Integrated Smart Tools for Structural Design of Tall Buildings 集成化智能设计技术在超高层结构设计中的应用. Liu Peng, Director, Arup 刘鹏, 董事, 奥雅纳全球公司

Size: px
Start display at page:

Download "Integrated Smart Tools for Structural Design of Tall Buildings 集成化智能设计技术在超高层结构设计中的应用. Liu Peng, Director, Arup 刘鹏, 董事, 奥雅纳全球公司"

Transcription

1 Integrated Smart Tools for Structural Design of Tall Buildings 集成化智能设计技术在超高层结构设计中的应用 Liu Peng, Director, Arup 刘鹏, 董事, 奥雅纳全球公司 1

2 The Emerging Intelligence of Computational Tools Integrated smart structural design of tall buildings Liu Peng Ph.D Director 17 Oct 2016

3 The Split of the Cost of Tall Building Structure Wolfgang Schueller, The Vertical Building Structure, However the final choice of the system is determined by many factors other than structural efficiency. 3

4 The Evolution of Computational Tools Year Tools Model Keyword 1980 Hand Simplified Model Sketch 1990 Finite Element Analysis 2000 Engineering Software/ Opimization Algorithm 2010 Parametric Design/Automation 2020 Knowledge-based System 2030 Intelligence-based System FE Model Engineering Model Object-oriented Model/ BIM Building Knowledge Model Self-adaptive Intelligent Model Joint/Line/Shell Story/Column/Drift/Utiliz ation Factor Component/Subsystem/Co nfiguration Configuration Repository Habitat Space Explorer?

5 Optimal Member Sizing for a Given Configuration Structural Modeling Structural Analysis Stiffness Optimization Member Capacity Checking Module Determine structural responses and establish explicit drift constraints Apply recursive algorithm to determine Lagrange multipliers λ j and optimal element sizes A i, B i, D i Search/Optimize for the optimum section satisfying strength requirement Optimal Design 5

6 ICC Hong Kong Outrigger 1 (Note: Hotter color denotes elements of higher efficiency) B3-3/F

7 Contribution (Lateral Resistance) / Cost Considering the value of floor area Core Column Outrigger

8 The Harbourside, Hong Kong 高层 低层 裙楼层

9 Guangzhou West Tower R (m) T (m) CFT Sectional Properties_XC Storey Level Wall Sectional Property_Core Peri R_Origin R_Result R_min R_max T_Origin T_Result T_min T_max Storey Level

10 Large-scale Problem with Multiple Constraints Over 100,000 elements Around 50,000 nodes Over 200 floors Over 400 section properties assigned by logic 78 zones Different bracing patterns generated for study 10

11 Optimization Result - Columns Initial Section Area Optimized Section Area 11

12 Optimization Result - Columns Initial Section Area Optimized Section Area 12

13 Optimization Result - Beams 13 Initial Section Area Optimized Section Area

14 China Zun 14 Kohn Pedersen Fox

15 Scheme Development First EPR Second EPR Third EPR Pre-EPR Formal EPR Structural System Architectural/Structural Height Number of Floors Width of Structure s Base (m) /Height-Width Ratio Functionality Bracing Height (m) Proportion of Total Structural Height Hotel Apt 555m / 546m 119 Levels (8 Zones) 528m/ 524m 108 Levels (8 Zones) 528m/ 524m 108 Levels (7 Zones) 528m/ 521.6m 118 Levels (7 Zones) 528m/ 521.6m 118 Levels (7 Zones) 67/ / / / / 7.1 Office, Hotel, Apartment, and Observation about 280m (up to Zone 4) about 50% Office, Apartment, and Observation 350m (up to Zone 5) about 66% Apt Office and Observation (Cancel Apartment) Office and Observation Office and Observation Entire Height Entire Height Entire Height 15

16 Massing Options 16

17 Varied Functions 17

18 Logic loss in Traditional Engineer Software Floor height change 18

19 Structural System Observation Zone Crown Top Truss Observation Zone Zone 7 Office Zone 1 to 7 Corner Truss Belt Truss (7 in total) Mega-Brace Mega-Column Reinforced Concrete Core Zone 6 Zone 5 Zone 4 Zone 3 Zone 2 Zone 1 Typical Floor Layout Zone 0 Lobby Zone 0 Belt Truss Bottom Brace Zone 0 19

20 Parametric Model Parametric Model ~1,000 Parameters FE Model Tower Geometry Configuration Material / Size 400,000 Variables 20

21 The Column-line: Orientation Angle Larger Angle beneficial: - Larger stiffness adverse: - Larger façade-structure distance 21

22 The Column-line: Kinks Column-to-façade face distance More kinks beneficial: - More usable floor space - Larger stiffness adverse: - additional horizontal shear transfer 22

23 Time Saving 854 Options Evaluated Time Traditional Parametric First Model First Model Design Changes Design Changes 23

24 Add Value For the Client Floor-by-floor Measure Miminize unfavorable area up to 8,700m 2, eq. two additional stories or 1 billion HK$ 24

25 25

26 26

27 高层建筑的结构体系 Development of Tall Building Structural System Continuous Braced Tube 连续斜交筒体 CCTV 232m Core + Outriggers 核心筒 + 外框筒 + 伸臂桁架 北京财富三期 265m 北京国贸三期 330m Mega Column + Brace 巨型柱 + 单向斜撑 大连裕景 380m Diagrid 斜交框架 广州西塔 430m Frame on long side & cross brace on short side 长边框架短边巨型斜撑 深圳京基 439m Mega Column + Outriggers 巨型柱 + 伸臂桁架 香港环球贸易广场 484m Mega Column + Cross Brace 巨型柱 + 交叉斜撑 天津 117 大厦 597m 200m 300m 400m 500m 600m 27

