A Process for Mapping COCOMO Input Parameters to True S Input Parameters

Size: px
Start display at page:

Download "A Process for Mapping COCOMO Input Parameters to True S Input Parameters"

Transcription

1 A Process for Mapping Input s to Input s

2 Agenda > Overview > Rosetta Stone II > Analysis > Summary 2

3 Overview > Initial Comparison and Assessment was Completed by USC Center for Systems & Software Engineering Initial Study was Limited to a Viewpoint Only > Analysis was Completed using the same Data the initial analysis used > Results are More Granular 3

4 Example: WBS Mapping Activities Phases II Management Environment CM Requirements Design Implementation Assessment Deployment Inception Elaboration Construction Transition System Requirements System Design Software Requirements Design Implementation Test System I&T Hardware/Software Integration System Qualification System Requirements Software Requirements Preliminary Design Detailed Design Code & Unit Test Integration & Test Software Qualification Test Hardware/S oftware Integration System I&T System Qualification Legend Core effort coverage per model Effort add-on as % of core coverage Common estimate baseline 4

5 Model Analysis Flow Start 5 Common Data base Apply to Rosetta Stone Uncalibrated Analysis Calibration analysis with Calibration and refined settings Consolidated Analysis

6 to Mapping Precedentedness Rating PREC No direct Input Accounted for in Adapted Design, Code, & test, along with software size reuse, and integration Development Flexibility FLEX No direct input Accounted for in Organization productivity, development team complexity, project complexity, and operating specification Architecture/Risk Resolution RESL No direct input Accounted for in # of Equivalent Requirements, Requirements Stability, COTS Tailoring and Evaluation inputs 6

7 to Mapping Team Cohesion TEAM Stakeholder Involvement Very None Minimal Minimal Moderate Very Complete Extra Complete 7

8 to Mapping Process Maturity PMAT Organizational Productivity Very / CMM Level 1 CMM Level 2 CMM Level 3 Very CMM Level 4 Extra CMM Level 5 8

9 to Mapping Required Software Reliability RELY Operating Specification Very Commercial Proprietary Software: Informal Development Commercial Proprietary Software: Formal Development - Reliability Commercial Production Software: Reliability Commercial Production Software: Reliability Very Military and Commercial aviation Extra Space 9

10 to Mapping Data Base Size DATA Internal & External Integration Very Very Very Very Extra None 10

11 to Mapping Product Complexity CPLX Functional Complexity Very Very Extra

12 to Mapping Developed for Reusability RUSE Design for Reuse None No design for reuse Across Project reuse/low impact reuse Across Program Reuse plans for a few selected parts of the application Across Product Line Reuse plans for much of the application with more than one project Across Multiple Product Lines Significant reuse across multiple projects 12

13 to Mapping Documentation Match to Life-Cycle Needs DOCU No Direct input Accounted for in Operating Specification, amount of new software, design for reuse, and organizational productivity Execution Time Constraints TIME Project Constraints Very, & Very 0.70 Extra 0.85 Main Storage Constraint STORE Project Constraints This input was consolidated with Time 13

14 to Mapping Platform Volatility PVOL Hardware Platform Stability & Hardware Platform availability Very N/A N/A Very Stable - Hardware Exists and is Functional/Available more than 95% of the time Moderately Stable - New hardware, Well Tested/ Available 50% to 75% of the time Very Unstable - Hardware Developed in Parallel/Available less than 50% of the time Extra N/A 14

15 to Mapping Analyst Capability ACAP Development Complexity/Analyst Capability Very Novice Still Learning Capable ly Capable Very Expert Extra Expert 15

16 to Mapping Programmer Capability PCAP Development Complexity/ Programmer Capability Very Novice Still Learning Capable ly Capable Very Expert Extra Expert 16

17 to Mapping Personnel Continuity PCON Development Complexity/ Team Continuity Very > 20% Turnover 10% - 20% Turnover 5% - 10% Turnover 3% - 5% Turnover Very < 3% Turnover Extra < 3% Turnover 17

18 to Mapping Application Experience APEX Development Complexity/ Familiarity with Product Very Novice Less Than 2 Years 2 5 Years 5 10 Years Very More Than 10 Years Extra More Than 10 Years 18

19 to Mapping Platform Experience PLEX Development Complexity/ Familiarity with Development Platform Very Novice Less Than 2 Years 2 5 Years 5 10 Years Very More Than 10 Years Extra More Than 10 Years 19

20 to Mapping Language & Tool Experience LTEX Development Complexity/ Experience with Language Very Novice Less Than 2 Years 2 5 Years 5 10 Years Very More Than 10 Years Extra More Than 10 Years 20

21 to Mapping Use of Software Tools TOOL Design/Code/Test Tools Very Stand Alone Minimal Integration Integration Very Complete Integration Extra Complete Integration 21

22 to Mapping Multi-site Development SITE Multiple Site Development Very Multi-national project with many communication challenges Team in many locations with few communication challenges Entire team located in same place Team in several locations with no focus on communications Very / Extra Team in several locations with communications a high priority 22

23 to Mapping Requirements Development Schedule SCED No direct Input Accounted for by entering schedule dates 23

