Residual Stress Pattern of Stainless Steel SHS

Size: px
Start display at page:

Download "Residual Stress Pattern of Stainless Steel SHS"

Transcription

1 Residual Stress Pattern of Stainless Steel SHS M. Jandera & J. Machacek Czech Technical University in Prague, Czech Republic ABSTRACT: The investigation is focused on cold rolled square hollow sections made of stainless steel Current research at the Czech Technical University in Prague embraces experimental investigation of residual stresses induced by forming process of the sections determined by the sectioning method which is described in detail. Patterns of stress distribution along the section are generalized and suitable predictive formulas for general use developed. The patterns were finally used in a FEM model to show possible influence of each part of the residual stresses (especially of longitudinal and transversal bending ones) on compressive carrying capacity of the sections subjected to local and global buckling. The numerical model originates from ABAQUS software and includes the distribution of membrane and bending residual stresses in both longitudinal and transverse member directions, a non-linear stress-strain diagram and enhanced strength corner properties to obtain a relevant credibility of the solution. The parametric study of the influence of residual stresses on the stub column strengths is shown and assessed for all substantial parameters such as web plate slenderness, column slenderness and the nonlinearity parameter of Ramberg-Osgood formula. 1 INTRODUCTION 1.1 Material and sections Stainless steel is comparatively a new material in structural applications. Nevertheless, steadily expanding use may be seen in last two decades while an extensive research has shown notable beneficial structural properties (Gardner 2005). Up to recently the most common stainless steel is austenitic Grade EN , which was also used in all tests and as a reference material for this study. However, great progress may be seen in other austenitic and duplex grades and also in development of new ones with low nickel content known as lean stainless steels. These steels may offer superior mechanical properties at lower cost and are currently being introduced into the design codes (Theofanous & Gardner 2009). 1.2 Residual stresses The forming process of thin-walled structures induces residual stresses which may have a significant effect on structural behaviour. Residual stresses in cold-formed sections are generally expected to have substantial bending part and comparatively low membrane part, and hereby being the opposite of thermally induced residual stresses in welded or hot-rolled sections (Rasmussen & Hancock 1988). This was also confirmed for residual stresses in stainless steel sections via experimental investigation of members in compression and bending (Rasmussen & Hancock 1993a, Rasmussen & Hancock 1993b) where large longitudinal bending residual stresses were found. For carbon square hollow sections (SHS) the residual stresses were measured by Key & Hancock (1993) and a model of their distribution in both directions was proposed. A recent experimental program concerning X-ray diffraction method measurements on SHS were published by Lia et al. (2009) showing through-thickness stress distribution in both directions. Nevertheless, no model was proposed and the longitudinal membrane residual stresses in tension found around the whole section were not qualified. Lately the residual stresses of stainless steel SHS were measured by Young & Lui (2005) using the sectioning method for longitudinal residual stresses investigation, and by Cruise & Gardner (2008), where similar procedure was used for extensive research and modelling of longitudinal bending stress distribution proposed also for press-braked and hotrolled angles. Nevertheless, the experimental methods are not the only possibility of residual stress determination and numerical simulations are also conveniently used for stainless steel cold-formed sections (Quach

2 et al. 2009a, Quach et al. 2009b, Rossi et al. 2009). But for hollow sections, where the forming process is more complicated and contains more stages no numerical model was published yet as far as authors are informed. 2 RESIDUAL STRESS DISTRIBUTION 2.1 Selected sections and material characteristics In the experimental part, two cross-sections were investigated, SHS 100x100x3 and SHS 120x120x4, all with a longitudinal weld. For each type of the sections three specimens were made for measurement of residual stresses on one web only. One of the investigated webs was always the one with the weld, the other one next to the web with the weld and the third one the one facing the web with the weld. So, all types of webs were considered. Coupon tensile tests were carried out for each type of section for flat part (taken always from the centre of the web) and corner part as well. Also, a stress relieved specimen (annealing at 650 C) for flat part was made for each type of section. Tensile material characteristics are summarised in Table 1, where E 0 is the initial tangent (Young s) modulus, σ 0.2 and σ 1.0 are the 0.2% and 1.0% proof strengths respectively, ε pu is the plastic ultimate tensile strength and n and n 1.0 are strain hardening exponents for the compound Ramberg Osgood material model described by Gardner & Ashraf (2006). Table 1. Measured material properties. Section E 0 σ 0.2 σ 1.0 σ u ε pu n n 1.0 MPa MPa MPa MPa - - -_ 100x100x3-F ,60 7,1 2,3 100x100x3-FA ,65 13,4 1,5 100x100x3-C ,27 6,1 3,3 120x120x4-F ,68 4,3 2,7 120x120x4-FA ,74 8,1 2,1 120x120x4-C ,37 5,4 3,0 F as-delivered flat part FA stress relieved flat part C as-delivered corner part 2.2 Measurement procedure For the strain record, resistance strain gauges were used on both surfaces of the web (with measuring grid 5x10 mm). To avoid potential damage of the strain-gauges, silicone coating was used. For 120 mm cross-section five web sections were cut out in the longitudinal direction and one in the transverse one, while for 100 mm cross-section only four in the longitudinal and one in the transverse direction (Figure 1). The width of the longitudinal section was at least 20 mm with length of 110 mm and that of transverse section was 30 mm with length equal to the whole web width. These conservatively large dimensions were taken to ensure the highest possible accuracy of results. At first, the strain gauges were attached to the outer surface of measured web followed by the initial readings (always five times for each strain gauge with two minutes brakes to avoid any mistake in readings), Figure 1. Subsequently, an opening was cut out in the web facing the measured one, strain gauges were attached to the inner surface of the measured web (Figure 2) and readings were taken for all strain gauges. The measured strain on the outer surface was attributed to the residual stress redistribution after the facing web opening. In the longitudinal direction the residual stresses were considered as pure membrane stress and in the transverse direction as pure bending one. This assumption is not so important in view of the fact that the magnitude of the redistributed stresses is very low, nearly negligible (typically less then 2 MPa). Figure 1. Specimen prepared for the sectioning method with strain gauges set on the outer surface and a strain-gauge for compensation of temperature on separate section. Figure 2. Cut out opening in the web facing the measured one and configuration of strain gauges on the inner surface. Figure 3. Sectioning of a specimen.

3 Finally the specimen was divided into the sections by a cooled thin cutting-disc (Figure 3). The depth of each turn of a cut didn t exceeded 0,4 mm. This procedure kept the temperature of the material safely under 100 C. Once the specimen was divided (Figure 4) and the temperature returned back to the room temperature, the final readings were taken on the strain gauges and residual stresses calculated in two parts membrane and bending in both longitudinal and transverse direction. For transverse membrane stresses approximately zero magnitude was obtained, which is correct with respect to the evident equilibrium condition. For calculation of stresses from the recorded strain the initial elastic modulus E 0 for the material of web (Table 1, 100x100x3-F and 120x120x4-F respectively) was used and for bending residual stresses plastic (block-like) distribution was assumed. This simplification was considered also by Cruise and Gardner (2008) with respect to large magnitudes of bending stresses and subsequently by Jandera et al. (2008) where measurement by X-ray diffraction method was carried out and the stresses seemed to be relatively constant through the half of the web thickness. σ m = (-0,253+1,483(x-x 2 )) σ 0.2 (1) σ b.pl = (0,833+1,866(x-x 2 )) σ 0.2 (2) where x means relative distance along the web width (x=0 and x=1 for the edges of the flat web, x=0,5 for the centre of the web). The models for longitudinal stresses are shown in Figures 5 and 6, where 95% predictive intervals and the measurements are also demonstrated. Figure 5. Membrane residual stress measurements and proposed predictive model (related to the web yield strength) across a web of SHS. Figure 4. A sectioned web of a specimen. 2.3 Proposed model According to these results models of residual stresses distribution were proposed. Both, the model and the results are always related to the 0.2 % proof strength σ 0.2 of material at the centre of the web. For membrane stresses the positive sign marks tension and negative ones compression. For bending residual stresses all values are related to the outer surface. Then positive values mark tension on the outer surface and compression on the inner one. For the distribution along the web a quadratic function was proposed according to the least squares. The procedure resulted into equation (1) for longitudinal membrane residual stresses (σ m ) and equation (2) for longitudinal bending residual stresses (σ pl.b ): Figure 6. Bending residual stress measurements and proposed predictive model (related to the web yield strength) across a web of SHS, where plastic distribution through thickness is assumed. The positive sign (tensile stresses) is related to the outer surface. The predictive formulas demonstrate good agreement with the experiments (coefficient of determination is R 2 = 0,893 for membrane stresses and R 2 = 0,828 for bending stresses). The same formula is used for webs with as well as without weld despite slight difference was monitored. For the transverse residual stresses, where only one strain gauge at the web center was used, uniform distribution along the web is assumed. The transverse bending residual stresses may be taken as: σ b.pl.t = -0,376 σ 0.2 (3)

