INHERENT DUCTILITY OF REINFORCED CONCRETE SHEAR WALLS WITH NON-SEISMIC DETAILING

Size: px
Start display at page:

Download "INHERENT DUCTILITY OF REINFORCED CONCRETE SHEAR WALLS WITH NON-SEISMIC DETAILING"

Transcription

1 INHERENT DUCTILITY OF REINFORCED CONCRETE SHEAR WALLS WITH NON-SEISMIC DETAILING J. S. Kuang*, Hong Kong University of Science and Technology, Hong Kong Y. B. Ho, Hong Kong University of Science and Technology, Hong Kong 3st Conference on OUR WORLD IN CONCRETE & STRUCTURES: 6-7 August 26, Singapore Article Online Id: 33 The online version of this article can be found at: This article is brought to you with the support of Singapore Concrete Institute All Rights reserved for CI Premier PTE LTD You are not Allowed to re distribute or re sale the article in any format without written approval of CI Premier PTE LTD Visit Our Website for more information

2 3 st Conference on OUR WORLD IN CONCRETE & STRUCTURES: 6 7 August 26, Singapore INHERENT DUCTILITY OF REINFORCED CONCRETE SHEAR WALLS WITH NON-SEISMIC DETAILING J. S. Kuang*, Hong Kong University of Science and Technology, Hong Kong Y. B. Ho, Hong Kong University of Science and Technology, Hong Kong ABSTRACT Large-scale reinforced concrete low-rise shear walls designed without seismic consideration, as practised in low probability of seismic occurrence regions, are tested under reversed cyclic loading. The seismic behaviour and inherent ductility of shear walls are experimentally established by testing the non-seismically designed shear-wall specimens in the case where the reinforcement detailing is consistent with that typically adopted for shear-wall buildings in which the design code of practice has not stipulated any requirement for seismic compliance in steel details. The experimental study reveals that the inherent displacement ductility factors of 2.5 to 3 may generally achieved for the shear walls with non-seismic reinforcement detailing. By correlating the available ductility with the required ductility demands, it is indicated that ordinary low-rise shear walls with non-seismic design and detailing may not possess the ductility to adequately respond to an unexpected low-to-moderate earthquake, then not sufficiently satisfy the ductility demand for shear-wall building structures in regions of low to moderate seismicity, including Hong Kong, Singapore, the UK, Central America and many other regions in the world. Modification in reinforcement detailing specifications for non-seismic design should be made in order for improving the seismic performance and enhancing the ductility and energy dissipation capacity of non-seismically designed and detailed reinforced concrete shear walls in regions of low to moderate seismicity. Further experimental studies on improving the ductility of non-seismically designed shear-wall structures are being carried out for moderate seismicity. Keywords: Reinforced concrete shear wall, ductility, low to moderate seismicity, seismic design. Introduction The medium earthquake (M = 5.6) occurred in Newcastle, Australia in 99, which caused about 2.5 billion US dollars of damage [3], in fact revives our attention to the potential hazard of non-seismically designed and detailed RC buildings in regions of moderate seismicity. The consequence of this earthquake reveals that although the seismic intensity of the earthquake is not high, it may cause a significant loss of life and economy in a region of low to moderate seismicity, where there is no urban earthquake disaster management programme at all. In low to moderate seismicity regions, such as Hong Kong and Singapore, which has a peak ground acceleration of about.g-.5g with a % probability of exceedance in 5 years, and many other parts of Asia, Europe and North America, engineers normally do not include seismic considerations in buildings design and detailing. A structure which is designed and detailed based

3 only on gravity load and/or other incidental horizontal loads would have to rely on its inherent ductility to respond acceptably to unexpected seismic excitations [4, 2]. Experimental studies on the seismic response evaluation of existing frame buildings designed for only gravity load [8, 9] have indicated that the displacement ductility demand on a framed structure under low to moderate earthquakes could range between 2. and 3.5. An investigation on the ductility demands on reinforced concrete moment-resisting frames for moderate seismicity has been reported [7]. The seismic responses of these as-built structures are considered when subjected to an unexpected low to moderate seismic excitation. It is theoretically established that the displacement ductility demand could vary between 2. to 4.. Modification in the reinforcement detailing specifications for non-seismic design should be made in order for improving the seismic behaviour and enhancing the ductility of these structures [6]. There are few research efforts on the potential seismic hazard of reinforced concrete shear walls in regions where earthquake is not considered as a major problem; hence, studies from which such structure s ductility demand sufficiency can be extrapolated are not readily available. In this paper, laboratory tests of large-scale reinforced concrete low-rise shear wall specimens under reversed cyclic loading, which are designed and detailed without seismic consideration as practised in low probability of seismic occurrence regions, are reported. The primary objective of this study is to verify the available ductility of reinforced concrete walls designed and detailed without explicitly considering seismic design requirements. 2. Experimental Programme In the experimental programme, six large-scaled reinforced concrete low-rise shear wall specimens were fabricated and tested under reversed cyclic loading and a constant axial compression. The reinforcement of the specimens was detailed in accordance with the detailing practice for buildings defined in BS 8 [2], in which only gravity and lateral wind loads have been considered. This detailing typifies that of a non-seismic detailing technique for reinforced concrete. The variables investigated include the effects of longitudinal steel distribution, wall aspect ratio and availability of boundary confinement. A summary of the test specimens and their properties is presented in Table. Geometry and steel detailing is shown in Figure. In the first part of the specimen label of Table, the first letter U stands for unconfined boundaries (wall ends), which can be found in the conventional detailing, and C for confined boundaries. The second letter D stands for uniformly distributed longitudinal reinforcement and C for concentrated longitudinal reinforcement at the boundaries of the specimens. The number followed represents the aspect ratio of the specimens which is defined as the ratio of height to width of the wall panels. 2.. Test Specimens All six specimens have a rectangular cross section of 2 mm mm with the wall panel height of 2 mm and 8 mm, corresponding to the aspect ratios of. and.5 respectively. The concrete cube strength of specimens is obtained from the mean value of 5-mm control cube specimens, and the adopted yield strength of the high yield steel is 52 MPa. In the specimens, all longitudinal reinforcing bars are fully anchored in a 5 mm thick base girder that is bolted to the strong laboratory floor in the test. A 3 mm 3 mm beam is cast with the wall panel at the top of the specimen. Specimens UD-. and UD-.5 are non-seismically detailed. Two layers of longitudinal steel are placed in a uniformly distributed form with spacing of 8 mm; while the spacing of transverse steel s v is 5 mm and two layers of transverse bars are fully lapped with U-shaped stirrups at boundaries (ends) of the wall panels. Specimens UC-. and UC-.5 are detailed with the similar detailing technique to that for specimens UD-. and UD-.5. Only the difference is made in the distribution of longitudinal reinforcement, where the steel bars are generally concentrated at the boundaries of the wall panels; while extra longitudinal reinforcement is added near the centre of the specimens for the crack control purpose. The similar detailing technique used in specimens UD-. and UD-.5 is adopted for specimens CD-. and CD-.5, where additional boundary hoops are added to provide better concrete confinement for the wall panels and to simulate shear walls connected with an ordinary moment resisting frame. The design of the confining hoops is referenced to the American Concrete Institute Building Code [] with a great realest on both the required steel ratio and spacing of the confining hoops. The spacing of the confining hoops is 5 mm.