24 Performance Measures > Compare Actual and Estimated Effort for n Projects in Dataset Relative Error (RE) = (Estimated Effort Actual Effort) / Actual Effort Magnitude of Relative Error (MRE) = І Estimated Effort Actual Effort І / Actual Effort Mean Magnitude of Relative Error (MMRE) = ( (MRE) / n Root Mean Square (RMS) = (( 1/n) (Estimated Effort Actual Effort) 2) ½ Where k = the number of projects in a set of n projects whose MRE <=L 24

25 Performance Examples Magnitude of Relative Error (MRE) Mean Magnitude of Relative Error Record # Normalized Org. Prod Un-Calibrated Calibration Results Normalized Org. Prod Un-Calibrated Calibration Results Series1 Relative Error RE Root Mean Square (RMS) Normalized Org. Prod Un-Calibrated Calibration Results Record # Normalized Org. Prod Un-Calibrated Calibration Results 25

26 II Performance Examples Actual Effort (Personmonths) Dataset Name: NASA 94 Category: Avionics Mode: Embedded Number of projects = Effort Estimates vs. Actuals Estimated Effort (Person-months) Effort Prediction Summary Calibrated Uncalibrated MMRE 55% MMRE 91% RMS RMS PRED(10) 12% PRED(10) 9% PRED(20) 19% PRED(20) 9% PRED(30) 45% PRED(30) 18% PRED(40) 65% PRED(40) 36% Percent Percent Flight Avionics Embedded Uncalibrated Calibrated Flight Avionics Embedded MMRE Calibration Effect Uncalibrated Calibrated Flight Science Embedded PRED(40) Calibration Effect Flight Science Embedded Project Types Project Types Flight (All) Flight (All) Ground Embedded Ground Embedded

27 Summary > Detailed Rosetta Stone Developed for to Input s > Allows for Generating Two Software Model Estimates Two Different Software Model Methodologies using One Input Data Set 27

User Manual. COCOMO II.2000 Post-Architecture Model Spreadsheet Implementation (Microsoft Excel 1997)

User Manual. COCOMO II.2000 Post-Architecture Model Spreadsheet Implementation (Microsoft Excel 1997) User Manual COCOMO II.2000 Post-Architecture Model Spreadsheet Implementation (Microsoft Excel 1997) Center for Software Engineering University of Southern California 2000 USC C enter for Software Engineering

More information

Cost Model Comparison Report

Cost Model Comparison Report Cost Model Comparison Report October 31, 2006 Update Version Prepared for: NASA Ames Prepared by: University of Southern California Center for Software Engineering 941 West 37 th Place Los Angeles, CA

More information

MTAT Software Economics. Session 6: Software Cost Estimation

MTAT Software Economics. Session 6: Software Cost Estimation MTAT.03.244 Software Economics Session 6: Software Cost Estimation Marlon Dumas marlon.dumas ät ut. ee Outline Estimating Software Size Estimating Effort Estimating Duration 2 For Discussion It is hopeless

More information

COCOMO II Bayesian Analysis

COCOMO II Bayesian Analysis COCOMO II Bayesian Analysis Sunita Chulani (sdevnani@sunset.usc.edu) Center for Software Engineering University of Southern California Annual Research Review March 9, 1998 Outline Motivation Research Approach

More information

COCOMO II Based Project Cost Estimation and Control

COCOMO II Based Project Cost Estimation and Control 3rd International Conference on Education, Management, Arts, Economics and Social Science (ICEMAESS 2015) COCOMO II Based Project Cost Estimation and Control Aihua Ren1, a, Yun Chen1, b 1 School of Computer

More information

COCOMO III. Brad Clark, PhD USC Center for Systems and Software Engineering 2017 Annual Research Review April 4, 2017

COCOMO III. Brad Clark, PhD USC Center for Systems and Software Engineering 2017 Annual Research Review April 4, 2017 COCOMO III Brad Clark, PhD USC 2017 Annual Research Review April 4, 2017 The COCOMO III Project COCOMO (COnstructure COst MOdel) is the most widely used, free, open source software cost estimation model

More information

SEER-SEM to COCOMO II Factor Convertor

SEER-SEM to COCOMO II Factor Convertor SEER-SEM to COCOMO II Factor Convertor Anthony L Peterson Mechanical Engineering 8 June 2011 SEER-SEM to COCOMO II Factor Convertor The Software Parametric Models COCOMO II public domain model which continues

More information

Elaboration Cost Drivers Workshop. 18 th COCOMO / SCE Forum October 2003

Elaboration Cost Drivers Workshop. 18 th COCOMO / SCE Forum October 2003 Elaboration Cost Drivers Workshop 18 th COCOMO / SCE Forum October 200 Attendees Brad Clark (moderator) Mauricio Aguiar Michael Douglas Samuel Eiferman Stuart Garrett Dan Ligett Vicki Love Karen Lum Karen

More information

C S E USC. University of Southern California Center for Software Engineering

C S E USC. University of Southern California Center for Software Engineering COCOMO II: Airborne Radar System Example Dr. Ray Madachy C-bridge Internet Solutions Center for Software Engineering 15th International Forum on COCOMO and Software Cost Modeling October 24, 2000 C S E