28 The Hierarchy of a Tall Building Structure 体系 子系统 系统单元 System Sub-system Assembly Tube-in-tube Perimeter Outrigger Core Flange Frame Web Frame Belt Truss Coupled Wall Slab Single Wall 构件 Member Column Beam Chord Diagonal Wall Panel Lintel Foundation 28

29 Component Library: Moment Frame Examples on different massing Options for column grid generation Constant spacing Constant grid number 29

30 Component Library: Truss Truss pattern End treatment End connectivity 30

31 Component Library: Mega Truss Available Patterns MB Pattern 0: X MB Pattern 1: N MB Pattern 2: N Kink Pattern MB Pattern 3: V MB Pattern 4: V Optional Gap in Bracing pattern (BT) 31 Intersection loc. =0.0 Intersection loc. =0.5 Intersection loc. =1.0

32 Hierarchy Explicitly Modeled 32

33 Freedom to Explore 33

34 Foster + Partners Foster + Partners 34 Structure-Façade Integration

35 结构体系概念 Structural System Concept

36 Structure and Facade Maintain structural centerlines on plan Plan View 斜交网格定位原理

37 37 主要传力路径 Structural Design Driver 1: Key Load Paths

38 Structural Design Driver 2: Horizontal Tie/Strut Forces Tie force due to diagrid 网格结构产生的拉力 立面角度变化产生的拉 / 压力 Tie/struct force due to curvature in elevation 平面弧度产生的拉 / 压力 Tie/struct force due to curvature in plan 重力体系下的三种水平力 38

39 Foster + Partners Integrated Expression of Structure and Façade

40

41 Initial Geometry Noding Geometrical Number of Node Types by Face Node Assesment by Type Perfect Good Not So Bad Bad 4 Mega Braces - Mega Columns % 0 0 0% % 3-Dn Mini Braces - Mega Columns External Downhill arriving at Mega Columns 40% 60% 11% 3-Up Mini Braces - Mega Columns Uphill departing from Mega Columns 19% 81% 17% 5 Mega Braces - Mini Braces Internal 75% 25% 59% TOTAL % 7% 0 mm = Perfect < 450 mm = Good mm = Not so bad > 1000 mm = BAD External nodes 41 Internal nodes Ratio of mini brace : mega brace 15 : 6 = 2.5 : 1 9m Edge beam spacing 12m MiB Angle

42 Final Geometry Noding Geometrical Number of Node Types by Face Node Assesment by Type Perfect Good Not So Bad Bad 4 Mega Braces - Mega Columns % 0% 12% 3-Dn Mini Braces - Mega Columns External Downhill arriving at Mega Columns 100% 0% 20% 3-Up Mini Braces - Mega Columns Uphill departing from Mega Columns 9% 91% 22% 5 Mega Braces - Mini Braces Internal 56% 44% 47% TOTAL % 35% 0 mm = Perfect < 450 mm = Good mm = Not so bad > 1000 mm = BAD External nodes 42 Internal nodes Ratio of mini brace : mega brace 22 : 6 = 3.7 : 1 8.1m 12.4m Edge beam spacing MiB Angle

43 Structural design fully integrated with Architecture

44 Structural design fully integrated with Architecture

45 Structural design fully integrated with Architecture

46 Evolutionary Structural Opimization (ESO) 46

47 Box Prototype Mega Brace 47

48 Cylinder Prototype Diagrid 48

49 Pattern on Demand Stiffness requirement increases 49

50 Finding the most efficient load path + = Beam & Column non- design space Wall panels design space Topology optimization model 50

51 2D Pattern 2D model Symmetric Setback 2D model Asymmetric Setback 51

52 3D Pattern Reduce 60% Not consider beam and column Reduce 90% Not consider beam and column Reduce 90% Consider beam and column 52

53 Scheme Original Option1 Option2 Option3 Option4 Option5 Total weight(mn) Top displacement(m) Stiffness

54 The Evolution of Computational Tools Year Tools Model Keyword 1980 Hand Simplified Model Sketch 1990 Finite Element Analysis 2000 Engineering Software/ Opimization Algorithm 2010 Parametric Design/Automation 2020 Knowledge-based System 2030 Intelligence-based System FE Model Engineering Model Object-oriented Model/ BIM Building Knowledge Model Self-adaptive Intelligent Model Joint/Line/Shell Story/Column/Drift/Utiliz ation Factor Component/Subsystem/Co nfiguration Configuration Repository Habitat Space Explorer?

55 A Paradigm Shift for Engineer s Role Engineer Coordination Communication Design Sketching Building modelling Member checking Try-and-error Updating design for changes Engineer Engineer Intelligent & Knowledge System Parametric Design Tools Creativity Knowledge Coordination High-level design First principle tools BIM-based AI system BIM-based coordination system Parametric design BIM Optimisation Automation Data Based Tools Analysis Software Spreadsheets CAD Data Based Tools Analysis Software Spreadsheets CAD 55

56 Engineering Physically and Digitally Real structure with Uncertainties Engineering Problem Design Model Interface between physical & digital Analytical Model 56

57 Thank you 57