4 Table Properties of Test Specimens Specimen Aspect Concrete Steel ratio f cu f y (MPa) (MPa) Longitudinal bar ρ v ρ l Distribution (%) (%) UD Uniform.5 No UD Uniform.5 No UC Concentrated.5 No UC Concentrated.5 No CD Uniform.5 Yes CD Uniform.5 Yes Boundary confinement () () T--8 T-2-5 2/8 5 3 T- T-2-5 2/ ANCHORAGE BOLT HOLE ANCHORAGE BOLT HOLE (a) Specimens UD-. and.5 (b) Specimens UC-. and.5 () () T--8 T T-3-5(9 X-hoops) 2/ ANCHORAGE BOLT HOLE (c) Specimens CD-. and.5 Figure Geometry and Steel Detailing 6 ALL UNITS ARE IN MILLIMETERS. ANCHORAGE BEND RADIUS = 3 X BAR DIAMETER (d) Cross-section

5 2.2. Test Setup and Procedure The test setup and loading system are shown in Figure 2. It is seen that the specimen is mounted on the strong floor of the laboratory. A vertical load of 5 kn, which is about 2% of the ultimate axial strength of the specimen, is first applied by two hydraulic jets that are connected with a pair of loading frames, which can be moved together with the specimen during the experiment. The vertical load is distributed at the top beam of the specimen. Lateral load reversal is then applied through the top beam by a servo actuator which was supported by the strong reaction wall in the laboratory. Steel plate was attached to the actuator s swivel head and connected to the steel plates on both ends of the top beam by four 4-mm-diameter high tensile bars along the longitudinal axis of the top beam. In the test, both load and displacement controls are adopted at different loading stages. The load-control method is used at the early loading stages; one cycle of horizontal loading of ±.5P i and then ±.75P i are applied, where the load P i is the cyclic applied load at the top of the specimen when the beam reaches its ultimate flexural strength M u. The value of M u is determined using BS 8 simplified stress block for concrete at ultimate limit state without partial factors of safety. Figure 4 shows a general reversed cyclic load-deflection relationship of reinforced concrete structures. It is well recognised [] that the yield displacement Δ y can be defined and calculated based on the stiffness when the lateral load is ±.75P i, which is then extrapolated linearly to ±P i, as shown in Figure 3. Thus, 2 y () 2 where Δ and Δ 2 are horizontal displacements corresponding to P i and P i, respectively. The reversed cyclic loading arrangement is then switched to the displacement control, in which the test specimens are subjected to two complete cycles of reversed loading gradually to achieve μ = ±, ±2, ±3,, where μ is the displacement ductility factor defined as y Each test is continued until the specimen experiences a significant loss of capacity, where it is assumed that failure occurs when the ratio of the restoring force at the maximum displacement to the maximum applied lateral load reaches.8. The loading history of the test is shown in Figure 4. Figure 2 Experimental Setup

6 Horizontal Load P i.75 P i.5 P i Δ Δ.75 Δ.75 Horizontal Displacement Δ 2.5 P i.75 P i P i Figure 3 Definition of Yield Displacement 6 4 Ductility Ratio Cycle No. (a) Load-control cycles Figure 4 Loading History (b) Displacement-control cycles 3. Test Results 3.. General Observation All specimens failed with reinforcement yielding at boundary and concrete crushing of the compressive zone. Table 2 summarises the calculated and maximum test strengths and failure behaviour of the specimens, where the shear capacity V u of specimens are calculated using the Softened Strut-and-Tie Model [5]. Flexural cracks are observed to form after two cycles with displacement ductility ratio of.. Extensive cracking is commonly observed when the applied load reaches 75% of the calculated strength of the specimens. Flexural cracks generally propagate further towards the centre line of the wall panels with uniformly distributed longitudinal reinforcement; while those in specimens UC-. and UC-.5 are only found at the boundary regions. Diagonal shear cracks generally extending from flexural cracks form in the earlier cycles; while those in specimens UC-. and UC-.5 are extended across the diagonals of the wall panels. In general, it is observed that shear distortion contributes about 2% to 5% of the total deformation of the specimens. Typical observed crack patterns after failure of test specimens are shown in Figure Hysteretic Behaviour and Energy Dissipation Capacity Hysteresis loops of the ductility factor (defined as top displacement divided by yield displacement) of the specimens versus the corresponding normalised horizontal load (defined as the applied load divided by calculated capacity of the specimen) are plotted in Figure 6. The degradation

7 of strength and stiffness for specimens with a lower aspect ratio (. in the tests) tends to be steadier comparing to that with a higher aspect ratio (.5 in the tests). A small degree of pinching is observed in specimens UC-., UC-.5, CD-. and CD-.5. For all six specimens, pinching of hysteretic loops corresponding to shear distortion is not observed. The area inside the hysteretic loops can be considered as an indirect measure of the energy that is dissipated by the plastic behaviour of structural elements during seismic events, which is also an important parameter for assessing seismic damage to building structures. Values of the energy dissipation are obtained by integrating the hysteretic loops before the failure cycle. Because of the differences in strength and yield displacement of each specimen, for better comparison it would be convenient to normalise the energy dissipated with the idealised elastic strain energy defined as U P (3) 2 e The yield displacement, ductility factor and energy dissipation capacity of the specimens are given in Table 3. It is seen that the energy dissipation capacity of the wall panels without boundary confinement reinforcement varies generally from about 7 to 7 times the idealised elastic strain energy. Large difference in the energy dissipation capacity is observed between specimens UC-. and UC-.5 that have only difference in the aspect ratios. The normalised energy dissipation of specimen UC-.5 is less than half of that of specimen UC-.. y i Table 2 Calculated and Test Strengths Specimen Calculated Strength Maximum Test Load P i (kn) V u (kn) (kn) UD UD UC UC CD CD Failure Behaviour Steel reinforcement yielding and concrete crushing at boundary (a) UD-. Figure 5 Typical Crack Patterns and Failure of Specimens (b) UC-.5

8 Normalized load (a) UD-. Normalized load Normalized load -.5 (c) UC (e) CD-. Figure 6 Hysteretic Loops of Specimens Normalized load (b) UD-.5 Normalized load Normalized Load -.5 (d) UC (f) CD-.5 Table 3 Yield displacement, Ductility and Energy Dissipation Capacity Specimen Yield displacement Δ y (mm) Displacement ductility factor μ Normalised energy dissipation UD UD UC UC CD CD Discussions 3.. Effect of Wall Panel Aspect Ratio The walls with a higher aspect ratio are shown to have lower displacement ductility as well as the energy dissipation capacity. The walls with a lower aspect ratio show much better energy dissipating performance. Because all specimens are designed for flexural failure, flexural cracks are commonly first observed. For walls with a higher aspect ratio, most of cracks are found within the lower 2/3 portion of the wall panels; while for walls with a lower aspect ratio, cracks spread evenly over the whole panels. In addition, more shear cracks are observed on the walls with a lower aspect ratio. These differences result in a comparatively more uniform strain distribution for the walls with a lower aspect ratio in the post-yielding cycles which may enhance the displacement ductility Effect of Reinforcement Distribution More diagonal shear cracks are observed on the walls with the end concentrated reinforcement than those with uniformly distributed bars. This may be caused by the difference between shear and flexural capacity, together with a more observable shear dominated zone []. Strain hardening effect is more observable for the walls with uniformly distributed reinforcement. The walls with concentrated