More information

3. December seminar cost estimation W 2002/2003. Constructive cost model Department of Information Technology University of Zurich

3. December seminar cost estimation W 2002/2003. Constructive cost model Department of Information Technology University of Zurich I 3. December 2002 seminar cost estimation W 2002/2003 COCOMO Constructive cost model Department of Information Technology University of Zurich Nancy Merlo-Schett Nancy Merlo-Schett, Department of Information

More information

Systems Cost Modeling

Systems Cost Modeling Systems Cost Modeling Affiliate Breakout Group Topic Gary Thomas, Raytheon 0 1900 USC Center for Software Engineering Sy~C~stModelingBreakoutTopicVisual-v0-1 vl.o - 10/27/00 University of Southern California

More information

The Rosetta Stone: Making COCOMO 81 Files Work With COCOMO II

The Rosetta Stone: Making COCOMO 81 Files Work With COCOMO II The Rosetta Stone: Making COCOMO 81 Files Work With COCOMO II Donald J. Reifer, Reifer Consultants, Inc. Barry W. Boehm, University of Southern California Sunita Chulani, University of Southern California

More information

SOFTWARE EFFORT AND SCHEDULE ESTIMATION USING THE CONSTRUCTIVE COST MODEL: COCOMO II

SOFTWARE EFFORT AND SCHEDULE ESTIMATION USING THE CONSTRUCTIVE COST MODEL: COCOMO II SOFTWARE EFFORT AND SCHEDULE ESTIMATION USING THE CONSTRUCTIVE COST MODEL: COCOMO II Introduction Jongmoon Baik, Sunita Chulani, Ellis Horowitz University of Southern California - Center for Software Engineering

More information

Software User Manual Version 3.0. COCOMOII & COCOTS Application. User Manual. Maysinee Nakmanee. Created by Maysinee Nakmanee 2:07 PM 9/26/02 1

Software User Manual Version 3.0. COCOMOII & COCOTS Application. User Manual. Maysinee Nakmanee. Created by Maysinee Nakmanee 2:07 PM 9/26/02 1 COCOMOII & COCOTS Application User Manual Maysinee Nakmanee Created by Maysinee Nakmanee 2:07 PM 9/26/02 1 Created by Maysinee Nakmanee 2:07 PM 9/26/02 2 Contents INTRODUCTION... 4 MODEL OVERVIEW... 5

More information

Determining How Much Software Assurance Is Enough?

Determining How Much Software Assurance Is Enough? Determining How Much Software Assurance Is Enough? Tanvir Khan Concordia Institute of Information Systems Engineering Ta_k@encs.concordia.ca Abstract It has always been an interesting problem for the software

More information

COCOMO II Model. Brad Clark CSE Research Associate 15th COCOMO/SCM Forum October 22, 1998 C S E USC

COCOMO II Model. Brad Clark CSE Research Associate 15th COCOMO/SCM Forum October 22, 1998 C S E USC COCOMO II Model Brad Clark CSE Research Associate 15th COCOMO/SCM Forum October 22, 1998 Brad@Software-Metrics.com COCOMO II Model Overview COCOMO II Overview Sizing the Application Estimating Effort Estimating

More information

According to the Software Capability Maturity Model (SW-

According to the Software Capability Maturity Model (SW- Data Collection Four areas generally influence software development effort: product factors, project factors, platform factors, and personnel facfocus estimation Quantifying the Effects of Process Improvement

More information

RESULTS OF DELPHI FOR THE DEFECT INTRODUCTION MODEL

RESULTS OF DELPHI FOR THE DEFECT INTRODUCTION MODEL RESULTS OF DELPHI FOR THE DEFECT INTRODUCTION MODEL (SUB-MODEL OF THE COST/QUALITY MODEL EXTENSION TO COCOMO II) Sunita Devnani-Chulani USC-CSE Abstract In software estimation, it is important to recognize

More information

You document these in a spreadsheet, estimate them individually and compute the total effort required.

You document these in a spreadsheet, estimate them individually and compute the total effort required. Experience-based approaches Experience-based techniques rely on judgments based on experience of past projects and the effort expended in these projects on software development activities. Typically, you

More information

COCOMO II Demo and ARS Example

COCOMO II Demo and ARS Example COCOMO II Demo and ARS Example CS 566 Software Management and Economics Lecture 5 (Madachy 2005; Chapter 3, Boehm et al. 2000) Ali Afzal Malik Outline USC COCOMO II tool demo Overview of Airborne Radar

More information

Quality Management Lessons of COQUALMO (COnstructive QUALity MOdel) A Software Defect Density Prediction Model

Quality Management Lessons of COQUALMO (COnstructive QUALity MOdel) A Software Defect Density Prediction Model Quality Management Lessons of COQUALMO (COnstructive QUALity MOdel) A Software Defect Density Prediction Model AWBrown and Sunita Chulani, Ph.D. {AWBrown, sdevnani}@csse.usc.edu} -Center for Systems &

More information

Project Plan: MSE Portfolio Project Construction Phase

Project Plan: MSE Portfolio Project Construction Phase Project Plan: MSE Portfolio Project Construction Phase Plans are nothing; planning is everything. Dwight D. Eisenhower September 17, 2010 Prepared by Doug Smith Version 2.0 1 of 7 09/26/2010 8:42 PM Table