4 3 FE MODEL 3.1 Introduction The proposed model of residual stress distribution was subsequently introduced into a FE model, which was successfully validated previously (Jandera et al. 2008) and where a detailed description of the model is available. The parametric studies of influence of residual stresses were divided into two parts: one focused on influence of residual stresses on global column buckling where a pinned column was modelled and the other focused on local web buckling, which was represented by a stub column model. The boundary conditions are shown in Figure 7. All: the longitudinal membrane and bending as well as transverse bending stresses, Max. all: the longitudinal membrane and bending stresses as well as transverse bending stresses, the longitudinal bending residual stresses were taken as the upper bound of the 95% predictive interval. Bending residual stresses in corners, where no measurement was carried out, were neglected in the model. As was shown previously by Cruise & Gardner (2008), the bending residual stresses in corners are low. This, together with increased strength in the corner area implies that their effect is insignificant. Longitudinal membrane residual stresses in corners were always calculated from condition of equilibrium over the all cross-section. Their magnitudes were very low, as was shown by Cruise & Gardner (2008) or in the patterns proposed by Key & Hancock (1993) for carbon steel SHS. 4 PARAMETRIC STUDY BASED ON SHS 120x120x4 Figure 7. FE models of stub and long column used for the parametric studies. 3.2 Initial geometric imperfections Initial deflections were considered in the shape of local buckling with the amplitudes measured on the specimens before tests (see Jandera et al. 2008). These web imperfections were introduced in models of stubs as well as long columns. Global initial column deflections were introduced in model of the long column in shape of the lowest global buckling eigenmode with amplitude of L/2000, where L is the column length. This value was proposed by Gardner (2002) as an average value, lately confirmed by Cruise & Gardner (2006). 3.3 Residual stresses The bending residual stresses were introduced in 6 integration points with quadratic integration trough the thickness. The proposed residual stresses pattern was introduced in five stages: Membrane: the longitudinal membrane stresses only, Longitudinal: the longitudinal membrane and bending stresses, Max. longitudinal: the longitudinal membrane and bending stresses, which were taken by the upper bound of the 95% predictive interval, 4.1 Introduction The study was based on sections SHS 120x120x4 tested at the Czech Technical University in Prague where the geometry and material characteristics were measured. The material characteristics for the corner were taken as measured. For flat parts the influence of bending residual stresses was removed with help of an analytical model. The resulting stress-strain diagram corresponded to the stressrelieved material diagram (Jandera 2009). The modelled corner area was assumed as sum of the own corner area extended for flat web parts considered as twice the web thickness (proposed for SHS by Gardner (2002) and Cruise (2007)). 4.2 Influence of residual stresses on global buckling By analysing column models of varying length, the influence of bending and membrane residual stresses on global buckling capacity over a range of slendernesses was assessed. The results of the study are presented in Figure 8. For non-dimensional slendernesses λ (defined as the square root of the ratio between yield load and elastic column buckling load) up to 1.3, the residual stresses may be seen to have a positive influence on load-carrying capacity. Beyond this slenderness, a negative influence is evident. Over the investigated range of slenderness, inclusion of residual stresses causes a variation in resistance between -16 % and +10 % and -20 % to + 14 % if the upper bound of the 95% predictive interval for the longitudinal bending residual stresses is considered.

5 The influence of membrane residual stresses was negligible for the whole employed slenderness range. Figure 8. Parametric study of residual stress influence on long column load-carrying capacity. Figure 9. Stress-strain relationship (left) and tangent modulus (right) of material with and without longitudinal bending residual stresses valid for the average web value of SHS 120x120x4. Figure 10. Load-strain diagrams of long columns. The variation of resistance results principally from the effect of the bending residual stresses on the non-linearity of the stress-strain curve. A positive influence of residual stresses arises when column failure strains coincide with a region of increased tangent modulus. This is illustrated for longitudinal bending residual stresses in Figure 9 where the material response with and without longitudinal bending residual stresses is depicted (the average magnitude of residual stresses for the web was employed). The material stress-strain curve containing residual stresses may be seen to be consistently below the residual stress free curve (i.e. the secant modulus is always lower). However, this is not valid for the tangent modulus, which is known to be fundamental in controlling column buckling resistance. Below approximately 0.12% strain, the tangent modulus of the stress free curve is higher than that of the residual stresses containing curve. Conversely, for higher strains, the reverse is true. From Figure 10, where load-strain curves of columns are printed (strain denotes the axial deformation to the column length ratio, similarly in Fig. 12), follows that the failure strains of columns of slendernesses up to 1.3 reach more than 0.12%. That s the range, where the longitudinal bending residual stresses were found to have positive influence on the tangential modulus. For higher column slenderness ( λ > 1.3), lower strains are reached at ultimate load. Therefore the tangent modulus for the material where bending residual stresses were included is lower than the tangent modulus of material without residual stresses (Figure 9), and thus longitudinal bending residual stresses were found to lead to a reduction in loadcarrying capacity. The magnitude of residual stresses clearly influences the variation in load-carrying capacity, and it was found that taking mean longitudinal bending residual stress values rather than the upper bound of the predictive interval, sensitivity of the column response was nearly halved for the most sensitive slendernesses. For the large slendernesses, the difference was lower. The transverse bending residual stress was found to emphasize the effect of the longitudinal one and having also significant effect. 4.3 Influence of residual stresses on local buckling The influence of residual stresses on local buckling capacity was assessed in a similar manner to the above studied global buckling. Stub column models of varying local plate slenderness λ p (defined as the square root of the yield load to the elastic local buckling load of the plate elements) with and without residual stresses were examined. The results are shown in Figure 11. The maximum influence of residual stresses in terms of load-carrying capacity was 9% and 11 % if the upper bound of the 95% predictive interval for the longitudinal bending residual stresses was considered. Although slightly less sensitive influence than in the column buckling results, similar conclusions can be drawn. The influence of membrane residual stresses was also found to be insignificant in comparison to the influence of the bending components.

