THE STUDY OF t-z AND q-z CURVES ON BORED PILE BASED ON THE RESULTS OF INSTRUMENTED PILE LOAD TEST IN MEDIUM AND STIFF CLAYS

Size: px
Start display at page:

Download "THE STUDY OF t-z AND q-z CURVES ON BORED PILE BASED ON THE RESULTS OF INSTRUMENTED PILE LOAD TEST IN MEDIUM AND STIFF CLAYS"

Transcription

1 Proceedings of Pile 2013, June 2-4 th 2013 THE STUDY OF t-z AND q-z CURVES ON BORED PILE BASED ON THE RESULTS OF INSTRUMENTED PILE LOAD TEST IN MEDIUM AND STIFF CLAYS Aswin Lim 1, Aksan Kwanda 2 and Paulus P. Rahardjo 3. 1 Faculty member, Parahyangan Catholic University, Jl. Ciumbuleuit No. 94 Bandung, INDONESIA 2 Graduate Student, Parahyangan Catholic University, Jl. Ciumbuleuit No. 94 Bandung, INDONESIA 3 Professor, Parahyangan Catholic University, Jl. Ciumbuleuit No. 94 Bandung, INDONESIA ABSTRACT : This paper presents the result of t-z and q-z curves based on instrumented bored pile which is constructed in layered soils consist of medium and stiff clay. There are fourteen vibrating wire strain gauges (VWSGs) installed at seven various level of bored pile and two tell-tale extensometers are installed inside the pile located at pile head and pile tip. Based on the axial loading test (ASTM D ), the bored pile is tested until 250% of working load that is 1325 ton. Then the t-z and q-z curves are developed based on the data that are recorded from VWSGs and tell-tale extensometer. Two variation of pile elastic modulus are used, that are fc = 25 MPa (original modulus) and fc = 42 MPa (calibrated modulus), in order to fit the actual load settlement curve from axial load test. The result shows that calibrated modulus gives nearly similar with actual load settlement curve instead of original modulus. Although the load-settlement curve could be fitted with pile elastic modulus calibration, it has slight different with t-z curve for clay soil that proposed by Reese and O Neill,1988. Keywords : t-z curve, q-z curve, instrumented bored pile, medium and stiff clay, axial load test. INTRODUCTION The subgrade reaction, or t-z, method suggested by Seed and Reese (1957) is an expedient means of computing the axial movement of a pile under axial load. Procedures are available to generate the relationships between shear stress at the pile shaft ( load transfer, t ) and pile displacement, z, along the pile shaft. The most commonly used procedures, however, are empirical and based on data from tests on short piles, usually less than 30 meter long, with diameters less than 0,5 meter. Pile diameter, axial pile stiffness, pile length, and distribution of soil strength and stiffness along the pile are all factors that influence t-z behavior. The success in developing realistic t-z relationships for a pile depends on the accuracy of the ultimate load-transfer values of the soil (pile capacity), the distribution of those values along the pile, and the displacement characteristics of soil during load transfer ( Kraft et al, 1981). Finite difference equations are employed to achieve compatibility between pile displacement and the load transfer along a pile and between displacement and resistance at the tip of the pile. This method was first used by Seed and Reese (1957); other studies have been reported by Coyle and Reese (1966), Coyle and Sulaiman (1967), and Kraft et al (1981). The t-z difference method assumes the Winkler concept; that is, the load transfer at a certain pile section and the pile tip resistance are independent of the pile displacement elsewhere. The close agreement between the prediction and the loading test results in clays (Coyle and Reese, 1966) and the scattering of prediction values for the loading test in sands (Coyle and Sulaiman, 1967) may possibly be explained by the relative sensitivity of a soil to changes in patterns of stress (Reese et al, 2006). In this paper, the difference method is accommodated by t- z program which is developed by Rahardjo et al (1993) based on Reese s Method. SOILS CONDITION AND PILE INSTRUMENTATION DATA The soils stratification is classified based on pile boring record. The soil condition is dominated by cohesive soils ( medium and stiff clays). They start from elevation until +3.00, then followed by cemented sand on elevation until +6.50, and cohesive soils again until elevation The length of the bored pile is meter with 1.2 m diameter. Table 1. Soil stratification and pile sub section length Segment Elevation Pile Length Soil Type Depth (m) (m) A +8, ,00 5 Medium Clay B +3, , Cemented Sand C1-6, , Medium Clay C2-13, ,00 7 Medium Clay D -20, ,00 4 Stiff Clay E -24, ,00 5 Medium Clay F -29, ,00 2 Stiff Clay G -31, ,00 5 Medium Clay H -36, ,00 3 Stiff Clay Table 1 shows the soil stratification and pile sub section length. There are fourteen vibrating wire strain gauges (VWSGs) installed at seven various level of bored pile, which at elevation =6.50, -5.10, , , , , and , respectively on both sides of pile, and two tell-tale extensometers are installed