More information

COCOMO III Drivers of Cost

COCOMO III Drivers of Cost Software Size Product Attributes Platform Attributes COCOMO III Drivers of Cost Personnel Attributes Project Attributes Quality Attributes Attributes & Drivers Product Attributes... 3 Impact of Software

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Mental Math Team - 7 Isha Agarwal Prototyper, Life Cycle Planner, JingXing Cheng Kajal Taneja Operational Concept Engineer, UML Modeler, Kiranmai Ponakala, Life Cycle Planner, IIV

More information

Software Engineering

Software Engineering Software Engineering (CS550) Estimation w/ COCOMOII Jongmoon Baik WHO SANG COCOMO? The Beach Boys [1988] KoKoMo Aruba, Jamaica,ooo I wanna take you To Bermuda, Bahama,come on, pretty mama Key Largo, Montego,

More information

COCOMO II.2003 Calibration Status USC-CSE 1

COCOMO II.2003 Calibration Status USC-CSE 1 COCOMO II.2003 Calibration Status 2003-3-19 USC-CSE 1 Outline Introduction to COCOMO II COCOMO II.2003 Calibration Conclusion 2003-3-19 USC-CSE 2 COCOMO II Model Usage COCOMO II Estimation Endpoints I

More information

A Value-Based Orthogonal Framework for Improving Life-Cycle Affordability

A Value-Based Orthogonal Framework for Improving Life-Cycle Affordability A Value-Based Orthogonal Framework for Improving Life-Cycle Affordability Barry Boehm, Jo Ann Lane, Sue Koolmanojwong http://csse.usc.edu NDIA Systems Engineering Conference October 25, 2012 Outline Affordability

More information

Lecture 7 Project planning part 2 Effort and time estimation

Lecture 7 Project planning part 2 Effort and time estimation 1 Lecture 7 Project planning part 2 Effort and time estimation 22.2.2015 Lecture schedule 12.01 Introduction to the course and software engineering 19.01 Life-cycle/process models Project planning (part

More information

COCOMO Summary. USC-CSE COCOMO Team

COCOMO Summary. USC-CSE COCOMO Team K. Appendix 1. COCOMO II Summary COCOMO Summary Constructive Cost Model(COCOMO) is USC-CSE COCOMO Team Abstract 1-1 Table of Contents 1 Introduction...3 2 Overall Model Definition...3 2.1 COCOMO II Models

More information

Quality Management Lessons of COQUALMO (COnstructive QUALity MOdel) A Software Defect Density Prediction Model

Quality Management Lessons of COQUALMO (COnstructive QUALity MOdel) A Software Defect Density Prediction Model Quality Management Lessons of COQUALMO (COnstructive QUALity MOdel) A Software Defect Density Prediction Model AWBrown and Sunita Chulani, Ph.D. {AWBrown, sdevnani}@csse.usc.edu} -Center for Systems &

More information

Calibrating the COCOMO II Post-Architecture Model

Calibrating the COCOMO II Post-Architecture Model Calibrating the COCOMO II Post-Architecture Model Sunita Devnani-Chulani Bradford Clark Barry Boehm Center for Software Engineering Computer Science Department University of Southern California Los Angeles,

More information

Chapter 5 Estimate Influences

Chapter 5 Estimate Influences Dilbert Scott Adams Dilbert Scott Adams Chapter 5 Estimate Influences How much is 68 + 73? ENGINEER: It s 141. Short and sweet. MATHEMATICIAN: 68 + 73 = 73 + 68 by the commutative law of addition. True,

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Scriptonomics Team No - 7 Team Member USC Email Id Role Role Aditya Holikatti holikatt@usc.edu Feasibility Engineer Software Developer Alex Miller milleram@usc.edu IIV &V Website

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) City of Los Angeles Public Safety Applicant Resource Center Team No. 09 Team members and roles: Vaibhav Mathur Project Manager Preethi Ramesh Feasibility Analyst Arijit Dey Requirements

More information

Lecture 10 Effort and time estimation

Lecture 10 Effort and time estimation 1 Lecture 10 Effort and time estimation Week Lecture Exercise 10.3 Quality in general; Patterns Quality management systems 17.3 Dependable and safety-critical systems ISO9001 24.3 Work planning; effort

More information

CSCI 510 Midterm 1, Fall 2017

CSCI 510 Midterm 1, Fall 2017 CSCI 510 Midterm 1, Fall 2017 Monday, September 25, 2017 3 questions, 100 points If registered DEN student, please circle: Yes Last Name: First Name: USC ID: Question 1 (30) Question 2 (40) Question 3

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) City of Los Angeles Public Safety Applicant Resource Center Team No. 09 Team members and roles: Vaibhav Mathur Project Manager Preethi Ramesh Feasibility Analyst Arijit Dey Requirements

More information

Improving the Accuracy of COCOMO II Using Fuzzy Logic and Local Calibration Method

Improving the Accuracy of COCOMO II Using Fuzzy Logic and Local Calibration Method Improving the Accuracy of COCOMO II Using Fuzzy Logic and Local Calibration Method Muhammad Baiquni, Riyanarto Sarno, Sarwosri Department of Informatics Engineering, Institut Teknologi Sepuluh Nopember