6 However, the main difference is that for the local buckling no negative influence of residual stresses occurred. This is due to the post-buckling behaviour which increases the failure strain for very slender webs. Opposite to post-buckling behaviour of columns, the local buckling failure strain was always greater than 0.12%, where residual stresses have the positive influence on tangential modulus. The highest effect of bending residual stresses was monitored for the middle slendernesses ( λ p = 1.0 to 1.3) where the sensitivity of columns is large and the difference of the tangential modulus at failure strain between material with and without bending stresses is the highest. n σ σ ε = (4) E0 σ 0.2 where ε is strain and σ stress. The 0.2% proof strength was taken according to Eurocode where σ = 230 MPa for Grade The hardening exponents n was taken as: n = 4, which represents cold-formed austenitic steels, n = 6, which represents annealed austenitic steels, n = 16, which represents the lowest nonlinearity of stainless steels, n =, in fact bilinear stress-strain diagram which represents common carbon steels. The initial geometric imperfections and residual stresses were employed as above. 5.2 Influence of residual stresses on global buckling The parametric study was carried out for range of column slenderness λ = 0.8 to 1.8 (Jandera 2009) and only results of two the most representative slendernesses λ = 1.0 and 1.8 are shown here (Figure 13 and 14). Figure 11. Parametric study of residual stress influence on stub column load-carrying capacity. Figure 13. Influence of residual stresses on load-carrying capacity of long column with λ =1,0 according to Ramberg- Osgood factor n. Figure 12. Load-strain diagrams of stub columns. 5 PARAMETRIC STUDY ON INFLUENCE OF RAMBERG-OSGOOD STRAIN HARDENING EXPONENT 5.1 Introduction The second parametric study was made in order to explain the difference of influence of residual stresses in materials of various nonlinearities. For the simplicity, in all models only the one-stage Ramberg-Osgood diagram (4) was used for the whole area of cross-section: From the results follows that that the residual stresses for the nonlinear material (n = 4 to 6) may increase the load-carrying capacity for the middle slenderness ( λ = 1.0) but for high slenderness ( λ = 1.8) the opposite is true. For materials with lower nonlinearity of stressstrain diagram, especially for the bilinear stressstrain diagram (e.g. carbon steel), the inclusion of residual stresses cause always decrease in the load capacity as generally known and numerically confirmed for SHS by Key & Hancock (1993). This fact is due to a significant drop in stiffness of materials which offers none or low strain hardening beyond yield strength (e.g. Jandera 2009). The influence of membrane component of residual stresses is always low.

7 Figure 14. Influence of residual stresses on load-carrying capacity of long column with λ =1,8 according to Ramberg- Osgood factor n. The magnitude of the influence of residual stresses is, however, rather overestimated in this study due to the simplification of material characteristics. The increased strength of material in the corner area as well as slightly different stress-strain diagram (better represented by compound Ramberg-Osgood diagram, Gardner & Ashraf 2006) may suppress the residual stress influence significantly. 5.3 Influence of residual stresses on local buckling Similar study on local buckling showed similar results (for λ p = 1.0 and 1.8 see Figures 15 and 16). Figure 15. Influence of residual stresses on load-carrying capacity of stub column with λ p =1,0 according to Ramberg- Osgood factor n. As shown in the previous study based on real material characteristics, for the nonlinear stress-strain diagrams the effect of residual stresses is always positive, whereas for the bilinear material diagram always negative. The influence of membrane residual stresses was always negligible. Figure 16. Influence of residual stresses on load-carrying capacity of stub column with λ p =1,8 according to Ramberg- Osgood factor n. 6 CONCLUSIONS An experimental and numerical investigation of residual stress distribution and its influence on column behaviour of structural stainless steel hollow sections is described. Sectioning method was used for the residual stress patterns measurement and generalized predictive formulas of distribution of all residual stress components (membrane and bending) along the web of SHS were determined with high correlation of the formulas with tests. Extensive numerical parametric studies based on received results and using geometrically and materially non-linear FE analysis were performed. The investigation concerned long and stub columns to determine the influence of residual stresses on global and local buckling. Paradoxically, it was found that inclusion of residual stresses may lead to an increase in loadcarrying capacity. This was attributed principally to the influence of the bending residual stresses on the material stress-strain curve. It was found that despite the secant modulus being consistently reduced in the presence of residual stresses, the tangent modulus was increased in some regions of the stress strain curve. For cases where column failure strains coincided with these increased tangent modulus regions (which was the whole slenderness range for local buckling and the slenderness in vicinity of λ = 1.0 for global buckling), higher buckling loads resulted. For the real cross-sections, where measured material characteristics were employed, the influence of residual stresses were between +10 % to -16 % for global buckling and up to +9 % for local buckling (plus means higher load-carrying capacity). Parametric study with varying Ramberg-Osgood strain hardening factor n showed that inclusion of residual stress pattern may lead to an increase of the load-carrying capacity of compressed members having non-linear stress-strain diagram, but always to

8 decrease of capacity for materials with bilinear stress-strain diagram (e.g. for common carbon steel). Although the behaviour of stainless steel columns with and without bending residual stresses has been investigated in this study, it should be noted that these stresses will inherently be present in the stress strain behaviour of material extracted from structural sections and, therefore, need not generally be explicitly re-introduced into numerical models. The influence of membrane residual stresses in these sections is usually very low and may be neglected in most of analyses. ACKNOWLEDGEMENTS The financial support of the Czech Ministry of Education (Grant MSM ) is gratefully acknowledged. REFERENCES Cruise, R.B The influence of production route on the response of structural stainless steel members. Ph.D. thesis. Department of Civil and Environmental Engineering, Imperial College London. Cruise, R.B. & Gardner, L Measurement and prediction of geometric imperfections in structural stainless steel members. Structural Engineering and Mechanics 24(1): Cruise, R.B. & Gardner, L Residual stress analysis of structural stainless steel sections. Journal of Constructional Steel Research 64(3): Gardner, L A new approach to structural stainless steel design. Ph.D. thesis. Department of Civil and Environmental Engineering, Imperial College London. Gardner, L The use of stainless steel in structures. Progress in Structural Engineering and Materials 7(2): Gardner, L. & Ashraf, M Structural design for nonlinear metallic materials. Engineering Structures 28(6): Gardner, L. & Nethercot, D.A. 2004a. Experiments on stainless steel hollow sections - Part 1: Material and crosssectional behaviour. Journal of Constructional Steel Research 60(9): Gardner, L. & Nethercot, D.A. 2004b. Experiments on stainless steel hollow sections - Part 2: Member behaviour of columns and beams. Journal of Constructional Steel Research 60(9): Jandera, M., Gardner, L. & Machacek, J. 2008, Residual stresses in cold-rolled stainless steel hollow sections. Journal of Constructional Steel Research 64(11): Jandera, M. 2009, Residual stresses in stainless steel box sections. Ph.D. thesis, Faculty of Civil Engineering, Czech Technical University in Prague (in Czech). Key, W. & Hancock, G.J A theoretical investigation of the column behaviour of cold-formed square hollow sections, Thin-walled Structures 16: Li, S.H., Zeng, G., Mac, Y.F., Guo, Y.J. & Lai X.M Residual stresses in roll-formed square hollow sections. Thin- Walled Structures 47(5): Quach, W.M., Teng, J.G. & Chung, K.F. 2009a. Residual stresses in press-braked stainless steel sections, I: Coiling and uncoiling of sheets. Journal of Constructional Steel Research 68(8-9): Quach, W.M., Teng, J.G. & Chung, K.F. 2009b. Residual stresses in press-braked stainless steel sections, II: Pressbraking operations. Journal of Constructional Steel Research 68(8-9): Rasmussen, K.J.R. & Hancock, G.J Deformations and residual stresses induced in channel section columns by presetting and welding, Journal of Constructional Steel Research 11(3): Rasmussen, K.J.R. & Hancock, G.J. 1993a. Design of coldformed stainless steel tubular members, I: Columns. Journal of Structural Engineering 119(8): Rasmussen, K.J.R. & Hancock, G.J. 1993a. Design of coldformed stainless steel tubular members, II: Beams. Journal of Structural Engineering 119(8): Rossi, B., Degée, H. & Pascon, F Enhanced mechanical properties after cold process of fabrication of non-linear metallic profiles. Thin-Walled Structures 47(12): Theofanous, M. & Gardner, L Testing and numerical modelling of lean duplex stainless steel hollow section columns. Engineering Structures 31(12): Young, B. & Lui, Y Behaviour of cold-formed high strength stainless steel sections. Journal of Structural Engineering 131(11):