9 reinforcing bars tend to exhibit more pinched hysteretic response, and it is likely that shear walls with this design may not perform as well as those having uniformly distributed bars Effect of Confinement Reinforcement Both specimens CD-. and CD-.5 achieve a ductility factor of 3 in the tests. The wall panels with confining hoops are found to be not effective in providing higher ductility in this study. With limited amount of boundary confinement reinforcement, the enhancement of energy dissipation capacity can be observed for the walls with an aspect ratio of.5. As the hoops attain only 2% to 5% of the ultimate capacity at failure of the specimens, closer spacing of confining reinforcement, even with smaller diameter and weaker material strength, may be taken into consideration to recognise the use of confining hoops to improve the overall seismic performance of the structure. 4. Conclusion This experimental investigation on large-scale, non-seismically designed shear walls reveals that the inherent displacement ductility factor of 2.5 to 3 may generally be achieved for the shear walls with non-seismic reinforcement detailing. The arrangement of uniformly distributed longitudinal reinforcement in wall panels seems to be more beneficial for the walls with a higher aspect ratio in term of obtaining better displacement ductility and energy dissipation capacity, compared to the concentrated arrangement of longitudinal reinforcement at the boundaries (ends) of wall panels. It is concluded that ordinary shear walls designed and detailed without seismic consideration may not sufficiently satisfy the ductility demand for shear-wall building structures in low-to-moderate earthquake regions. Modification in reinforcement detailing specifications for non-seismic design should be made in order for improving the seismic performance and enhancing the ductility and energy dissipation capacity of non-seismically designed and detailed reinforced concrete shear walls in regions of low to moderate seismicity. Further experimental studies should be conducted in this area. References: [] ACI Committee 38 (999). Building Code Requirements for Reinforced Concrete (ACI 38-99) and Commentary (38 R-99). American Concrete Institute. [2] British Standards Institution (997). Structural Use of Concrete - Part : Code of Practice for Design and Construction, BS 8. London. [3] EEFIT (99). The Newcastle, Australia Earthquake. Earthquake Engineering Field Investigation Team, Institution of Structural Engineers, UK. [4] European Committee for Standardisation TC 25 (995). Eurocode 8: Earthquake Resistant Design of Structures - Part : General Rules and Rules for Buildings. Brussels. [5] Hwang, S.J., Fang W.H., Lee H.J., and Yu H.W.. Analytical model for predicting shear strength of squat walls. Journal of Structural Engineering, ASCE, Vol. 27, No., pp [6] Kuang, J.S., and Atanda, A.I. (25). Enhancing ductility of non-seismically designed reinforced concrete frame buildings. Journal of Structures and Buildings, ICE, Vol. 58, Issue SB4, pp [7] Kuang, J.S., and Atanda, A.I. (25). Predicting ductility demands on reinforced concrete moment-resisting frames for moderate seismicity. Journal of the Structural Design of Tall and Special Buildings, Vol. 4, pp [8] Kunnath, S.K., Hoffmann, G., Reinhorn, A.M., and Mander, J.B. (995). Gravity-load-designed reinforced concrete buildings Part : Seismic evaluation of existing construction. ACI Structural Journal, Vol. 92, No. 3. pp [9] Kunnath, S.K., Hoffmann, G., Reinhorn, A.M., and Mander, J.B. (995). Gravity-load-designed reinforced concrete buildings Part 2: Seismic evaluation of detailing enhancements. ACI Structural Journal, Vol. 92, No. 4. pp [] Muttoni A., Schwartz J., and Thurlimann B. (997). Design of concrete structures with stress fields, Basel, Boston. [] Park, R. (989). Evaluation of ductility of structures and structural assemblages from laboratory testing, Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 22, No.3, pp [2] Park, R. (998). Design procedures for achieving ductile behaviour of reinforced concrete buildings. Proceedings of the International Workshop on Earthquake Engineering for Regions of Moderate Seismicity, Hong Kong.

An Overview of Research at HKU on HSRC Columns and Beam- Column Joints for Low-Medium Seismic-Risked Regions

An Overview of Research at HKU on HSRC Columns and Beam- Column Joints for Low-Medium Seismic-Risked Regions An Overview of Research at HKU on HSRC Columns and Beam- Column Joints for Low-Medium Seismic-Risked Regions H.J. Pam 1, J.C.M. Ho 1 J. Li 2 The University of Hong Kong, HKSAR, PRC 1, Email: pamhoatjoen@hku.hk

More information

Hybrid-steel concrete connections under reversed cyclic loadings

Hybrid-steel concrete connections under reversed cyclic loadings Hybrid-steel concrete connections under reversed cyclic loadings Bing Li, W.K. Yip and C.L. Leong Nanyang Technological University, Sch. of Civil & Env. Eng., Singapore 639798 ABSTRACT: The aim of the

More information

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars October 1-17, 8, Beijing, China Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars F. Kusuhara 1 and H. Shiohara 1 Assistant Professor, Dept.

More information

Effect of beam dimensions on structural performance of wide beam-column joints

Effect of beam dimensions on structural performance of wide beam-column joints Effect of beam dimensions on structural performance of wide beam-column joints J.S. Kuang 1) and *Wing Shan Kam 2) 1), 2) Department of Civil and Environmental Engineering, Hong Kong University of Science

More information

Seismic behaviour of HSC beam-column joints with high-yield strength steel reinforcement

Seismic behaviour of HSC beam-column joints with high-yield strength steel reinforcement Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 215, Sydney, Australia Seismic behaviour of HSC beam-column joints with high-yield

More information

Masonry infills with window openings and influence on reinforced concrete frame constructions

Masonry infills with window openings and influence on reinforced concrete frame constructions Earthquake Resistant Engineering Structures VII 445 Masonry infills with window openings and influence on reinforced concrete frame constructions D. J. Kakaletsis Technological Educational Institution

More information

INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION

INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION Yoshikazu TAKAHASHI 1 And Hirokazu IEMURA 2 SUMMARY The flexural and shear behaviors of rectangular hollow reinforced concrete columns

More information

Deformation Capacity of RC Structural Walls without Special Boundary Element Detailing

Deformation Capacity of RC Structural Walls without Special Boundary Element Detailing Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Deformation Capacity of RC Structural Walls without Special

More information

TESTS ON AN INTERIOR REINFORCED CONCRETE BEAM-COLUMN JOINT. R. Park*, L. Gaerty**, and E.C. Stevenson***