More information

LADOT SCANNING. Team 8. Team members Primary Role Secondary Role. Aditya Kumar Feasibility Analyst Project Manager

LADOT SCANNING. Team 8. Team members Primary Role Secondary Role. Aditya Kumar Feasibility Analyst Project Manager Life Cycle Plan (LCP) LADOT SCANNING Team 8 Team members Role Role Aditya Kumar Feasibility Analyst Project Manager Anirudh Govil Project Manager Lifecycle Planner Corey Painter IIV&V Shaper Jeffrey Colvin

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) LCP_FCP_F14a_T07_V2.0 Version 2.0 Life Cycle Plan (LCP) Mission Science irobots Team 07 Ashwini Ramesha Chen Li Farica Mascarenhas Jiashuo Li Ritika Khurana Siddhesh Rumde Sowmya Sampath Yun Shao OCE,

More information

An Empirical Study of the Efficacy of COCOMO II Cost Drivers in Predicting a Project s Elaboration Profile

An Empirical Study of the Efficacy of COCOMO II Cost Drivers in Predicting a Project s Elaboration Profile An Empirical Study of the Efficacy of COCOMO II Cost Drivers in Predicting a Project s Elaboration Profile Ali Afzal Malik, Barry W. Boehm Center for Systems and Software Engineering University of Southern

More information

Life Cycle Plan (LCP) PicShare. Team 02

Life Cycle Plan (LCP) PicShare. Team 02 Life Cycle Plan (LCP) PicShare Team 02 Team Members Sultan Alsarra Adil cem Albayrak Julapat Julnual Charles Reitz Mohammad Almunea Aref Shafaeibejestan Andrea Brown Travis Weaver 12/7/15 Version History

More information

Software Efforts and Cost Estimation with a Systematic Approach

Software Efforts and Cost Estimation with a Systematic Approach Software Efforts and Cost Estimation with a Systematic Approach Chetan Nagar, 2 Anurag Dixit Ph.D Student, Mewar University (Gangrar) Chittodgarh Rajasthan India 2 Dean-Professor(CS/IT) BRCM CET,Bahal

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Mission Science Information and Data Management System 3.0 Team 03 Fei Yu: Project Manager, Life Cycle Planner Yinlin Zhou: Prototyper, Operational Concept Engineer Yunpeng Chen:

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Version 1.0 Life Cycle Plan (LCP) Software Quality Analysis as a Service (SQAaaS) Team No.1 Kavneet Kaur Requirement Engineer George Llames IIV & V Aleksandr Chernousov Life Cycle

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Women at Work Team No: 14 Sr no Name Role 1 Srikant Madhava Project Manager 2 Sanath Bhandary Operational Concept Engineer 3 Rohit Kudva Feasibility Analyst 4 Varma Maryala Life Cycle

More information

ETSF01: Software Engineering Process Economy and Quality. Chapter Five. Software effort estimation. Software Project Management

ETSF01: Software Engineering Process Economy and Quality. Chapter Five. Software effort estimation. Software Project Management Software Project Management ETSF01: Software Engineering Process Economy and Quality Dietmar Pfahl Lund University Chapter Five Software effort estimation What makes a successful project? Cost/Schedule

More information

Software Estimation Experiences at Xerox

Software Estimation Experiences at Xerox 15th International Forum on COCOMO and Software Cost Modeling Software Estimation Experiences at Xerox Dr. Peter Hantos Office Systems Group, Xerox 1 Theme Is making bad estimates a crime? No, but it is

More information

Effects of Process Maturity on Development Effort

Effects of Process Maturity on Development Effort Effects of Process Maturity on Development Effort Bradford K. Clark Center for Software Engineering University of Southern California Los Angeles, CA 90089-0781 Abstract There is a good deal of anecdotal

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Perfecto Coffee Xpress Consistent Perfection Team 5 Chloe Good Yekaterina Glazko Edwards Hays Yucheng Hsieh Atreya Lahiri Jaimin Patel Yun Shen Andrew Tran Name Team Members & Roles

More information

COCOMO I1 Status and Plans

COCOMO I1 Status and Plans - A University of Southern California c I S IE I Center for Software Engineering COCOMO I1 Status and Plans Brad Clark, Barry Boehm USC-CSE Annual Research Review March 10, 1997 University of Southern

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Healthy Kids Zone Survey App Team 14 Name Primary Role Contact Email Jessie Kim Client JKim@chc-inc.org Joseph Martinez Client JMartinez2@chc-inc.org Alex Campbell Client ACampbell@chc-inc.org

More information

Software Engineering Economics (CS656)

Software Engineering Economics (CS656) Software Engineering Economics (CS656) Software Cost Estimation w/ COCOMO II Jongmoon Baik Software Cost Estimation 2 You can not control what you can not see - Tom Demarco - 3 Why Estimate Software? 30%

More information

COCOMO 1 II and COQUALMO 2 Data Collection Questionnaire

COCOMO 1 II and COQUALMO 2 Data Collection Questionnaire COCOMO 1 II and COQUALMO 2 Data Collection Questionnaire 1. Introduction The Center for Software Engineering at the University of Southern California is conducting research to update the software development