2 inside the pile located at pile head (elevation +6.10)and pile tip (elevation ). Figure 1 shows the bored pile with VWSGs diagram inside the soil to make clear understanding of the pile instrumentation location. The tell-tale rod extensometer assembly consisted of 9.5 mm diameter stainless stell rod, attached to a fixed anchor point in the pile, and placed within a protective 25 mm PVC pipe. The entire assembly is cast in the pile. As the pile compressed under specified test load, the steel rod remained free in the protective PVC pipe, which undergo compression with the concrete pile. Four dial gauges with accuracy 0.01 mm are used to measure the downward movement of the steel rod, relative to reference beam. The bored pile is design with concrete strength, fc, equal to 25 MPa and the reinforcement is 12D25. The measured of concrete cylinder strength is about 275 kg/cm 2 in day seventh. The bored pile is concreted by tremie method in order to make sure that the mud at the tip of bore hole will be pushed outside by the concrete. Thus, the bored pile waiting period is around 2 months. In this condition, the concrete strength has reached ultimate strength because the concreting period has passed 28 days. The axial load was applied using two hydraulic jacks of 1000 tons capacity on the pile head. Kentledge concrete blocks, primary and secondary beams were used for reaction system. Four dial gauges and survey instrument were used to measure the settlement at the pile top. The bored pile was designed for a working load (WL) of 530 ton and the loading schedule was conducted in five cycles. The maximum applied load for each cycle was 265 ton ( 50% WL), 530 ton (100%WL), 795 ton (150%WL), 1060 (200%WL), and 1325 ton (250%WL). In this paper, the fifth cycle data were used for analysis of t-z and q-z curves since the data have completed. Table 2 shows the load settlement data from axial loading at fifth cycle at pile head and pile tip recorded from tell-tale and Table 3 shows the average data recorded from VWSGs at each level. Table 2. The load settlement data from axial loading at fifth cycle Load (ton) Settlement (mm) Pile head Pile Tip Table 3. The average data recorded by VWSGs at each levels. Applied Level Load A B C D E F G (ton) Fig 1. Bored pile section PILE AXIAL LOADING TEST The bored pile was installed on October 31, 2012, and the axial loading test was conducted on December 5 8, 2012 according to ASTM D

3 DEVELOPMENT OF t-z CURVE AND q-z CURVE The development of t-z curve is divided to two major, that are, calculating t and calculating z. The principal of calculating t is adopted from Hooke s Law where stress is strain multiply with modulus. Then, when the stress divided with cross section area of pile, the axial force will be obtained. Finally, the t could be computed from the axial force divided with pile section peripheral area. Figure 2 shows the load transfer for each loadings along the pile (fc = 25 MPa). Moreover, the principal for calculating z is by subtracting the shortening of the pile from observed settlement. Here, the shortening of the pile is calculated from tell-tale data. segment C1. These two sections actually are stick together, however from this result, the soil shear strength of segment C2 should be larger than segment C1. The zm, maximum movement to fully mobilized shear strength, is around mm. With the same procedure as above, the stiff clay sections, namely section D (4 meter), section F (2 meter), and section H (3 meter) t-z curves is shown in Figure 4. Fig. 4 The t-z curve for stiff clay with fc =25 MPa Fig. 2 The Load Transfer For Each Loadings Along The Pile (fc =25 Mpa) The original elastic modulus of the bored pile is kg/cm 2. The medium clay soil stratification is divided into 5 segments, namely segment A, segment C1, segment C2, segment E, and segment G, with length of each segment is 5 meter, 6.5 meter, 7 meter, 5 meter, and 5 meter, respectively. The t-z curve for medium clay with fc =25 MPa is shown in Figure 3. The largest t is at Section D, while the lowest t is at section H and the z m is around 3.5 to 6.0 mm. When the normalized t-z curves are plotted into Reese and O Neill s normalized t-z curves in clay, the results show that most of the curves, medium as well as stiff clays, laying below the lower boundary as shown in Figure 5. Fig. 5 The normalized t-z curves comparison (fc =25 MPa) Fig. 3 The t-z curve for medium clay with fc =25 MPa The dash lines represent the calculated t-z curve, while the solid lines represent the regression t-z curve into linear elastic fully plastic behavior (as input in t-z program). The computed t-z curves are relatively like hyperbolic function. From Figure 3, it shows that the highest t is on segment C2, while the lowest is on Finally, the load settlement curve prediction is calculated from the t-z curves, however, the load settlement curve is smaller than the actual ones. It seems that the pile elastic modulus is too small, beside Figure 2 also shows that the maximum axial load for final load is around 1000 ton. In order to get the closer result of load settlement curve, the trial-error method is used with changing the pile elastic modulus. The best fitted result of pile elastic modulus is kg/cm 2 (fc =42 MPa). Figure 6 shows the load transfer for each loadings along