Residual Stress Influence on Material Properties and Column Behaviour of Stainless Steel SHS. M. Jandera 1, J. Machacek 2

Residual Stress Influence on Material Properties and Column Behaviour of Stainless Steel SHS. M. Jandera 1, J. Machacek 2 Residual Stress Influence on Material Properties and Column Behaviour of Stainless Steel SHS M. Jandera 1, J. Machacek 2 Faculty of Civil Engineering, Czech Technical University in Prague Abstract The

More information

Residual stress influence on material properties and column behaviour of stainless steel SHS

Residual stress influence on material properties and column behaviour of stainless steel SHS Residual stress influence on material properties and column behaviour of stainless steel SHS Michal Jandera Josef Macháček Czech Technical University in Prague residual stresses: austenitic steel grade

More information

PLASTIC DESIGN OF STAINLESS STEEL STRUCTURES

PLASTIC DESIGN OF STAINLESS STEEL STRUCTURES SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 PLASTIC DESIGN OF STAINLESS STEEL STRUCTURES Marios Theofanous*

More information

Influence of Variation in Material Strength on Ultimate Strength of Stainless Steel Plates under In-Plane Bending and Compression

Influence of Variation in Material Strength on Ultimate Strength of Stainless Steel Plates under In-Plane Bending and Compression Influence of Variation in Material Strength on Ultimate Strength of Stainless Steel Plates under In-Plane Bending and Compression Satoshi Nara and Yasuhiro Miyazaki Osaka University, Nagaoka National College

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 June 11(8): pages 202-211 Open Access Journal Structural performance

More information

The Open Civil Engineering Journal

The Open Civil Engineering Journal Send Orders for Reprints to reprints@benthamscience.ae 58 The Open Civil Engineering Journal, 7,, (Suppl-, M5) 58-68 The Open Civil Engineering Journal Content list available at: www.benthamopen.com/tociej/

More information

Numerical Verification of Stainless Steel Overall Buckling Curves. Petr Hradil, Asko Talja

Numerical Verification of Stainless Steel Overall Buckling Curves. Petr Hradil, Asko Talja Numerical Verification of Stainless Steel Overall Buckling Curves Petr Hradil, Asko Talja VTT, Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland Abstract The introduction of new

More information

Experiments on Stainless Steel Hollow Sections Part 2: Member Behaviour of Columns and Beams

Experiments on Stainless Steel Hollow Sections Part 2: Member Behaviour of Columns and Beams Gardner, L. and Nethercot, D. A. (2004). Experiments on stainless steel hollow sections Part 2: Member behaviour of columns and beams. Journal of Constructional Steel Research. 60(9), 1319-1332. Experiments

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/8473/

More information

Structural behaviour of flat oval LDSS stub column under pure axial compression

Structural behaviour of flat oval LDSS stub column under pure axial compression Structural behaviour of flat oval LDSS stub column under pure axial compression Khwairakpam Sachidananda 1, Konjengbam Darunkumar Singh 2 PhD Scholar, Indian Institute of Technology Guwahati, India 1 Associate

More information

BEHAVIOUR OF AXIALLY LOADED CONCRETE - FILLED STAINLESS STEEL ELLIPTICAL STUB COLUMNS

BEHAVIOUR OF AXIALLY LOADED CONCRETE - FILLED STAINLESS STEEL ELLIPTICAL STUB COLUMNS Lam, D., Gardner, L. and Burdett, M. (2010). Behaviour of axially loaded concrete-filled stainless steel elliptical stub columns. Advances in Structural Engineering. 13(3), 493-500. BEHAVIOUR OF AXIALLY

More information

AXIAL BEHAVIOR OF STAINLESS STEEL SQUARE THIN-WALLED TUBES STIFFENED INTERNALLY

AXIAL BEHAVIOR OF STAINLESS STEEL SQUARE THIN-WALLED TUBES STIFFENED INTERNALLY International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 45-54, Article ID: IJCIET_06_11_006 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

Effective width equations accounting for element interaction for coldformed stainless steel square and rectangular hollow sections

Effective width equations accounting for element interaction for coldformed stainless steel square and rectangular hollow sections Effective width equations accounting for element interaction for coldformed stainless steel square and rectangular hollow sections Bock M* and Real E Department of Construction Engineering, Universitat

More information

Behaviour and design of stainless steel SHS and RHS beam-columns

Behaviour and design of stainless steel SHS and RHS beam-columns Zhao, O., Gardner, L., & Young, B. (2016). Behaviour and design of stainless steel SHS and RHS beam-columns. Thin-Walled Structures, 106, 330-345. Behaviour and design of stainless steel SHS and RHS beam-columns

More information

Experimental Study on the Constitutive Relation of Austenitic Stainless Steel S31608 Under Monotonic and Cyclic Loading

Experimental Study on the Constitutive Relation of Austenitic Stainless Steel S31608 Under Monotonic and Cyclic Loading Experimental Study on the Constitutive Relation of Austenitic Stainless Steel S3168 Under Monotonic and Cyclic Loading Y.Q. Wang a,*. T. Chang a, Y.J. Shi a, H.X. Yuan a, D.F. Liao b a Key Laboratory of

More information

Shear characteristics of rectangular Lean Duplex Stainless Steel (LDSS) tubular beams a finite element study Sonu J.K 1, Konjengbam Darunkumar Singh 2

Shear characteristics of rectangular Lean Duplex Stainless Steel (LDSS) tubular beams a finite element study Sonu J.K 1, Konjengbam Darunkumar Singh 2 ISSN (Print) : 347-671 An ISO 397: 7 Certified Organization Volume 3, Special Issue 4, March 14 National Conference on Recent Advances in Civil Engineering (NCRACE-13) Shear characteristics of rectangular

More information

The Analysis of Bearing Capacity of Axially Compressed Cold Formed Steel Members

The Analysis of Bearing Capacity of Axially Compressed Cold Formed Steel Members P P Periodica Polytechnica Civil Engineering 61(1), pp. 88 97, 2017 DOI: 10.3311/PPci.8836 Creative Commons Attribution b The Analysis of Bearing Capacity of Axially Compressed Cold Formed Steel Members

More information

Testing and numerical modelling of lean duplex stainless steel hollow section columns

Testing and numerical modelling of lean duplex stainless steel hollow section columns * Manuscript Click here to view linked References Testing and numerical modelling of lean duplex stainless steel hollow section columns M. Theofanous and L. Gardner Abstract Stainless steels are employed

More information

HIERARCHICAL VALIDATION OF FEM MODELS

HIERARCHICAL VALIDATION OF FEM MODELS Krzysztof OSTROWSKI 1 Aleksander KOZŁOWSKI 2 HIERARCHICAL VALIDATION OF FEM MODELS In article are presented results from multistage hierarchical validation of the advanced FEM models used to define rotation

More information

Seismic performance of New Steel Concrete Composite Beam-Columns

Seismic performance of New Steel Concrete Composite Beam-Columns Seismic performance of New Steel Concrete Composite Beam-Columns Toshiaki FUJIMOTO, Hiroshi KOMATSU, Tomoyuki SAKURADA & Noritaka MOROHASHI College of Industrial Technology, Nihon University, Japan SUMMARY:

More information

CONTINUOUS BEAMS OF ALUMINUM ALLOY TUBULAR CROSS-SECTION - PART I: TESTS AND FE MODEL VALIDATION

CONTINUOUS BEAMS OF ALUMINUM ALLOY TUBULAR CROSS-SECTION - PART I: TESTS AND FE MODEL VALIDATION Su, M., Young, B. and Gardner, L. (2015), Continuous beams of aluminum alloy tubular cross sections. I: tests and model validation, Journal of Structural Engineering, ASCE, 141(9): 04014232. CONTINUOUS

More information

Section Moment Capacity Tests of Rivet-Fastened Rectangular Hollow Flange Channel Beams

Section Moment Capacity Tests of Rivet-Fastened Rectangular Hollow Flange Channel Beams Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2014) - 22nd International Specialty Conference on Cold-Formed Steel Structures

More information

Structural Applications of Ferritic Stainless Steels (SAFSS) RFSR-CT (July 01, June 30, 2013)

Structural Applications of Ferritic Stainless Steels (SAFSS) RFSR-CT (July 01, June 30, 2013) Structural Applications of Ferritic Stainless Steels (SAFSS) RFSR-CT-2010-00026 (July 01, 2010 - June 30, 2013) Work package 2: Structural performance of steel members Deliverable 2.2: Report on preliminary

More information

Arrayago, I., Real, E. and Gardner, L. (2015). Description of stress strain curves for stainless steel alloys. Materials and Design. 87,

Arrayago, I., Real, E. and Gardner, L. (2015). Description of stress strain curves for stainless steel alloys. Materials and Design. 87, Arrayago, I., Real, E. and Gardner, L. (2015). Description of stress strain curves for stainless steel alloys. Materials and Design. 87, 540 552. Description of stress-strain curves for stainless steel

More information

BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM

BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM Donna CHEN Ph.D. Candidate University of Calgary, Department of Civil Engineering 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada dsmchen@ucalgary.ca

More information

under Buckling Behavior

under Buckling Behavior EXPERIMENTAL STUDY ON HOT ROLLED SQUARE HOLLOW SECTIONS UNDER BUCKLING Experimental Study on Hot Rolled Square Hollow Sections BEHAVIOUR Karthick raja.s a, Sundararooban.S.R b, Rangaraj.S c a,b,c - Final

More information

COLD-FORMING EFFECT ON STAINLESS STEEL SECTIONS

COLD-FORMING EFFECT ON STAINLESS STEEL SECTIONS COLD-FORMING EFFECT ON STAINLESS STEEL SECTIONS Author: Milon Kanti Howlader Supervisor: Ing. Michal Jandera, Ph.D University: Czech Technical University in Prague Czech Technical University in Prague

More information

COLD FORMING HOT-ROLLED WIDE FLANGE BEAMS INTO ARCHES Preliminary finite element simulations

COLD FORMING HOT-ROLLED WIDE FLANGE BEAMS INTO ARCHES Preliminary finite element simulations EUROSTEEL 8, 3-5 September 8, Graz, Austria COLD FORMING HOT-ROLLED WIDE FLANGE BEAMS INTO ARCHES Preliminary finite element simulations R.C. Spoorenberg, H.H. Snijder, J.C.D. Hoenderkamp, M.C.M. Bakker

More information

New approach to improving distortional strength of intermediate length thin-walled open section columns

New approach to improving distortional strength of intermediate length thin-walled open section columns New approach to improving distortional strength of intermediate length thin-walled open section columns R. S. Talikoti 1, K. M. Bajoria 2 1 Research Scholar (Email: rstalikoti@iitb.ac.in) 2 Associate Professor

More information

Analysis-based 2D design of steel storage racks. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Griffith Research Online

Analysis-based 2D design of steel storage racks. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Griffith Research Online Analysis-based 2D design of steel storage racks Author R Rasmussen, K., Gilbert, B. Published 2011 Journal Title International Journal of Structural Stability and Dynamics DOI https://doi.org/10.1142/s0219455411004403

More information

Compression Members. Columns I. Summary: Objectives: References: Contents:

Compression Members. Columns I. Summary: Objectives: References: Contents: Compression Members Columns I Summary: Structural members subjected to axial compression are known as columns or struts. Stocky columns may not be affected by overall buckling. Stocky columns may fail

More information

(a) Pin-Pin P cr = (b) Fixed-Fixed P cr = (d) Fixed-Pin P cr =

(a) Pin-Pin P cr = (b) Fixed-Fixed P cr = (d) Fixed-Pin P cr = 1. The most critical consideration in the design of rolled steel columns carrying axial loads is the (a) Percent elongation at yield and the net cross-sectional area (b) Critical bending strength and axial

More information

LEAN DUPLEX STAINLESS STEEL MATERIAL TESTS At Elevated Temperatures Using Steady State Method

LEAN DUPLEX STAINLESS STEEL MATERIAL TESTS At Elevated Temperatures Using Steady State Method Application of Structural Fire Engineering, 19 20 April 2013, Prague, Czech Republic LEAN DUPLEX STAINLESS STEEL MATERIAL TESTS At Elevated Temperatures Using Steady State Method Yuner Huang a, Ben Young

More information

2 LATERAL TORSIONAL-BUCKLING OF CLASS 4 STEEL PLATE GIRDERS UNDER FIRE CONDITIONS: EXPERIMENTAL AND NUMERICAL COMPARISON

2 LATERAL TORSIONAL-BUCKLING OF CLASS 4 STEEL PLATE GIRDERS UNDER FIRE CONDITIONS: EXPERIMENTAL AND NUMERICAL COMPARISON Martin Prachař, martin.prachar@fsv.cvut.cz WG3 - Nuno Lopes, nuno.lopes@ua.pt WG1 - Carlos Couto, ccouto@ua.pt WG3 - Michal Jandera, michal.jandera@fsv.cvut.cz WG3 - Paulo Vila Real, pvreal@ua.pt WG2 -

More information

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS Jan Hricák, jan.hricak@fsv.cvut.cz WG3 - Michal Jandera, michal.jandera@fsv.cvut.cz WG2 František Wald, wald@fsv.cvut.cz 7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS Summary A significant progress in

More information

Refined Plastic Hinge Analysis of Steel Frame Structures Comprising Non-Compact Sections II: Verification

Refined Plastic Hinge Analysis of Steel Frame Structures Comprising Non-Compact Sections II: Verification Refined Plastic Hinge Analysis of Steel Frame Structures Comprising Non-Compact Sections II: Verification P. Avery and M. Mahendran Physical Infrastructure Centre, School of Civil Engineering, Queensland

More information

Deformation-based design of aluminium alloy beams

Deformation-based design of aluminium alloy beams Su, M., Young, B. and Gardner, L. (2014) Deformation-based design of aluminum alloy beams Engineering Structures, 80: 339-349. Deformation-based design of aluminium alloy beams Mei-Ni Su 1, Ben Young 2

More information

EXPERIMENTAL TESTING OF ARCHES WITH RECTANGULAR HOLLOW SECTIONS

EXPERIMENTAL TESTING OF ARCHES WITH RECTANGULAR HOLLOW SECTIONS Author manuscript, published in "Eurosteel 2011, Hungary (2011)" EUROSTEEL 2011, August 31 - September 2, 2011, Budapest, Hungary EXPERIMENTAL TESTING OF ARCHES WITH RECTANGULAR HOLLOW SECTIONS C. Douthe

More information

Laser-welded stainless steel I-sections: Residual stress measurements and column buckling tests Gardner, Leroy; Bu, Yidu; Theofanous, Marios