More information

Software Project Management. Software effort

Software Project Management. Software effort Software Project Management Chapter Five Software effort estimation 1 Objectives The lecture discusses: why estimating is problematic (or challenging ) the main generic approaches to estimating, including:

More information

Software cost estimation

Software cost estimation Software cost estimation Joseph Bonello (based on slides by Ian Sommerville) Objectives To introduce the fundamentals of software costing and pricing To describe three metrics for software productivity

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Los Angeles Personnel Department Mobile Application Team 02 Shreya Kamani Shah: Project Manager, Life Cycle Planner Abhishek Trigunayat: Prototyper Anushree Sridhar: Software Architect

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) We Are Trojans (WAT) Network Team01 Team members Eirik Skogstad Min Li Pittawat Pamornchaisirikij Roles Project Manager, Life Cycle Planner Feasibility Analyst, Operational Concept

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Project Name: Leamos(TM) Team No. 7 Team Members and Roles Name Role Role Monty Shah Project Manager Life Cycle Planner Pragya Singh System Architect Prototyper Shantanu Sirsamkar

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) BlackProfessionals.net Team #6 Tian Xiang Tan Jhih-Sheng Cai Aril Alok Jain Pablo Ochoa Jeng-Tsung Tsai Sadeem Alsudais Po-Hsuan Yang Project Manager System/Software Architect Requirements

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) We Are Trojans (WAT) Network Team01 Team members Eirik Skogstad Min Li Pittawat Pamornchaisirikij Roles Project Manager, Life Cycle Planner Feasibility Analyst, Operational Concept

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) BlackProfessionals.net Team #6 Tian Xiang Tan Jhih-Sheng Cai Aril Alok Jain Pablo Ochoa Jeng-Tsung Tsai Sadeem Alsudais Po-Hsuan Yang Project Manager System/Software Architect Requirements

More information

Life Cycle Plan (LCP) City of Los Angeles Personnel Department Mobile Application. Team No 2. Shreya Kamani Shah: Project Manager, Life Cycle Planner

Life Cycle Plan (LCP) City of Los Angeles Personnel Department Mobile Application. Team No 2. Shreya Kamani Shah: Project Manager, Life Cycle Planner Life Cycle Plan (LCP) City of Los Angeles Personnel Department Mobile Application Team No 2 Shreya Kamani Shah: Project Manager, Life Cycle Planner Abhishek Trigunayat: Prototyper, Implementer Anushree

More information

Chapter 1: Introduction

Chapter 1: Introduction 1.1 What is COCOMO? COCOMO (COnstructive COst MOdel) is a screen-oriented, interactive software package that assists in budgetary planning and schedule estimation of a software development project. Through

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Yanomamo Interactive DVD/Online Team No. 6 Reetika Rastogi - Project Manager, Life Cycle Planner Rohit Mani - Requirements Engineer, Life Cycle Planner Sanjay Kutty - Feasibility

More information

Modeling Software Defect Introduction and Removal: COQUALMO (COnstructive QUALity MOdel)

Modeling Software Defect Introduction and Removal: COQUALMO (COnstructive QUALity MOdel) Modeling Software Defect Introduction and Removal: COQUALMO (COnstructive QUALity MOdel) Sunita Chulani and Barry Boehm USC - Center for Software Engineering Los Angeles, CA 90089-0781 1-213-740-6470 {sdevnani,

More information

SENG380:Software Process and Management. Software Size and Effort Estimation Part2

SENG380:Software Process and Management. Software Size and Effort Estimation Part2 SENG380:Software Process and Management Software Size and Effort Estimation Part2 1 IFPUG File Type Complexity Table 1 External user type External input types External output types Low Average High 3 4

More information

Evaluation of Calibration Techniques to Build Software Cost Estimation Models

Evaluation of Calibration Techniques to Build Software Cost Estimation Models ISSN:2320-0790 Evaluation of Calibration Techniques to Build Software Cost Estimation Models Safia Yasmeen 1, Prof.Dr.G.Manoj Someswar 2 1. Research Scholar, Mahatma Gandhi Kashi Vidyapith, Varnasi, U.P.,

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Cash Doctor 3.0 Team 12 Steven Helferich: Project Manager Kenneth Anguka: IIV&V Xichao Wang: Operational Concept Engineer Alisha Parvez: Life Cycle Planner Ekasit Jarussinvichai: Requirements Engineer

More information

DRAFT. Effort = A * Size B * EM. (1) Effort in person-months A - calibrated constant B - scale factor EM - effort multiplier from cost factors

DRAFT. Effort = A * Size B * EM. (1) Effort in person-months A - calibrated constant B - scale factor EM - effort multiplier from cost factors 1.1. Cost Estimation Models Parametric cost models used in avionics, space, ground, and shipboard platforms by the services are generally based on the common effort formula shown in Equation 1. Size of

More information

Life Cycle Plan (LCP) PicShare. Team 02

Life Cycle Plan (LCP) PicShare. Team 02 Life Cycle Plan (LCP) PicShare Team 02 Team Members Sultan Alsarra Adil cem Albayrak Julapat Julnual Charles Reitz Mohammad Almunea Aref Shafaeibejestan Andrea Brown Travis Weaver Dennis Evans 2/19/16