4 the pile (fc = 42 MPa) with the maximum axial load at final loading is around 1325 ton. Figure 7 and Figure 8 also show the t-z curves for medium clay and stiff clay soils with the same trend line with Figure 3 and Figure 4, except that the t values are larger than previous one. normalized t-z curves laying inside the range of results, while the stiff clay normalized t-z curves remain the same as before. For the q-z curves, the q value is obtained from the axial load at pile tip divided with pile cross section area, and the z is obtained from the pile tip movement (tell-tale data). ). Figure 10 shows the q-z curves at pile tip. The straight line is for pile elastic modulus equal to kg/cm 2, and the dashed line reflects pile elastic modulus equal to kg/cm 2. The result is consistent with t-z curves where the larger axial load gives larger q values. Fig. 6 The Load Transfer For Each Loadings Along The Pile (fc =42 Mpa) Fig. 9 The normalized t-z curves comparison (fc =42MPa) Fig. 7 The t-z curve for medium clay with fc = 42 MPa Fig. 10 The q-z curves for stiff clay Finally, all of the load settlement results are summarized in Table 4 and Figure 11. The load settlement prediction result obtained from pile concrete strength equal to 42 MPa is nearly close to actual curve. Fig. 8 The t-z curve for stiff clay with fc = 42 MPa The z m values have slight different, where medium clay is around mm, and stiff clay is around mm. In addition, regarding with the comparison with Reese and O Neill s normalized t-z curves as shown in Figure 9, the medium clay Table 4. The load-settlement data comparison between field data and t-z prediction Field data fc' = 25 Mpa fc' = 42 Mpa Axial Load Settlement Axial Load Settlement Axial Load Settlement (ton) (cm) (ton) (cm) (ton) (cm)

5 DISCUSSION Fig 11. Load Settlement curves The main purpose of this study obtains the t-z curve and q-z curve of medium and stiff clays based on instrumented bored pile data. Several things could be noted likes the calibration of pile elastic modulus, the shape of calculated t-z curves, and the maximum movement to mobilized maximum shear strength. The calibration of pile elastic modulus is done in order to get the closest t-z load settlement prediction curve compare to actual curve. The pile elastic modulus is become larger than original, it might be caused by the time of axial load testing. From pile recording data, the concrete strength at seventh days has reach design value, which is fc =25 MPa. The axial load testing is done after one month of concreting, of course the concrete strength will reach larger than original or design value because the strength of concrete increases by time. Regarding to the shape of calculated t-z curves, some of the curves do not reflect the ideal curve that is hyperbolic shape. It might be due to the instrumentation data are not recorded excellently. However, the error could be tolerated since the results of t-z curve could predict an excellent loadsettlement curve. For maximum movement to fully mobilize the shear strength, the results shows that fully agree with Reese and O Neill, which is around mm for 1.2 meter pile diameter. 3. The movement to fully mobilize the shear strength, z m, concurs with Reese and O Neill previous study results which is around % ratio of settlement to diameter of shaft. REFERENCES Coyle, H.M., and Reese, L.C. (1966). Load Transfer For Axially Loaded Piles In Clay. Journal of the Soil Mechanics and Foundation Division. ASCE. 92 : Coyle, H.M., and Sulaiman, I.H. (1967). Skin Friction For Steel Piles In Sand. Journal of the Soil Mechanics and Foundation Division. ASCE. 93 : Kraft, L.M., Ray, R.P. and Kagawa, T. (1981). Theoretical of t-z Curves. J. Geotech. Engrg. ASCE. 107(11): Rahardjo, P.P., Cosmas, R., and Rosnawati, I. (1992). TZ Program Komputer Untuk Analisis Pengalihan Beban Pada Pondasi Tiang Yang Dibebani Aksial. Parahyangan Catholic University. Geotechnical Engineering Centre. Reese, L.C., and M.W. O Neill. (1988). Field Load Test of Drilled Shaft.."Proceedings, Deep Foundations on Bored and Auger Piles, Ed. WF Van Impe, Balkema, Rotterdam: Reese, L.C., Isenhower, W.M., Wang, S.T., (2006). Analysis of Design of Shallow and Deep Foundations. John Wiley and Sons. Seed, H.B., and Reese, L.C. (1957). The Action Of Soft Clay Along Friction Piles. Transactions. ASCE. 122 : CONCLUSIONS Based on this study, several conclusions can be drawn, such as : 1. The load settlement prediction curve is successfully simulated with calculated t-z curves, though the pile elastic modulus should be calibrated. 2. The normalized t-z curves for medium clay is located inside Reese and O Neill range of result while stiff clay is located below the lower boundary.