Laser-welded stainless steel I-sections: Residual stress measurements and column buckling tests Gardner, Leroy; Bu, Yidu; Theofanous, Marios Laser-welded stainless steel I-sections: Residual stress measurements and column buckling tests Gardner, Leroy; Bu, Yidu; Theofanous, Marios DOI: 10.1016/j.engstruct.2016.08.057 License: Creative Commons:

More information

Buckling Analysis of Cold Formed Steel Compression Members at Elevated Temperatures

Buckling Analysis of Cold Formed Steel Compression Members at Elevated Temperatures International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Buckling Analysis of Cold Formed Steel Compression Members at Elevated Temperatures A.A.Patil 1, J.G. Solanki 2 1 M.tech Student,

More information

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS Journal of Asian Scientific Research journal homepage: http://www.aessweb.com/journals/5003 EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS Kamyar Bagherinejad 1 ---- Emad Hosseinpour

More information

FE MODELLING OF SLENDER CONCRETE-FILLED STAINLESS STEEL TUBULAR COLUMNS UNDER AXIAL COMPRESSION

FE MODELLING OF SLENDER CONCRETE-FILLED STAINLESS STEEL TUBULAR COLUMNS UNDER AXIAL COMPRESSION SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 FE MODELLING OF SLENDER CONCRETE-FILLED STAINLESS STEEL

More information

Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method

Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method Musthafa Akbar a,* and Aditya Sukma Nugraha b a) Department of Mechanical Engineering, Faculty of Engineering,

More information

Local buckling of slender aluminium sections exposed to fire. Residual stresses in welded square hollow sections of alloy 5083-H111

Local buckling of slender aluminium sections exposed to fire. Residual stresses in welded square hollow sections of alloy 5083-H111 Netherlands Institute for Metals Research Eindhoven University of Technology TNO Built Environment and Geosciences Report no. 8 Local buckling of slender aluminium sections exposed to fire Residual stresses

More information

STRUCTURAL BEHAVIOUR OF HOLLOW STEEL SECTIONS UNDER COMBINED AXIAL COMPRESSION AND BENDING

STRUCTURAL BEHAVIOUR OF HOLLOW STEEL SECTIONS UNDER COMBINED AXIAL COMPRESSION AND BENDING International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 3, March 2017, pp. 868 877 Article ID: IJCIET_08_03_087 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=3

More information

Ultimate response of stainless steel continuous beams Theofanous, Marios; Saliba, N.; Zhao, O.; Gardner, L.

Ultimate response of stainless steel continuous beams Theofanous, Marios; Saliba, N.; Zhao, O.; Gardner, L. Ultimate response of stainless steel continuous beams Theofanous, Marios; Saliba, N.; Zhao, O.; Gardner, L. DOI: 10.1016/j.tws.2014.01.019 License: None: All rights reserved Document Version Peer reviewed

More information

Structural Members Behaviour

Structural Members Behaviour COST Action C26 Urban habitat constructions under catastrophic events Prague, Czech WG1- Fire resistance Collected contributions Czech Republic,, 30-31 31 March 2007 Structural Members Behaviour Nuno Lopes

More information

LRFD AND EUROCODE-3 SPECIFICATIONS FOR ULTIMATE LOAD CARRYING CAPACITY EVALUATION OF STEEL COLUMNS AND EFFECTS OF IMPERFECTIONS

LRFD AND EUROCODE-3 SPECIFICATIONS FOR ULTIMATE LOAD CARRYING CAPACITY EVALUATION OF STEEL COLUMNS AND EFFECTS OF IMPERFECTIONS Talha Ekmekyapar, Mustafa Özakça 8 SDU International Technologic Science Vol. 4, No 3, December 212 pp. 8-93 Constructional Technologies LRFD AND EUROCODE-3 SPECIFICATIONS FOR ULTIMATE LOAD CARRYING CAPACITY

More information

Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members

Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members Revised Manuscript Click here to view linked References Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members K.H. Nip, L. Gardner and A.Y. Elghazouli Imperial

More information

Flexural response of aluminium alloy SHS and RHS with. internal stiffeners

Flexural response of aluminium alloy SHS and RHS with. internal stiffeners Su, M., Young, B. and Gardner, L. (2016), Flexural resistance of aluminium alloy SHS/RHS with internal stiffeners, Engineering Structures, 121: 170-180. Flexural response of aluminium alloy SHS and RHS

More information

Web Crippling Behaviour of Cold-Formed Duplex Stainless Steel Tubular Sections at Elevated Temperatures

Web Crippling Behaviour of Cold-Formed Duplex Stainless Steel Tubular Sections at Elevated Temperatures Web Crippling Behaviour of Cold-Formed Duplex Stainless Steel Tubular Sections at Elevated Temperatures Feng Zhou 1 and Ben Young 2 1 Department of Building Engineering, Tongji University, 1239 Siping

More information

STRENGTH CONSEQUENCE MINIMIZATION OF DIGGING OFF BURIED GAS PIPELINE AT ISOLATION COAT RENOVATION REALIZED DURING OPERATION

STRENGTH CONSEQUENCE MINIMIZATION OF DIGGING OFF BURIED GAS PIPELINE AT ISOLATION COAT RENOVATION REALIZED DURING OPERATION STRENGTH CONSEQUENCE MINIMIZATION OF DIGGING OFF BURIED GAS PIPELINE AT ISOLATION COAT RENOVATION REALIZED DURING OPERATION Assoc. Prof. MSc. Roland JANČO, PhD. Institute of Applied Mechanics and Mechatronics,

More information

Effect of bolt gauge distance on the behaviour of anchored blind bolted connection to concrete filled tubular structures

Effect of bolt gauge distance on the behaviour of anchored blind bolted connection to concrete filled tubular structures Tubular Structures XV Batista, Vellasco & Lima (eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02837-1 Effect of bolt gauge distance on the behaviour of anchored blind bolted connection to concrete

More information

MECHANICAL PROPERTIES PROPLEM SHEET

MECHANICAL PROPERTIES PROPLEM SHEET MECHANICAL PROPERTIES PROPLEM SHEET 1. A tensile test uses a test specimen that has a gage length of 50 mm and an area = 200 mm 2. During the test the specimen yields under a load of 98,000 N. The corresponding

More information

SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERS

SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERS INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) International Journal of Civil Engineering and Technology (IJCIET), ISSN 976 638 (Print), ISSN 976 6316(Online), Volume 6, Issue 1, January

More information

Angle Cleat Base Connections

Angle Cleat Base Connections Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2010) - 20th International Specialty Conference on Cold-Formed Steel Structures

More information

Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression

Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression Steel and Composite Structures, Vol. 12, No. 1 (2011) 31-51 31 Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression G. Shi* 1, Z. Liu 2,

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 OPTIMIZATION OF A POLYGONAL HOLLOW STRUCTURAL STEEL SECTION IN THE ELASTIC REGION John Samuel Kabanda PhD candidate, Queen s University, Canada Colin MacDougall

More information

The Local Web Buckling Strength of Stiffened Coped Steel I-Beams

The Local Web Buckling Strength of Stiffened Coped Steel I-Beams Steel Structures 7 (2007) 129-138 www.kssc.or.kr The Local Web Buckling Strength of Stiffened Coped Steel I-Beams Michael C.H. Yam 1, *, Angus C.C. Lam 2, Feng Wei 1,3 and K. F. Chung 4 1 Department of

More information

DIN EN : (E)

DIN EN : (E) DIN EN 1999-1-1:2014-03 (E) Eurocode 9: Design of aluminium structures - Part 1-1: General structural rules Contents Page Foreword to EN 1999-1-1:2007... 7!Foreword to EN 1999-1-1:2007/A1:2009... 7 #Foreword