More information

Analysis of System ility Synergies and Conflicts

Analysis of System ility Synergies and Conflicts Analysis of System ility Synergies and Conflicts Barry Boehm, USC NDIA SE Conference October 30, 2014 10-30-2014 1 Ilities Tradespace and Affordability Analysis Critical nature of the ilities Or non-functional

More information

Life Cycle Plan (LCP) City of Los Angeles Personnel Department Mobile Applications

Life Cycle Plan (LCP) City of Los Angeles Personnel Department Mobile Applications Life Cycle Plan (LCP) City of Los Angeles Personnel Department Mobile Applications Team 02 Anushree Sridhar - Software Architect Shreya Kamani - Project Manager Divya Reddy - Requirements Engineer Pattra

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Perfecto Coffee Xpress Consistent Perfection Team 5 Chloe Good Yekaterina Glazko Edwards Hays Yucheng Hsieh Atreya Lahiri Jaimin Patel Yun Shen Andrew Tran Name Team Members & Roles

More information

Software cost estimation

Software cost estimation Software cost estimation Objectives To introduce the fundamentals of software costing and pricing To describe three metrics for software productivity assessment To explain why different techniques should

More information

CSCI 510 Final Exam, Fall 2017 v10 of solution & rubric Monday, December 11, questions, 300 points

CSCI 510 Final Exam, Fall 2017 v10 of solution & rubric Monday, December 11, questions, 300 points CSCI 510 Final Exam, Fall 2017 v10 of solution & rubric Monday, December 11, 2017 4 questions, 300 points If registered DEN student, please circle: Yes Last Name: First Name: USC ID: Question 1 (48) Question

More information

Amanullah Dept. Computing and Technology Absayn University Peshawar Abdus Salam

Amanullah Dept. Computing and Technology Absayn University Peshawar Abdus Salam A Comparative Study for Software Cost Estimation Using COCOMO-II and Walston-Felix models Amanullah Dept. Computing and Technology Absayn University Peshawar scholar.amankhan@gmail.com Abdus Salam Dept.

More information

Resource Model Studies

Resource Model Studies Resource Model Studies MODELING AND MEASURING RESOURCES Model Validation Study Walston and Felix build a model of resource estimation for the set of projects at the IBM Federal Systems Division. They did

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) The Los Angeles Community Garden Inventory and Locator Team 13 Ardalan Yousefi Cole Cecil Jeff Tonkovich Shi-Xuan Zeng Project Manager Integrated Independent Verification & Validation

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Name Role Email Address Chien-Hao Huang Tester chienhao@usc.edu Yuzhen Wang Project Manager Yuzhenwa@usc.edu Yufei Quan Front-end developer yufeiqua@usc.edu

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Version 4.3 Life Cycle Plan (LCP) LEMA Pilot School Integrated Scheduling System Team No. 12 Name Primary Role Secondary Role David Wiggins Project Manager Developer Aakash Shah Prototyper

More information

Life Cycle Plan (LCP) PicShare. Team 02

Life Cycle Plan (LCP) PicShare. Team 02 Life Cycle Plan (LCP) PicShare Team 02 Team Members Sultan Alsarra Adil cem Albayrak Julapat Julnual Charles Reitz Mohammad Almunea Aref Shafaeibejestan Andrea Brown Travis Weaver Dennis Evans 4/15/16

More information

Software Effort Estimation of Gsd Projects Using Calibrated Parametric Estimation Models

Software Effort Estimation of Gsd Projects Using Calibrated Parametric Estimation Models European Journal of Applied Sciences 8 (2): 126-139, 2016 ISSN 2079-2077 IDOSI Publications, 2016 DOI: 10.5829/idosi.ejas.2016.8.2.22892 Software Effort Estimation of Gsd Projects Using Calibrated Parametric

More information

Expert- Judgment Calibrated Quality Model Extension to COCOMO 11: COQUALMO (Constructive QUALity Model) Outline

Expert- Judgment Calibrated Quality Model Extension to COCOMO 11: COQUALMO (Constructive QUALity Model) Outline Expert- Judgment Calibrated Quality Model Extension to COCOMO 11: COQUALMO (Constructive QUALity Model) Sunita Chulani Research Assistant USC-Center for Software Engineering Technology Week Feb 8-12 1999

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Real Estate Investment and Review Tool Team 2 Venkata Sravanti Malapaka Project Manager, Software Architect Yuxuan Chen Prototyper, Developer, Trainer Yonghyun Cho Requirements Engineer,

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) We Are Trojans (WAT) Network Team01 Team members Eirik Skogstad Min Li Pittawat Pamornchaisirikij Roles Project Manager, Life Cycle Planner Feasibility Analyst, Operational Concept

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Populic Team No.4 Chengyu Shen (Product Manager) Shiji Zhou (Designer/Prototyper) Yufei Hong (Feasibility Analyst) Guanghe Cao (Software Architecture) Yang Wei (Operational Concept