Malaysian Journal of Civil Engineering 27 Special Issue (1):1-18 (2015)

Malaysian Journal of Civil Engineering 27 Special Issue (1):1-18 (2015) Malaysian Journal of Civil Engineering 27 Special Issue (1):1-18 (2015) COMPARATIVE STUDY OF LARGE DIAMETER BORED PILE UNDER CONVENTIONAL STATIC LOAD TEST AND BI-DIRECTIONAL LOAD TEST Vinsensius Viktor

More information

INTERPRETATIONS OF INSTRUMENTED BORED PILES IN KENNY HILL FORMATION

INTERPRETATIONS OF INSTRUMENTED BORED PILES IN KENNY HILL FORMATION INTERPRETATIONS OF INSTRUMENTED BORED PILES IN KENNY HILL FORMATION S. S. Liew 1, Y. W. Kowng 2 & S. J. Gan 3 ABSTRACT This paper presents the results of two instrumented bored cast-in-situ test piles

More information

CASE STUDY: LOAD TRANSFER ANALYSIS ON AN INSTRUMENTED AUGERCAST PILE USING EDC STRAIN GAUGES AND GEOKON REBAR STRAINMETERS

CASE STUDY: LOAD TRANSFER ANALYSIS ON AN INSTRUMENTED AUGERCAST PILE USING EDC STRAIN GAUGES AND GEOKON REBAR STRAINMETERS CASE STUDY: LOAD TRANSFER ANALYSIS ON AN INSTRUMENTED AUGERCAST PILE USING EDC STRAIN GAUGES AND GEOKON REBAR STRAINMETERS Swamy Avasarala 1, Santosh Mummaneni 2, Vamshi Vemula 3, Dr. Sastry Putcha 4 1

More information

REPORT ON DRILLED SHAFT LOAD TESTING (OSTERBERG METHOD) I-215 Airport Connector - Las Vegas, NV - TS-1 Las Vegas, NV (LT )

REPORT ON DRILLED SHAFT LOAD TESTING (OSTERBERG METHOD) I-215 Airport Connector - Las Vegas, NV - TS-1 Las Vegas, NV (LT ) REPORT ON DRILLED SHAFT LOAD TESTING (OSTERBERG METHOD) I-215 Airport Connector - Las Vegas, NV - TS-1 Las Vegas, NV (LT - 9289) Prepared for: Anderson Drilling 2545 S. Bruce Street, Suite H1 Las Vegas,

More information

Numerical Analysis of Piles in Layered Soils: A Parametric Study By C. Ravi Kumar Reddy & T. D. Gunneswara Rao K L University, India

Numerical Analysis of Piles in Layered Soils: A Parametric Study By C. Ravi Kumar Reddy & T. D. Gunneswara Rao K L University, India Global Journal of Researches in Engineering: e Civil And Structural Engineering Volume 14 Issue 6 Version 1. Year 214 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Innovation in Instrumented Test Piles in Malaysia: Application of Global Strain Extensometer (GloStrExt) Method for Bored Piles

Innovation in Instrumented Test Piles in Malaysia: Application of Global Strain Extensometer (GloStrExt) Method for Bored Piles Innovation in Instrumented Test Piles in Malaysia: Application of Global Strain Extensometer (GloStrExt) Method for Bored Piles... By: Dr H.M. Abdul Aziz bin K.M Hanifah 1 and Lee Sieng Kai 2 (GIEM) 1