TESTS ON AN INTERIOR REINFORCED CONCRETE BEAM-COLUMN JOINT. R. Park*, L. Gaerty**, and E.C. Stevenson*** 81 TESTS ON AN INTERIOR REINFORCED CONCRETE BEAM-COLUMN JOINT R. Park*, L. Gaerty**, and E.C. Stevenson*** SYNOPSIS: Cyclic loading tests simulating the effects of a severe earthquake were conducted on

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information

CAUSES OF ELONGATION IN REINFORCED CONCRETE BEAMS SUBJECTED TO CYCLIC LOADING

CAUSES OF ELONGATION IN REINFORCED CONCRETE BEAMS SUBJECTED TO CYCLIC LOADING CAUSES OF ELONGATION IN REINFORCED CONCRETE BEAMS SUBJECTED TO CYCLIC LOADING By Brian PENG 1, Rajesh DHAKAL 2, Richard C. FENWICK 3 ABSTRACT: Elongation in the plastic hinge regions of reinforced concrete

More information

PERFORMANCE OF EXTERIOR PRECAST UNDER CYCLIC LOADING. R. Vidjeapriya & K.P. Jaya Anna University, Chennai , India 1.

PERFORMANCE OF EXTERIOR PRECAST UNDER CYCLIC LOADING. R. Vidjeapriya & K.P. Jaya Anna University, Chennai , India 1. PERFORMANCE OF EXTERIOR PRECAST DOWEL BEAM-COLUMN CONNECTIONS DOWEL UNDER CONNECTIONS CYCLIC LOADING UNDER CYCLIC LOADING R. Vidjeapriya & K.P. Jaya Anna University, Chennai 600025, India SUMMARY: The

More information

EXPERIMENTAL INVESTIGATION OF PRECAST CONCRETE BEAM TO COLUMN CONNECTIONS SUBJECTED TO REVERSED CYCLIC LOADS

EXPERIMENTAL INVESTIGATION OF PRECAST CONCRETE BEAM TO COLUMN CONNECTIONS SUBJECTED TO REVERSED CYCLIC LOADS 6 th International Conference on Seismology and Earthquake Engineering EXPERIMENTAL INVESTIGATION OF PRECAST CONCRETE BEAM TO COLUMN CONNECTIONS SUBJECTED TO REVERSED CYCLIC LOADS H. Shariatmadar 1, E.

More information

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS M. T. Shedid 1, W. W. El-Dakhakhni 2, and R. G. Drysdale 3 1 Ph.D. Candidate, Dept. of Civil Engineering, McMaster University, Hamilton.

More information

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Ahmet Yakut, Taylan Solmaz Earthquake Engineering Research Center, Middle East Technical University, Ankara,Turkey SUMMARY:

More information

AN EXPERIMENTAL STUDY ON SCALE EFFECTS IN SHEAR FAILURE OF REINFORCED CONCRETE COLUMNS

AN EXPERIMENTAL STUDY ON SCALE EFFECTS IN SHEAR FAILURE OF REINFORCED CONCRETE COLUMNS AN EXPERIMENTAL STUDY ON SCALE EFFECTS IN SHEAR FAILURE OF REINFORCED CONCRETE COLUMNS Takeshi OHTAKI 1 SUMMARY A shear dominated full-scale rectangular reinforced concrete column was tested under cyclic

More information

Available online at ScienceDirect. Procedia Engineering 125 (2015 )

Available online at   ScienceDirect. Procedia Engineering 125 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 125 (2015 ) 918 924 The 5th International Conference of Euro Asia Civil Engineering Forum (EACEF-5) The effect of different

More information

SEISMIC BEHAVIOR OF RC COLUMNS WITH VARIOUS TIE CONFIGURATIONS

SEISMIC BEHAVIOR OF RC COLUMNS WITH VARIOUS TIE CONFIGURATIONS SEISMIC BEHAVIOR OF RC COLUMNS WITH VARIOUS TIE CONFIGURATIONS By Y. L. Mo, 1 Member, ASCE, and S. J. Wang 2 ABSTRACT: To expedite the fabrication of reinforcement cages of columns, a new configuration

More information

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS Chapter 4 EXPERIMENTAL RESULTS 4.1 Introduction This chapter presents the results from the half scale interior Corcon rib beam-column subassemblage and the FRP repaired subassemblage. As described in chapter

More information

CODE RECOMMENDATONS FOR THE ASEISMIC DESIGN OF TALL REINFORCED CONCRETE CHIMNEYS

CODE RECOMMENDATONS FOR THE ASEISMIC DESIGN OF TALL REINFORCED CONCRETE CHIMNEYS CODE RECOMMENDATONS FOR THE ASEISMIC DESIGN OF TALL REINFORCED CONCRETE CHIMNEYS J L WILSON 1 SUMMARY This paper presents results of recent experimental tests which indicate that reinforced concrete chimneys

More information

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION Wei YUE,

More information

SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS

SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS José I. Restrepo 1, Inho Ha 2 and M.J.Nigel Priestley 3 Abstract This paper discusses the results of two large-scale models of Four-Cast-In-Drilled-

More information

EVALUATION OF SEISMIC PERFORMANCE OF SLENDER L- SHAPED AND T-SHAPED RC STRUCTURAL WALLS

EVALUATION OF SEISMIC PERFORMANCE OF SLENDER L- SHAPED AND T-SHAPED RC STRUCTURAL WALLS EVALUATION OF SEISMIC PERFORMANCE OF SLENDER L- SHAPED AND T-SHAPED RC STRUCTURAL WALLS Zhong Wen ZHANG and Bing LI 2 * ABSTRACT L and T-shaped slender reinforced concrete (RC) structural walls are commonly

More information

Experimental study on seismic behavior of composite concrete and

Experimental study on seismic behavior of composite concrete and 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 215, University of

More information

Experimental and theoretical study on softening and pinching effects of bridge column

Experimental and theoretical study on softening and pinching effects of bridge column Soil Dynamics and Earthquake Engineering 21 (2001) 75±81 www.elsevier.com/locate/soildyn Experimental and theoretical study on softening and pinching effects of bridge column S. Wan a, *, C.-H. Loh a,b,

More information

AN INVESTIGATION OF SEISMIC RETROFIT OF COLUMNS IN BUILDINGS USING CONCRETE JACKET

AN INVESTIGATION OF SEISMIC RETROFIT OF COLUMNS IN BUILDINGS USING CONCRETE JACKET AN INVESTIGATION OF SEISMIC RETROFIT OF COLUMNS IN BUILDINGS USING CONCRETE JACKET Gnanasekaran, K. 1 and Amlan K. Sengupta 2 1 Ph.D. Scholar, Dept. of Civil Engineering, Indian Institute of Technology

