves several polypeptides: Oligomers

More information

B. Information for Spring Semester TIMES: Lecture 1 M,W,F 12:00-12:50 Room Science A109 Lab 1 T 11:00-13:50 Science D118

B. Information for Spring Semester TIMES: Lecture 1 M,W,F 12:00-12:50 Room Science A109 Lab 1 T 11:00-13:50 Science D118 SYLLABUS for CHEMISTRY 260 ELEMENTARY BIOCHEMISTRY Spring 2006 INSTRUCTOR Dr. Thomas M. Zamis I. Course Description A. Biochemistry (Prerequisites: Chem 220; or 326 and 328) Elementary Biochemistry is

More information

Control of Metabolic Processes

Control of Metabolic Processes Control of Metabolic Processes Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College As described earlier, the metabolic processes occurring within living organisms (glycolysis, respiration,

More information

2013 W. H. Freeman and Company. 5 Function of Globular Proteins

2013 W. H. Freeman and Company. 5 Function of Globular Proteins 2013 W. H. Freeman and Company 5 Function of Globular Proteins CHAPTER 5: Function of Globular Proteins Key topics in protein function: Reversible binding of ligands is essential Specificity of ligands

More information

10. BIOTECHNOLOGY (Code No. 045)

10. BIOTECHNOLOGY (Code No. 045) 10. BIOTECHNOLOGY (Code No. 045) An unprecedented growth of human knowledge in the field of Biological Sciences coupled with equally significant developments in the field of technology have brought significant

More information

Enzymes II. Dr. Kevin Ahern

Enzymes II. Dr. Kevin Ahern Enzymes II Dr. Kevin Ahern E+S ES ES* EP E+P Michaelis- Menten Kinetics E+S ES ES* EP E+P Michaelis- Menten Kinetics Rate of Formation E+S ES ES* EP E+P

More information

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS CHAPTER 1: ENZYME KINETICS AND APPLICATIONS EM 1 2012/13 ERT 317 BIOCHEMICAL ENGINEERING Course details Credit hours/units : 4 Contact hours : 3 hr (L), 3 hr (P) and 1 hr (T) per week Evaluations Final

More information

Hole s Essentials of Human Anatomy & Physiology

Hole s Essentials of Human Anatomy & Physiology Hole s Essentials of Human Anatomy & Physiology David Shier Jackie Butler Ricki Lewis Created by Dr. Melissa Eisenhauer Head Athletic Trainer/Assistant Professor Trevecca Nazarene University Amended by

More information

Unit title: Biochemistry: Theory and Laboratory Skills (SCQF level 7)

Unit title: Biochemistry: Theory and Laboratory Skills (SCQF level 7) Higher National Unit specification General information Unit code: H922 34 Superclass: RH Publication date: May 2015 Source: Scottish Qualifications Authority Version: 01 Unit purpose This Unit is designed

More information

Chapter 10. Oxygen Transporting Proteins

Chapter 10. Oxygen Transporting Proteins Chapter 10 Oxygen Transporting Proteins Oxygen-transport proteins Vertebrates Myoglobin (Muscle) Hemoglobin (Blood) Invertebrates Hemerythrin Hemocyanin Heme Cu Cu O 22 Cu O 2 -binding site of hemocyanin

More information

Enzymes, ATP and Bioenergetics

Enzymes, ATP and Bioenergetics Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Enzymes, ATP and Bioenergetics Bioenergetics Bioenergetics can be defined as energy transfer mechanisms occurring within living organisms.

More information

Chem Lecture 5 Catalytic Strategies

Chem Lecture 5 Catalytic Strategies Chem 452 - Lecture 5 Catalytic Strategies 111026 Enzymes have evolved an array of different strategies or enhancing the power and specificity of the reactions they catalyze. For numerous enzymes the details

More information

Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015

Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015 Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015 PHRM 836 Exam I - 1 Name: Instructions 1. Check your exam to make certain that it has 9 pages including this cover

More information

Chapter 5: Microbial Metabolism (Part I)

Chapter 5: Microbial Metabolism (Part I) Chapter 5: Microbial Metabolism (Part I) Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Blood. Intermediate 2 Biology Unit 3 : Animal Physiology

Blood. Intermediate 2 Biology Unit 3 : Animal Physiology Blood Intermediate 2 Biology Unit 3 : Animal Physiology Composition of Blood Blood contains Red blood cells White blood cells platelets plasma Plasma Watery, yellowish fluid Suspended in plasma Proteins

More information

COMPUTER SIMULATION OF ENZYME KINETICS

COMPUTER SIMULATION OF ENZYME KINETICS COMPUTER SIMULATION OF ENZYME KINETICS I. Introduction. Enzymes are biological catalysts. A catalyst alters the speed at which a chemical reaction reaches its completion or equilibrium point. It does not

More information

Application of Biacore Technology

Application of Biacore Technology Principles and typical results Application of Biacore Technology Common types of Biacore analyses Specificity analysis Is my molecule of interest specific for its target? Multiple binding analysis In which

More information