More information

Bi-Directional Static Load Testing of Driven Piles

Bi-Directional Static Load Testing of Driven Piles Bi-Directional Static Load Testing of Driven Piles Paul J. Bullock, PhD Fugro Consultants Inc. Loadtest Bi-Directional Osterberg Cell Testing Specialized jack in pile uses bearing to mobilize side shear

More information

Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design

Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design ctbuh.org/papers Title: Authors: Subject: Keyword: Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design Jinoh Won, Deputy General Manager, Samsung C&T Corporation

More information

Analysis of skin friction in prebored and precast piles

Analysis of skin friction in prebored and precast piles Japanese Geotechnical Society Special Publication The 6th Japan-Korea Geotechnical Workshop Analysis of skin friction in prebored and precast piles Sangseom Jeong i), Gyoungja Jung ii), Dohyun Kim iii)

More information

Single Piles and Pile Groups

Single Piles and Pile Groups Single Piles and Pile Groups Under Lateral Loading 2nd Edition Lymon C. Reese Academic Chair Emeritus Department of Civil Engineering The University of Texas at Austin William Van Impe Full Professor of

More information

Performance of high capacity jack-in pile for high-rise building with preboring in weathered sedimentary rock formation

Performance of high capacity jack-in pile for high-rise building with preboring in weathered sedimentary rock formation Performance of high capacity jack-in pile for high-rise building with preboring in weathered sedimentary rock formation Chee-Meng, Chow i), Jason A.H. Lim ii) and Yean-Chin, Tan iii) i) Director, G&P Geotechnics

More information

FB-MULTIPIER: P-Y MODEL VALIDATION

FB-MULTIPIER: P-Y MODEL VALIDATION FB-MULTIPIER: P-Y MODEL VALIDATION FB-MultiPier V4.19 vs. LPILE V6.0.15 July 2014 Jae Chung, Ph.D. Anand Patil, E.I. Henry Bollmann, P.E. Bridge Software Institute 1 EXECUTIVE SUMMARY This report summarizes

More information

PILE SETTLEMENT ZONES ABOVE AND AROUND TUNNELLING OPERATIONS

PILE SETTLEMENT ZONES ABOVE AND AROUND TUNNELLING OPERATIONS PILE SETTLEMENT ZONES ABOVE AND AROUND TUNNELLING OPERATIONS H.G. Poulos Coffey Geosciences Pty Ltd. ABSTRACT This paper describes briefly the method of analysis of the response of a pile to tunnelling-induced

More information

On-site determination of pile capacity Distribution of pile load between the shaft and tip, and Detection of possible pile.

On-site determination of pile capacity Distribution of pile load between the shaft and tip, and Detection of possible pile. Pile Load Test Pile foundation can be constructed depending on the stiffness of subsurface soil and ground water conditions and using a variety of construction techniques. The most common techniques are

More information

Three-dimensional computer simulation of soil nailing support in deep foundation pit

Three-dimensional computer simulation of soil nailing support in deep foundation pit Three-dimensional computer simulation of soil nailing support in deep foundation pit Abstract Chang Zhi Zhu 1,2*, Quan Chen Gao 1 1 School of Mechanics & Civil Engineering, China University of Mining &

More information

Evaluation conduct of deep foundations using 3D finite element approach

Evaluation conduct of deep foundations using 3D finite element approach American Journal of Civil Engineering 2013; 1(3): 129-134 Published online ecember 20, 2013 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.20130103.17 Evaluation conduct of deep foundations

More information

Subsoil Bearing Capacity from Load Test Results In Two Locations in Rivers State, Nigeria

Subsoil Bearing Capacity from Load Test Results In Two Locations in Rivers State, Nigeria IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 4, Issue 4 Ver. II (Jul. - Aug. 2016), PP 27-35 www.iosrjournals.org Subsoil Bearing Capacity from

More information

The experience in applying of static load and O-cell pile testing geotechnologies in problematical soil conditions of Astana

The experience in applying of static load and O-cell pile testing geotechnologies in problematical soil conditions of Astana Japanese Geotechnical Society Special Publication International Mini Symposium CHUBU (IMS-CHUBU) The experience in applying of static load and O-cell pile testing geotechnologies in problematical soil

More information

353. Fellenius, B.H., The response of a "plug" in an open-toe pipe pile Geotechnical Engineering Journal of the SEAGS & AGSSEA 46(2)

353. Fellenius, B.H., The response of a plug in an open-toe pipe pile Geotechnical Engineering Journal of the SEAGS & AGSSEA 46(2) 353. Fellenius, B.H., 2015. The response of a "plug" in an open-toe pipe pile Geotechnical Engineering Journal of the SEAGS & AGSSEA 46(2) 82-86. The response of a "plug" in an open-toe pipe pile Bengt