More information

DISTORTIONAL BUCKLING BEHAVIOUR OF FIRE EXPOSED COLD-FORMED STEEL COLUMNS

DISTORTIONAL BUCKLING BEHAVIOUR OF FIRE EXPOSED COLD-FORMED STEEL COLUMNS 23 rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23) Byron Bay, Australia, 9-12 December 2014, S.T. Smith (Ed.) DISTORTIONAL BUCKLING BEHAVIOUR OF FIRE EXPOSED COLD-FORMED

More information

Buckling Resistance of Steel Tubular Columns Filled by High-strength Concrete

Buckling Resistance of Steel Tubular Columns Filled by High-strength Concrete Buckling Resistance of Steel Tubular Columns Filled by High-strength Concrete PAVLA BUKOVSKÁ, MARCELA KARMAZÍNOVÁ and PAVLA NEUBAUEROVÁ Department of Metal and Timber Structures Brno University of Technology

More information

The Effect of Axial Force on the Behavior of Flush End-Plate Moment Connections

The Effect of Axial Force on the Behavior of Flush End-Plate Moment Connections The Effect of Axial Force on the Behavior of Flush End-Plate Moment Connections A. Goudarzi, M. Ghassemieh & M. Baei School of Civil Engineering, University of Tehran, Tehran, Iran SUMMARY: An approach,

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 14 CHAPTER 2 LITERATURE REVIEW 2.1 GENERAL Theliterature was collected based on the previous investigations in the area of trapezoidal corrugated web beams. The literature available focuses mainly for

More information

TABLE OF CONTENTS FINITE ELEMENT MODELING OF CONCRETE FILLED DOUBLE SKIN

TABLE OF CONTENTS FINITE ELEMENT MODELING OF CONCRETE FILLED DOUBLE SKIN TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives and Scope of Work... 2 1.2.1 Experimental Phase... 2 1.2.2 Analytical Phase... 3 1.3 Outline of the Report... 4 SECTION

More information

CHAPTER 9 INFLUENCE OF RESIDUAL STRESSES ON THE FAILURE PRESSURE OF CYLINDRICAL VESSELS

CHAPTER 9 INFLUENCE OF RESIDUAL STRESSES ON THE FAILURE PRESSURE OF CYLINDRICAL VESSELS 150 CHAPTER 9 INFLUENCE OF RESIDUAL STRESSES ON THE FAILURE PRESSURE OF CYLINDRICAL VESSELS In the design of pressure vessels, evaluation of failure pressure that a cylindrical pressure vessel can withstand

More information

BEHAVIOUR OF COLD-FORMED Z-SHAPED STEEL PURLIN IN FIRE

BEHAVIOUR OF COLD-FORMED Z-SHAPED STEEL PURLIN IN FIRE BEHAVIOUR OF COLD-FORMED Z-SHAPED STEEL PURLIN IN FIRE ABSTRACT Wei Lu *, Pentti Mäkeläinen *, Jyri Outinen ** * Department of Civil and Structural Engineering Aalto University, Espoo, Finland Wei.Lu@tkk.fi,

More information

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Ahmet Yakut, Taylan Solmaz Earthquake Engineering Research Center, Middle East Technical University, Ankara,Turkey SUMMARY:

More information

Heat transfer analysis of hybrid stainless-carbon steel beam-column joints

Heat transfer analysis of hybrid stainless-carbon steel beam-column joints Heat transfer analysis of hybrid stainless-carbon steel beam-column joints Ali Razzazzadeh 1), *Zhong Tao 2) and Tian-Yi Song 3) 1), 2), 3) Institute for Infrastructure Engineering, University of Western

More information

Leelachai M, Benson S, Dow RS. Progressive Collapse of Intact and Damaged Stiffened Panels.

Leelachai M, Benson S, Dow RS. Progressive Collapse of Intact and Damaged Stiffened Panels. Leelachai M, Benson S, Dow RS. Progressive Collapse of Intact and Damaged Stiffened Panels. In: 5th International Conference on Marine Structures (MARSTRUCT). 2015, Southampton, UK: CRC Press. Copyright:

More information

6. Modelling and analysis

6. Modelling and analysis 6. Modelling and analysis Josef Machacek Czech Technical University in Prague FE Objectives This lecture describes principles of and analysis of structures. Global analyses distinguishing effects of and

More information

ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION

ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION Naoki TANAKA 1, Yoshikazu SAWAMOTO 2 And Toshio SAEKI 3 SUMMARY In response to the 1995 Hyogoken-Nanbu earthquake, horizontal haunched

More information

Available online at ScienceDirect

Available online at  ScienceDirect Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 71 ( 2014 ) 16 21 Experimental Study on Temperature Distribution of Concrete Filled Steel Tube Reinforced Concrete Square Short

More information

Ultimate Strength Analysis of Stiffened Panels Subjected to Biaxial Thrust Using JTP and JBP Methods

Ultimate Strength Analysis of Stiffened Panels Subjected to Biaxial Thrust Using JTP and JBP Methods Ultimate Strength Analysis of Stiffened Panels Subjected to Biaxial Thrust Using JTP and JBP Methods. Introduction A series of ultimate strength analyses of stiffened panels subjected to biaxial thrust

More information

Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH

Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH Robustness of continuous steel-concrete composite beams of slender plain webbed and cellular open webbed sections Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH Faculty of Civil Engineering Warsaw

More information

Lateral-torsional buckling resistance of cold-formed high strength steel rectangular hollow beams

Lateral-torsional buckling resistance of cold-formed high strength steel rectangular hollow beams Insights and Innovations in Structural Engineering Mechanics and Computation Zingoni (Ed.) 016 Taylor & Francis Group London ISBN 978-1-138-097-9 Lateral-torsional buckling resistance of cold-formed high

More information

Citation Engineering Structures, 2013, v. 57, p

Citation Engineering Structures, 2013, v. 57, p Title Web Crippling Behaviour of Cold-formed Duplex Stainless Steel Tubular Sections at Elevated Temperatures Author(s) Zhou, F; Young, B Citation Engineering Structures, 2013, v. 57, p. 51-62 Issued Date

More information

Parametric Study of Concrete Filled Steel Tube Column

Parametric Study of Concrete Filled Steel Tube Column Parametric Study of Concrete Filled Steel Tube Column Darshika k. Shah 1, M.D.Vakil 2, M.N.Patel 3 1 P.G. Student, 2 Assistant professor, 3 Professor, 1 Applied Mechanics Department, L. D. College of Engineering,

More information

CHAPTER 3 CODAL PROVISIONS AND DESIGN METHODS

CHAPTER 3 CODAL PROVISIONS AND DESIGN METHODS 22 CHAPTER 3 CODAL PROVISIONS AND DESIGN METHODS 3.1 PREAMBLE The axial capacities of concrete-filled columns are predicted based on the provisions given in Eurocode4-1994 [10], AISC-2005[11], AISC- LRFD-1999

More information

AN EQUIVALENT STRESS METHOD FOR CONSIDERING LOCAL BUCKLING IN BEAM FINITE ELEMENTS IN THE FIRE SITUATION

AN EQUIVALENT STRESS METHOD FOR CONSIDERING LOCAL BUCKLING IN BEAM FINITE ELEMENTS IN THE FIRE SITUATION SiF 218 The 1 th International Conference on Structures in Fire FireSERT, Ulster University, Belfast, UK, June 6-8, 218 AN EQUIVALENT STRESS METHOD FOR CONSIDERING LOCAL BUCKLING IN BEAM FINITE ELEMENTS

More information

RESIDUAL STRESS STUDY ON WELDED SECTION OF HIGH STRENGTH Q460 STEEL AFTER FIRE EXPOSURE

RESIDUAL STRESS STUDY ON WELDED SECTION OF HIGH STRENGTH Q460 STEEL AFTER FIRE EXPOSURE Advanced Steel Construction Vol. 11, No. 2, pp. 15-164 (215) 15 RESIDUAL STRESS STUDY ON WELDED SECTION OF HIGH STRENGTH Q46 STEEL AFTER FIRE EXPOSURE W.Y. Wang 1,*, G. Q. Li 2 and Y. Ge 3 1 Associate

More information

Numerical and Experimental Behaviour of Moment Resisting Connections using Blind Bolts within CFSHS columns

Numerical and Experimental Behaviour of Moment Resisting Connections using Blind Bolts within CFSHS columns Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Numerical and Experimental Behaviour of Moment Resisting

More information

Analysis of Perforated Steel Channel Members When Subjected to Compression M. Jayakumar BhaskarM.Tech 1 P. Sai Pravardhan ReddyM.