More information

APPLICATIONS OF STRESS FIELDS TO ASSESS THE BEHAVIOR AND STRENGTH OF COUPLING BEAMS SUBJECTED TO SEISMIC ACTIONS

APPLICATIONS OF STRESS FIELDS TO ASSESS THE BEHAVIOR AND STRENGTH OF COUPLING BEAMS SUBJECTED TO SEISMIC ACTIONS Breña, Fernández Ruiz, Muttoni 3 rd fib International Congress 21 APPLICATIONS OF STRESS FIELDS TO ASSESS THE BEHAVIOR AND STRENGTH OF COUPLING BEAMS SUBJECTED TO SEISMIC ACTIONS Sergio F. Breña, University

More information

Seismic performance of RC frames with concentric internal steel bracing

Seismic performance of RC frames with concentric internal steel bracing Engineering Structures 29 (2007) 1561 1568 www.elsevier.com/locate/engstruct Seismic performance of RC frames with concentric internal steel bracing M.A. Youssef a,, H. Ghaffarzadeh b, M. Nehdi a a Department

More information

Seismic Detailing of RC Structures (IS: )

Seismic Detailing of RC Structures (IS: ) Seismic Detailing of RC Structures (IS:13920-1993) Sudhir K Jain Indian Institute of Technology Gandhinagar November 2012 1 Outline This lecture covers: Covers important clauses of IS13920 With particular

More information

International Journal of Advance Engineering and Research Development REVISION OF IS: A REVIEW (PART 2)

International Journal of Advance Engineering and Research Development REVISION OF IS: A REVIEW (PART 2) Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 5, Issue 01, January -2018 REVISION OF IS: 13920 A REVIEW (PART 2) Dr. Archana

More information

1514. Structural behavior of concrete filled carbon fiber reinforced polymer sheet tube column

1514. Structural behavior of concrete filled carbon fiber reinforced polymer sheet tube column 1514. Structural behavior of concrete filled carbon fiber reinforced polymer sheet tube column Kyoung Hun Lee 1, Heecheul Kim 2, Jaehong Kim 3, Young Hak Lee 4 1 Provincial Fire and Disaster Headquarters,

More information

BEHAVIOUR OF FRP REINFORCED CONCRETE UNDER SIMULATED SEISMIC LOADING

BEHAVIOUR OF FRP REINFORCED CONCRETE UNDER SIMULATED SEISMIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2717 BEHAVIOUR OF FRP REINFORCED CONCRETE UNDER SIMULATED SEISMIC LOADING M. Kazem SHARBATDAR 1 and Murat

More information

Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate

Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate Safety and Security Engineering V 853 Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate K.-B. Han, P.-Y. Song, H.-S. Yang, J.-H.

More information

Southeast University, Nanjing, Jiangsu , China. *Corresponding author

Southeast University, Nanjing, Jiangsu , China. *Corresponding author 2017 International Conference on Energy, Environment and Sustainable Development (EESD 2017) ISBN: 978-1-609-2-3 Experimental Study on Seismic Performance of Full Precast Shear Wall-Frame Structures Jun-wei

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP)

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP) Asia-Pacific Conference on FRP in Structures (APFIS 7) S.T. Smith (ed) 7 International Institute for FRP in Construction SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED

More information

Seismic Design Principles for RC Structures

Seismic Design Principles for RC Structures CE 490 Int. to Earthquake Engineering Seismic Design Principles for RC Structures H. Sucuoğlu Introduction Seismic design of structural systems is essentially based on an inherent ductile response under

More information

Evaluation of Shear Demand on Columns of of Masonry Infilled Reinforced Concrete Frames

Evaluation of Shear Demand on Columns of of Masonry Infilled Reinforced Concrete Frames Evaluation of Shear Demand on Columns of of Masonry Infilled Reinforced Concrete Frames S.H. Basha & H.B. Kaushik Dept. of Civil Engineering, Indian Institute of Technology Guwahati,Guwahati 78139, India.

More information

Effect of Axial load on deformation capacity of RC column

Effect of Axial load on deformation capacity of RC column Effect of load on deformation capacity of RC column N. G. Patoliya 1, Prof. C. S. Sanghvi 2 1 Narmada, Water Resources, Water Supply and Kalpsar Department, Government of Gujarat,, patoliyanirav@yahoo.co.in

More information

PERIODS OF REINFORCED CONCRETE FRAMES DURING NONLINEAR EARTHQUAKE RESPONSE

PERIODS OF REINFORCED CONCRETE FRAMES DURING NONLINEAR EARTHQUAKE RESPONSE PERIODS OF REINFORCED CONCRETE FRAMES DURING NONLINEAR EARTHQUAKE RESPONSE Arthur C HEIDEBRECHT And Nove NAUMOSKI SUMMARY This paper presents the results of a detailed evaluation of the relationships between

More information

Modeling of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls

Modeling of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls ing of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls Burak HOROZ 1, M.Fethi GÜLLÜ 2, and Kutay ORAKÇAL 3 1 Research Assistant Bogazici University, Istanbul, Turkey 2 Research Assistant

More information

SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE

SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE - Technical Paper - SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE Aloke RAJBHANDARY *1, Govinda R. PANDEY *2, Hiroshi MUTSUYOSHI *3 and Takeshi MAKI

More information

SEISMIC RESPONSE OF END-CONFINED REINFORCED CONCRETE BLOCK SHEAR WALLS

SEISMIC RESPONSE OF END-CONFINED REINFORCED CONCRETE BLOCK SHEAR WALLS 11 th Canadian Masonry Symposium, Toronto, Ontario, May 31- June 3, 2009 SEISMIC RESPONSE OF END-CONFINED REINFORCED CONCRETE BLOCK SHEAR WALLS B. R. Banting 1, M. T. Shedid 2, W. W. El-Dakhakhni 3, and

More information

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF REINFORCED CONCRETE COLUMNS UNDER CONSTANT AND VARIABLE AXIAL LOADINGS

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF REINFORCED CONCRETE COLUMNS UNDER CONSTANT AND VARIABLE AXIAL LOADINGS EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF REINFORCED CONCRETE COLUMNS UNDER CONSTANT AND VARIABLE AXIAL LOADINGS Hassane OUSALEM* 1, Toshimi KABEYASAWA*, Akira TASAI* 3 and Yasuko OHSUGI* ABSTRACT: The

More information

Pile to Slab Bridge Connections

Pile to Slab Bridge Connections Pile to Slab Bridge Connections Mohamed I. Ayoub 1, David H. Sanders 2 and Ahmed Ibrahim 3 Abstract Slab bridges are a common bridge type, where the pile extends directly from the ground to the superstructure.

More information

CTBUH Technical Paper

CTBUH Technical Paper CTBUH Technical Paper http://technicalpapers.ctbuh.org Subject: Paper Title: Structural Engineering Seismic Performance of Coupling Beam Damper System Author(s): Ahn, Taesang 1 Kim, YoungJu 1 Kim, SangDae

More information

Seismic Behaviour of RC Shear Walls

Seismic Behaviour of RC Shear Walls Ductile Detailing of RC Structures :: IS:13920-1993 1993 Short Course on Seismic Design of RC Structures Durgesh C. Rai Department of Civil Engineering, IIT Kanpur The material contained in this lecture

More information

Does Reinforcement Ratio Affect Displacements Due To Lateral Buckling Behavior of Concrete Walls?