More information

CORADMO Constructive Rapid Application Development Model. Cyrus Fakharzadeh

CORADMO Constructive Rapid Application Development Model. Cyrus Fakharzadeh Constructive Rapid Application Development Model Cyrus Fakharzadeh fakharza@sunset.usc.edu 1999 USC 1 v1.2 11/03/0099 Outline Background Model Overview Schedule Drivers, Rating Scales 1999 USC 2 v1.2 11/03/0099

More information

MTAT Software Economics

MTAT Software Economics MTAT.03.244 Software Economics Product Management (3) Dietmar Pfahl Fall 2016 email: dietmar.pfahl@ut.ee Topics Today Q&A on Assignment 3 Product Sizing: Function Point Analysis (FPA) Parametric Cost Estimation:

More information

Experience with Empirical Studies in Industry: Building Parametric Models

Experience with Empirical Studies in Industry: Building Parametric Models Experience with Empirical Studies in Industry: Building Parametric Models Barry Boehm, USC boehm@usc.edu CESI 2013 May 20, 2013 5/20/13 USC-CSSE 1 Outline Types of empirical studies with Industry Types,

More information

Life Cycle Plan (LCP)

Life Cycle Plan (LCP) Life Cycle Plan (LCP) Real Estate Investment and Review Tool Team - 02 Venkata Sravanti Malapaka Project Manager, Software Architect Yuxuan Chen Prototyper, Developer, Trainer Yonghyun Cho Requirements

More information

IFCnSSCM-23. Realistic Software Cost Estimation for F6 Fractionated Space Systems. A. Winsor Brown, Ramin Moazeni {AWBrown,

IFCnSSCM-23. Realistic Software Cost Estimation for F6 Fractionated Space Systems. A. Winsor Brown, Ramin Moazeni {AWBrown, IFCnSSCM-23 Realistic Software Cost Estimation for F6 Fractionated Space Systems A. Winsor Brown, Ramin Moazeni {AWBrown, Moazeni}@CSSE.USC.edu & A W Brown BES/MSEE & USC CSE EC19b=PrsntRealisticSwCEforF6v2.doc

More information

Project Plan. For KDD- Service based Numerical Entity Searcher (KSNES) Version 1.1

Project Plan. For KDD- Service based Numerical Entity Searcher (KSNES) Version 1.1 Project Plan For KDD- Service based Numerical Entity Searcher (KSNES) Version 1.1 Submitted in partial fulfillment of the Masters of Software Engineering degree. Naga Sowjanya Karumuri CIS 895 MSE Project

More information

Vrije Universiteit Amsterdam Faculty of Exact Sciences. Exam: Software Project Management Version A. Dr. Nelly Condori-Fernandez. Date: May 27, 2015

Vrije Universiteit Amsterdam Faculty of Exact Sciences. Exam: Software Project Management Version A. Dr. Nelly Condori-Fernandez. Date: May 27, 2015 Vrije Universiteit Amsterdam Faculty of Exact Sciences Exam: Software Project Management Version A Code: Coordinator: X_401093 Dr. Nelly Condori-Fernandez Date: May 27, 2015 Duration: Calculator allowed:

More information

A Comparative study of Traditional and Component based software engineering approach using models

A Comparative study of Traditional and Component based software engineering approach using models A Comparative study of Traditional and Component based software engineering approach using models Anshula Verma 1, Dr. Gundeep Tanwar 2 1, 2 Department of Computer Science BRCM college of Engineering and

More information

Software Effort Estimation using Radial Basis and Generalized Regression Neural Networks

Software Effort Estimation using Radial Basis and Generalized Regression Neural Networks WWW.JOURNALOFCOMPUTING.ORG 87 Software Effort Estimation using Radial Basis and Generalized Regression Neural Networks Prasad Reddy P.V.G.D, Sudha K.R, Rama Sree P and Ramesh S.N.S.V.S.C Abstract -Software

More information

Ilities Tradespace and Affordability Program (itap)

Ilities Tradespace and Affordability Program (itap) Ilities Tradespace and Affordability Program (itap) By Barry Boehm, USC Russell Peak, GTRI 6 th Annual SERC Sponsor Research Review December 4, 2014 Georgetown University School of Continuing Studies 640

More information

Applying COCOMO II and Function Points to Brazilian Organizations

Applying COCOMO II and Function Points to Brazilian Organizations Applying COCOMO II and Function Points to Brazilian Organizations Mauricio Aguiar, TI Métricas, Rio de Janeiro, Brazil Diana Baklizky, TI Métricas, Sao Paulo, Brazil www.metricas.com.br 1 Goal In the past

More information

USC COCOMOII Reference Manual. University of Southern California

USC COCOMOII Reference Manual. University of Southern California USC COCOMOII.1997 Reference Manual University of Southern California This manual is compatible with USC-COCOMOII.1997 version 0. Copyright Notice This document is copyrighted, and all rights are reserved

More information

A Bayesian Software Estimating Model Using a Generalized g-prior Approach

A Bayesian Software Estimating Model Using a Generalized g-prior Approach A Bayesian Software Estimating Model Using a Generalized g-prior Approach Sunita Chulani Research Assistant Center for Software Engineering University of Southern California Los Angeles, CA 90089-078,

More information