Analysis of Perforated Steel Channel Members When Subjected to Compression M. Jayakumar BhaskarM.Tech 1 P. Sai Pravardhan ReddyM. Analysis of Perforated Steel Channel Members When Subjected to Compression M. Jayakumar BhaskarM.Tech 1 P. Sai Pravardhan ReddyM.Tech 2 1 Assistant Professor, civil engineering department, Visvodaya engineering

More information

Distortional elastic buckling for aluminium: Available prediction models versus design specifications

Distortional elastic buckling for aluminium: Available prediction models versus design specifications Distortional elastic buckling for aluminium: Available prediction models versus design specifications. Kutanova Eindhoven University of Technology, the etherlands T. Peköz Cornell University, USA F. Soetens

More information

ANALYTICAL AND EXPERIMENTAL STUDY ON COMPOSITE FRAMES

ANALYTICAL AND EXPERIMENTAL STUDY ON COMPOSITE FRAMES ANALYTICAL AND EXPERIMENTAL STUDY ON COMPOSITE FRAMES ARCHANA P1, ANJUGHAP PRIYA R2, SARANYA M3 1PG Student, Dept. of Civil Engineering, Valliammai Engineering College, Chennai, Tamil Nadu 2 Assistant

More information

Design of Laterally Unrestrained Beams

Design of Laterally Unrestrained Beams Design of Laterally Unrestrained Beams In this chapter, the resistance of members against instability phenomena caused by a bending moment will be presented in standard cross sectional shapes, such as

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 4 Properties in Bending and Shear Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

Structural Steel and Timber Design SAB3233. Topic 8 Columns Design. Prof Dr Shahrin Mohammad

Structural Steel and Timber Design SAB3233. Topic 8 Columns Design. Prof Dr Shahrin Mohammad Structural Steel and Timber Design SAB3233 Topic 8 Columns Design Prof Dr Shahrin Mohammad Topic 10 Connections Topic 9 Trusses Topic 1 Overview Topic 8 Columns Design Topic 7 Laterally unrestrained beams

More information

Experimental investigation on flexural behaviour of stainless steel beams

Experimental investigation on flexural behaviour of stainless steel beams Experimental investigation on flexural behaviour of stainless steel beams E. Real, E. Mirambell, I. Estrada Escolu Tecnica Superior d'etzginyers de Can~ins, Canals i Ports Depurtanzent d'enginyeriu de

More information

Chapter 7. Finite Elements Model and Results

Chapter 7. Finite Elements Model and Results Chapter 7 Finite Elements Model and Results 7.1 Introduction In this chapter, a three dimensional model was presented. The analytical model was developed by using the finite elements method to simulate

More information

Performance of Concrete Filled Steel Tubular Columns

Performance of Concrete Filled Steel Tubular Columns American Journal of Civil Engineering and Architecture, 217, Vol. 5, No. 2, 35-39 Available online at http:pubs.sciepub.comajcea521 Science and Education Publishing DOI:1.12691ajcea-5-2-1 Performance of

More information

STRENGTH OF PLATES OF RECTANGULAR INDUSTRIAL DUCTS

STRENGTH OF PLATES OF RECTANGULAR INDUSTRIAL DUCTS Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 622 629 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction STRENGTH OF PLATES OF RECTANGULAR INDUSTRIAL

More information

Effect of Geometry of Vertical Rib Plate on Cyclic Behavior of Steel Beam to Built-up Box Column Moment Connection

Effect of Geometry of Vertical Rib Plate on Cyclic Behavior of Steel Beam to Built-up Box Column Moment Connection Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 3010 3018 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Effect of Geometry of Vertical Rib

More information

ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE

ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE Meng Jiang*, University of Technology Dalian, P. R. China Wenliang Qiu, University of Technology Dalian, P. R. China Lihua Han,

More information

Study on ultimate strength of ship plates with calculated weld-induced residual stress

Study on ultimate strength of ship plates with calculated weld-induced residual stress Maritime Technology and Engineering Guedes Soares & Santos (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02727-5 Study on ultimate strength of ship plates with calculated weld-induced residual

More information

An experimental investigation of local web buckling strength and behaviour of compressive flange coped beam connections with slender web

An experimental investigation of local web buckling strength and behaviour of compressive flange coped beam connections with slender web An experimental investigation of local web buckling strength and behaviour of compressive flange coped beam connections with slender web Michael C. H. Yam 1), *Ke Ke 2), Angus C. C. Lam 3), Cheng Fang

More information

NON-LINEAR FINITE ELEMENT ANALYSIS OF BASE-PLATE CONNECTIONS USED IN INDUSTRIAL PALLET RACK STRUCTURES

NON-LINEAR FINITE ELEMENT ANALYSIS OF BASE-PLATE CONNECTIONS USED IN INDUSTRIAL PALLET RACK STRUCTURES NON-LINEAR FINITE ELEMENT ANALYSIS OF BASE-PLATE CONNECTIONS USED IN INDUSTRIAL PALLET RACK STRUCTURES Ahmad Firouzianhaji 1, Ali Saleh 2, Bijan Samali 3 ABSTRACT: Industrial storage racks are slender

More information

Lateral Force-Resisting Capacities of Reduced Web-Section Beams: FEM Simulations

Lateral Force-Resisting Capacities of Reduced Web-Section Beams: FEM Simulations Lateral Force-Resisting Capacities of Reduced Web-Section Beams: FEM Simulations *Seungpil Kim 1), Myoungsu Shin 2), and Mark Aschheim 3) 1), 2) School of Urban and Environmental Engineering, UNIST, Ulsan

More information

STUDY ON THE EFFECT OF SPACERS ON THE ULTIMATE CAPACITY OF INTERMEDIATE LENGTH THIN WALLED SECTION UNDER COMPRESSION *

STUDY ON THE EFFECT OF SPACERS ON THE ULTIMATE CAPACITY OF INTERMEDIATE LENGTH THIN WALLED SECTION UNDER COMPRESSION * IJST, Transactions of Civil Engineering, Vol. 38, No. C1 +, pp 191-204 Printed in The Islamic Republic of Iran, 2014 Shiraz University STUDY ON THE EFFECT OF SPACERS ON THE ULTIMATE CAPACITY OF INTERMEDIATE

More information

FINITE ELEMENT MODELING OF CONCENTRICALLY BRACED FRAMES FOR EARTHQUAKES

FINITE ELEMENT MODELING OF CONCENTRICALLY BRACED FRAMES FOR EARTHQUAKES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2816 FINITE ELEMENT MODELING OF CONCENTRICALLY BRACED FRAMES FOR EARTHQUAKES Madhar Haddad 1, Tom Brown

More information