Does Reinforcement Ratio Affect Displacements Due To Lateral Buckling Behavior of Concrete Walls? International Journal of Applied Engineering Research ISSN 973-4562 Volume 12, Number 3 (217) pp. 382-388 Does Reinforcement Ratio Affect Displacements Due To Lateral Buckling Behavior of Concrete Walls?

More information

EXPERIMENTAL INVESTIGATION ON THE INTERACTION OF REINFORCED CONCRETE FRAMES WITH PRECAST-PRESTRESSED CONCRETE FLOOR SYSTEMS

EXPERIMENTAL INVESTIGATION ON THE INTERACTION OF REINFORCED CONCRETE FRAMES WITH PRECAST-PRESTRESSED CONCRETE FLOOR SYSTEMS EXPERIMENTAL INVESTIGATION ON THE INTERACTION OF REINFORCED CONCRETE FRAMES WITH PRECAST-PRESTRESSED CONCRETE FLOOR SYSTEMS B.H.H. Peng 1, R.P. Dhakal 2, R.C. Fenwick 3, A.J. Carr 4 and D.K. Bull 5 1 PhD

More information

REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS

REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS Ahmed GHOBARAH 1 And Maged YOUSSEF 2 SUMMARY A developed macroscopic model is applied to the analysis of an example structure to demonstrate the use

More information

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017 ABC-UTC Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC ABSTRACT March, 2017 Accelerated Bridge Construction (ABC) is a method of bridge construction designed

More information

BEHAVIOR OF FULL-SCALE SHEAR DEFICIENT CORNER RC BEAM-COLUMN CONNECTIONS RETROFITTED WITH CFRP SHEETS

BEHAVIOR OF FULL-SCALE SHEAR DEFICIENT CORNER RC BEAM-COLUMN CONNECTIONS RETROFITTED WITH CFRP SHEETS BEHAVIOR OF FULL-SCALE SHEAR DEFICIENT CORNER RC BEAM-COLUMN CONNECTIONS RETROFITTED WITH CFRP SHEETS Y.A. Al-Salloum, S.H. Alsayed, T.H. Almusallam and N.A. Siddiqui DEPARTMENT OF CIVIL ENGINEERING PO

More information

Shear studs in slab-column connections with rectangular column

Shear studs in slab-column connections with rectangular column Shear studs in slab-column connections with rectangular column C B Tan*, Nanyang Techological University, Singapore s C Lee, Nanyang Techological University, Singapore s Teng, Nanyang Techological University,

More information

Ductile moment-resisting connections in glulam beams

Ductile moment-resisting connections in glulam beams Ductile moment-resisting connections in glulam beams Andy Buchanan, Peter Moss and Niles Wong Wood Technology Research Centre, and Department of Civil Engineering University of Canterbury, Christchurch

More information

Experimental Evaluation of The Seismic Behavior of Steel- Braced RC Frames

Experimental Evaluation of The Seismic Behavior of Steel- Braced RC Frames 1/7 Paper IFHS-211 Experimental Evaluation of The Seismic Behavior of Steel- Braced RC Frames M. L. Nehdi Currently at Alhosn University, Abu Dhabi, United Arab Emirates M. A. Youssef and H. Ghaffarzadeh

More information

Seismic Behavior of Low Strength RC Columns with Corroded Plain Reinforcing Bars

Seismic Behavior of Low Strength RC Columns with Corroded Plain Reinforcing Bars Seismic Behavior of Low Strength RC Columns with Corroded Plain Reinforcing Bars C. Goksu 1, B. Demirtas 2, C. Demir 1, A. Ilki 3 and N. Kumbasar 4 1 PhD Candidate, Civil Engineering Faculty, Istanbul

More information

CHAPTER 2 SPECIMEN DETAILS, TEST SETUP AND TESTING PROCEDURE

CHAPTER 2 SPECIMEN DETAILS, TEST SETUP AND TESTING PROCEDURE 38 CHAPTER 2 SPECIMEN DETAILS, TEST SETUP AND TESTING PROCEDURE 2.1 GENERAL In the conducted experimental study, three two-dimensional partially infilled RC frames were cast and tested under quasi-static

More information

SEISMIC REHABILITATION OF REINFORCED CONCRETE BRIDGE COLUMNS IN MODERATE EARTHQUAKE REGIONS USING FRP COMPOSITES

SEISMIC REHABILITATION OF REINFORCED CONCRETE BRIDGE COLUMNS IN MODERATE EARTHQUAKE REGIONS USING FRP COMPOSITES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 58 SEISMIC REHABILITATION OF REINFORCED CONCRETE BRIDGE COLUMNS IN MODERATE EARTHQUAKE REGIONS USING FRP

More information

EFFECTS OF END REGION CONFINEMENT ON SEISMIC PERFORMANCE OF RC CANTILEVER WALLS

EFFECTS OF END REGION CONFINEMENT ON SEISMIC PERFORMANCE OF RC CANTILEVER WALLS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska EFFECTS OF END REGION CONFINEMENT ON SEISMIC PERFORMANCE OF RC CANTILEVER

More information

NONLINEAR FINITE ELEMENT ANALYSIS OF NON- SEISMICALLY DETAILED INTERIOR RC BEAM-COLUMN CONNECTION UNDER REVERSED CYCLIC LOAD

NONLINEAR FINITE ELEMENT ANALYSIS OF NON- SEISMICALLY DETAILED INTERIOR RC BEAM-COLUMN CONNECTION UNDER REVERSED CYCLIC LOAD AJSTD Vol. 24 Issue 4 pp. 369-386 (2007) NONLINEAR FINITE ELEMENT ANALYSIS OF NON- SEISMICALLY DETAILED INTERIOR RC BEAM-COLUMN CONNECTION UNDER REVERSED CYCLIC LOAD Teeraphot Supaviriyakit, Amorn Pimanmas

More information

Tests on Seismic Behavior of Pre-cast Shear Walls with Vertical Reinforcements Spliced by Two Different Grout Ways

Tests on Seismic Behavior of Pre-cast Shear Walls with Vertical Reinforcements Spliced by Two Different Grout Ways Send Orders for Reprints to reprints@benthamscience.ae 382 The Open Civil Engineering Journal, 215, 9, 382-387 Open Access Tests on Seismic Behavior of Pre-cast Shear Walls with Vertical Reinforcements

More information

Eurocode 8 Timber and Masonry structures

Eurocode 8 Timber and Masonry structures Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 8 Timber and Masonry structures E C Carvalho, Chairman TC250/SC8 Brussels, 18-20 February 2008 Dissemination of information

More information

Response of columns and joints with spiral shear reinforcement

Response of columns and joints with spiral shear reinforcement Computational Methods and Experimental Measurements XII 455 Response of columns and joints with spiral shear reinforcement C. Karayannis & G. Sirkelis Department of Civil Engineering, Democritus University

More information

1. INTRODUCTION. Fig.1 Dimension of test specimen

1. INTRODUCTION. Fig.1 Dimension of test specimen F1B04 Evaluation of a Shear Wall Reinforced with Glass FRP Bars Subjected to Lateral Cyclic Loading Nayera Mohamed PhD candidate, Department of Civil Engineering, University of Sherbrooke, Sherbrooke,

More information

Supplemental Plan Check List for Concrete Special Moment Resisting Frame

Supplemental Plan Check List for Concrete Special Moment Resisting Frame Plan Check / PCIS Application Number: Your feedback is important, please visit our website to complete a Customer Survey at /LADBSWeb/customer-survey.jsf. If you have any questions or need clarification

More information

Experimental research on reduced beam section to concrete-filled steel tubular column joints with RC slab

Experimental research on reduced beam section to concrete-filled steel tubular column joints with RC slab Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 15, Sydney, Australia Experimental research on reduced beam section to concrete-filled

More information

Shear Strength Behaviour of Steel Truss Embedded in Flexural Plastic Hinge Zone of Reinforced Concrete Beam Subjected to Reversed Cyclic Loading

Shear Strength Behaviour of Steel Truss Embedded in Flexural Plastic Hinge Zone of Reinforced Concrete Beam Subjected to Reversed Cyclic Loading Journal of Physical Science, Vol. 29(Supp. 2), 133 146, 2018 Shear Strength Behaviour of Steel Truss Embedded in Flexural Plastic Hinge Zone of Reinforced Concrete Beam Subjected to Reversed Cyclic Loading

More information

Lap Splices in Tension Between Headed Reinforcing Bars And Hooked Reinforcing Bars of Reinforced Concrete Beam

Lap Splices in Tension Between Headed Reinforcing Bars And Hooked Reinforcing Bars of Reinforced Concrete Beam IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 13, Issue 3 Ver. I (May- Jun. 216), PP 71-75 www.iosrjournals.org Lap Splices in Tension Between

More information

Joint. investigation and. partially confined. techniques. jacketing. in the overall frame 2008) enlargement proposed method not.

Joint. investigation and. partially confined. techniques. jacketing. in the overall frame 2008) enlargement proposed method not. Experimental Evaluation of New Technique for Seismic Retrofitting of External RC Beam-Column Joint with Non Seismic Detailing J. Shafaei, A. Hosseini, M. Marefat & A. Arzeytoon School of Civil Engineering,

More information

Earthquake-Resistant Coupling Beams without Diagonal Reinforcement

Earthquake-Resistant Coupling Beams without Diagonal Reinforcement Earthquake-Resistant Coupling eams without Diagonal Reinforcement Strain-hardening fiber-reinforced concrete provides means to simplify detailing by Gustavo J. Parra-Montesinos, James K. Wight, and Monthian

More information

Seismic behaviors of columns in ordinary and intermediate moment resisting concrete frames

Seismic behaviors of columns in ordinary and intermediate moment resisting concrete frames Engineering Structures 27 (2005) 951 962 www.elsevier.com/locate/engstruct Seismic behaviors of columns in ordinary and intermediate moment resisting concrete frames Sang Whan Han,N.Y.Jee Department of

More information

SEISMIC PERFORMANCE OF FLAT-SLAB SHEAR REINFORCEMENT

SEISMIC PERFORMANCE OF FLAT-SLAB SHEAR REINFORCEMENT SEISMIC PERFORMANCE OF FLAT-SLAB SHEAR REINFORCEMENT Ian N ROBERTSON 1, Tadashi KAWAI, James LEE 3 And Brian ENOMOTO SUMMARY The intent of this research program was to study the response of slab-column

More information

Modelling of RC moment resisting frames with precast-prestressed flooring system

Modelling of RC moment resisting frames with precast-prestressed flooring system Modelling of RC moment resisting frames with precast-prestressed flooring system B.H.H. Peng, R.P. Dhakal, R.C. Fenwick & A.J. Carr Department of Civil Engineering, University of Canterbury, Christchurch.

More information

Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load

Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load Rildova, D. Kusumastuti, M. Suarjana & K.S. Pribadi Faculty of Civil and Environmental Engineering, Institut

More information

EXPERIMENTAL STUDY OF THE EFFECT OF REINFORCEMENT STABILITY ON THE CAPACITY OF REINFORCED CONCRETE COLUMNS

EXPERIMENTAL STUDY OF THE EFFECT OF REINFORCEMENT STABILITY ON THE CAPACITY OF REINFORCED CONCRETE COLUMNS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-, Paper No. 77 EXPERIMENTAL STUDY OF THE EFFECT OF REINFORCEMENT STABILITY ON THE CAPACITY OF REINFORCED CONCRETE COLUMNS

More information

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL CYCLIC RESPONSE OF ALTERNATIVE COLUMN TO FOUNDATION CONNECTIONS OF REINFORCED CONCRETEC PRECAST STRUCTURES Ettore Fagà, Dr, EUCENTRE, Pavia, Italy Lorenzo

More information

SEISMIC BEHAVIOUR OF REINFORCED CONCRETE WALLS WITH MINIMUM VERTICAL REINFORCEMENT

SEISMIC BEHAVIOUR OF REINFORCED CONCRETE WALLS WITH MINIMUM VERTICAL REINFORCEMENT Concrete Innovation and Design, fib Symposium, Copenhagen May 18-2, 215 SEISMIC BEHAVIOUR OF REINFORCED CONCRETE WALLS WITH MINIMUM VERTICAL REINFORCEMENT Yiqiu Lu and Richard Henry The University of Auckland,

More information

SEISMIC RETROFIT OF BEAMS IN BUILDINGS FOR FLEXURE USING CONCRETE JACKETING

SEISMIC RETROFIT OF BEAMS IN BUILDINGS FOR FLEXURE USING CONCRETE JACKETING SEISMIC RETROFIT OF BEAMS IN BUILDINGS FOR FLEXURE USING CONCRETE JACKETING V. T. Badari Narayanan L&T Ramboll Consulting Engineers Ltd., India A. K. Sengupta and S. R. Satish Kumar Indian Institute of

More information

DUCTILITY REQUIREMENTS FOR BUILDINGS

DUCTILITY REQUIREMENTS FOR BUILDINGS DUCTILITY REQUIREMENTS FOR BUILDINGS Prof. P. C. Vasani, Applied Mechanics Department, L. D. College of Engineering, Ahmedabad 380015. profvasani@rediffmail.com Bhumika B. Mehta M. E. CIVIL - (CASAD) Sem

More information

Basic quantities of earthquake engineering. Strength Stiffness - Ductility

Basic quantities of earthquake engineering. Strength Stiffness - Ductility Basic quantities of earthquake engineering Strength Stiffness - Ductility 1 Stength is the ability to withstand applied forces. For example a concrete element is weak in tension but strong in compression.

More information

REHABILITATION OF NONDUCTILE BEAM-COLUMN JOINT USING CONCRETE JACKETING

REHABILITATION OF NONDUCTILE BEAM-COLUMN JOINT USING CONCRETE JACKETING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 3159 REHABILITATION OF NONDUCTILE BEAM-COLUMN JOINT USING CONCRETE JACKETING Yung-Chih WANG 1 and Ming-Gin

More information

Analytical Study on Input Shear Forces and Bond Conditions of Beam Main Bars of RC Interior Beam-Column Joints

Analytical Study on Input Shear Forces and Bond Conditions of Beam Main Bars of RC Interior Beam-Column Joints Analytical Study on Input Shear Forces and Bond Conditions of Beam Main Bars of RC Interior Beam-Column s T. Kashiwazaki Chiba University, Japan C. Jin MIDAS IT Japan Co.,Ltd., Japan H. Noguchi Kogakuin

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 216 ENHANCING THE DEFORMATION CAPACITY OF CONCRETE SHEAR WALLS REINFORCED WITH GFRP BARS Ahmed Hassanein Doctoral student, Université de Sherbrooke, Canada Nayera Mohamed

More information

Damage Assessment of Reinforced Concrete Columns Under High Axial Loading

Damage Assessment of Reinforced Concrete Columns Under High Axial Loading SP-237 11 Damage Assessment of Reinforced Concrete Columns Under High Axial Loading by S. Kono, H. Bechtoula, M. Sakashita, H. Tanaka, F. Watanabe, and M.O. Eberhard Synopsis: Damage assessment has become

More information

Behavior of Reinforced Concrete Walls with Mesh Reinforcement Subjected to Cyclic Loading

Behavior of Reinforced Concrete Walls with Mesh Reinforcement Subjected to Cyclic Loading 17 Published in 5th International Symposium on Innovative Technologies in Engineering and Science 29-3 September 17 (ISITES17 Baku - Azerbaijan) Behavior of Reinforced Concrete Walls with Mesh Reinforcement

More information

Structural Behaviors of Deep RC Beams under Combined Axial and Bending Force

Structural Behaviors of Deep RC Beams under Combined Axial and Bending Force Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 2212 2218 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Structural Behaviors of Deep RC Beams

More information

Axial Load Behaviors of PSRC Composite Columns with Anchor-Type Transverse Reinforcements

Axial Load Behaviors of PSRC Composite Columns with Anchor-Type Transverse Reinforcements Axial Load Behaviors of PSRC Composite Columns with Anchor-Type Transverse Reinforcements *Hyeon-Jin Kim 1) and Hong-Gun Park 2) 1),2) Department of Architectural Engineering, SNU, Seoul, 08826, Korea

More information

Reinforced concrete beam-column joints with lap splices under cyclic loading

Reinforced concrete beam-column joints with lap splices under cyclic loading Structural Engineering and Mechanics, Vol. 14, No. 6 (2002) 000-000 1 Reinforced concrete beam-column joints with lap splices under cyclic loading Athanasios I. Karabinis Department of Civil Engineering,

More information

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS 6 th International Conference on Advanced Composite Materials in Bridges and Structures 6 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes Kingston, Ontario,

More information

Seismic response of a cast-in-place steel fibre concrete joint connecting precast beams and columns

Seismic response of a cast-in-place steel fibre concrete joint connecting precast beams and columns Seismic response of a cast-in-place steel fibre concrete joint connecting precast beams and columns L. Tuleasca & J. M. Ingham Department of Civil and Environmental Engineering, The University of Auckland,

More information

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF INTERIOR JOINTS OF PRECAST PRESTRESSED CONCRETE FRAMES

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF INTERIOR JOINTS OF PRECAST PRESTRESSED CONCRETE FRAMES EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF INTERIOR JOINTS OF PRECAST PRESTRESSED CONCRETE FRAMES J. Feng, J.G. Cai, H.J. Zhu, L.F. Huang 4 and Y. Chen 5 Professor, School of Civil Engineering, Southeast

More information

AXIAL LOAD FAILURE OF SHEAR CRITICAL COLUMNS SUBJECTED TO HIGH LEVELS OF AXIAL LOAD

AXIAL LOAD FAILURE OF SHEAR CRITICAL COLUMNS SUBJECTED TO HIGH LEVELS OF AXIAL LOAD AXIAL LOAD FAILURE OF SHEAR CRITICAL COLUMNS SUBJECTED TO HIGH LEVELS OF AXIAL LOAD A.B. Matamoros 1, Lisa Matchulat 2, and Charles Woods 3 1 Associate Professor, CEAE Dept., University of Kansas, Lawrence,

More information

Design Example 2 Reinforced Concrete Wall with Coupling Beams

Design Example 2 Reinforced Concrete Wall with Coupling Beams Design Example 2 Reinforced Concrete Wall with Coupling Beams OVERVIEW The structure in this design example is a six story office building with reinforced concrete walls as its seismic force resisting

More information

Flexural, Axial Load and Elongation Response of Plastic Hinges in Reinforced Concrete Member

Flexural, Axial Load and Elongation Response of Plastic Hinges in Reinforced Concrete Member Flexural, Axial Load and Elongation Response of Plastic Hinges in Reinforced Concrete Member Brian H.H. Peng University of Canterbury, Christchurch, New Zealand Rajesh P. Dhakal, Richard C. Fenwick, Athol

More information

An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading

An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading M. Suarjana, D. Kusumastuti & K.S. Pribadi Department of Civil Engineering, Institut Teknologi Bandung

More information

Compression Test for Precast Encased Composite Columns with Corrugated Steel Tube

Compression Test for Precast Encased Composite Columns with Corrugated Steel Tube Compression Test for Precast Encased Composite Columns with Corrugated Steel Tube *Kwang-Won Jo 1) and Hong-Gun Park 2) 1), 2) Dept. of Architecture and Architectural Engineering, Seoul National Univ.,

More information

Test of Rectangular Confined Concrete Columns for Strength and Ductility

Test of Rectangular Confined Concrete Columns for Strength and Ductility Test of Rectangular Confined Concrete Columns for Strength and Ductility E.R. Thorhallsson & P.V. Bjarnason Reykjavik University, Iceland SUMMARY: This paper outlines a research testing the ductility and

More information

SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS

SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 4 Paper No. 2198 SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS Juan F. Correal 1, M. Saiid

More information

Special Reinforced Concrete Structural Walls

Special Reinforced Concrete Structural Walls 135 Special Reinforced Concrete Structural Walls The requirements of this section apply to special reinforced concrete structural walls serving as part of the earthquake force-resisting system. Shear Strength:

More information

Experimental study on the seismic performance of RC moment resisting frames with precast-prestressed floor units.

Experimental study on the seismic performance of RC moment resisting frames with precast-prestressed floor units. Experimental study on the seismic performance of RC moment resisting frames with precast-prestressed floor units. B.H.H. Peng, R.C. Fenwick, R.P. Dhakal & D.K. Bull Department of Civil and Natural Resources

More information

Cyclic Loading Tests Of Steel Dampers Utilizing Flexure-Analogy of Deformation

Cyclic Loading Tests Of Steel Dampers Utilizing Flexure-Analogy of Deformation Cyclic Loading Tests Of Steel Dampers Utilizing Flexure-Analogy of Deformation J.-H. Park & K.-H. Lee University of Incheon, Korea SUMMARY Steel dampers utilizing flexure analogy of deformation are proposed

More information