More information

Pile foundations Introduction

Pile foundations Introduction Engineering manual No. 12 Updated: 06/2018 Pile foundations Introduction Program: Pile, Pile CPT, Pile Group The objective of this engineering manual is to explain the practical use of programs for the

More information

The Compression Bearing Capacity of Helical Piles in Black Cotton Soil

The Compression Bearing Capacity of Helical Piles in Black Cotton Soil The Compression Bearing Capacity of Helical Piles in Black Cotton Soil Likhitha.H 1, Raghavendra.H.N 2, Rakesh.K.P 3, Uday Shrihari.P 4 Assistant Professor, Department of Civil Engineering, Global Academy

More information

EFFECT OF VERTICAL LOAD ON THE LATERAL BEHAVIOUR OF GROUP OF PILES

EFFECT OF VERTICAL LOAD ON THE LATERAL BEHAVIOUR OF GROUP OF PILES EFFECT OF VERTICAL LOAD ON THE LATERAL BEHAVIOUR OF GROUP OF PILES Ashish K. Masani 1, Prof. M. G. Vanza 2 1 PG Student, Applied Mechanics Department, L D College of Engineering, Ahmedabad, Gujarat, India

More information

STATE-OF-THE-ART TECHNOLOGY OF Y-JACK IN BI-DIRECTIONAL PILE TEST

STATE-OF-THE-ART TECHNOLOGY OF Y-JACK IN BI-DIRECTIONAL PILE TEST STATE-OF-THE-ART TECHNOLOGY OF Y-JACK IN BI-DIRECTIONAL PILE TEST SL, Yu 1 and Yekong, Wai 2 ABSTRACT: The innovative pile testing that is categorized as a bi-directional test method (BD) obtained worldwide

More information

TABLE OF CONTENTS. 1. Circular Sections Noncircular Sections...25

TABLE OF CONTENTS. 1. Circular Sections Noncircular Sections...25 EXECUTIVE SUMMARY This report summarizes comparisons between FB-MultiPier and LPILE, in which soil lateral resistance and pile/shaft response are numerically computed using p-y models. 2 TABLE OF CONTENTS

More information

UPDATE ON ISU DRILLED SHAFT LRFD CALIBRATION STUDY. Jeramy C. Ashlock, Ph.D. Richard L. Handy Associate Professor

UPDATE ON ISU DRILLED SHAFT LRFD CALIBRATION STUDY. Jeramy C. Ashlock, Ph.D. Richard L. Handy Associate Professor UPDATE ON ISU DRILLED SHAFT LRFD CALIBRATION STUDY Jeramy C. Ashlock, Ph.D. Richard L. Handy Associate Professor jashlock@iastate.edu Ongoing Drilled Shaft Research Projects 2 1.Verification of LRFD Resistance

More information

Measurement of Strain Distribution Along Precast Driven Pile During Pile Load Test

Measurement of Strain Distribution Along Precast Driven Pile During Pile Load Test Int. J. of GEOMATE, June, Int. J. 213, of GEOMATE, Vol. 4, No. June, 2 (Sl. 213, No. 8), Vol. pp. 4, 6-73 No. 2 (Sl. No. 8), pp. 6-73 Geotec., Const. Mat. & Env., ISSN:2186-2982(P), 2186-299(O), Japan

More information

ISSN: [Jassim* et al., 6(1): January, 2017] Impact Factor: 4.116

ISSN: [Jassim* et al., 6(1): January, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LATERAL CAPACITY OF AL NAJIBIYA BRIDGE PIER FOUNDATION Samir Abdul Baki Jabbar Al-Jassim*, Rafi Mohammed Qasim * Department of

More information

Using Thermal Integrity Profiling to Confirm the Structural Integrity of foundation applications

Using Thermal Integrity Profiling to Confirm the Structural Integrity of foundation applications Using Thermal Integrity Profiling to Confirm the Structural Integrity of foundation applications Authors: 1. George Piscsalko, PE, Pile Dynamics, Inc., 30725 Aurora Road, Solon, Ohio, USA, gpiscsalko@pile.com;

More information

Steel screw settlement reduction piles for a raft foundation on soft soil

Steel screw settlement reduction piles for a raft foundation on soft soil Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland Alexei Murashev Opus International Consultants Limited, Wellington, New Zealand. Keywords: piled raft, settlement

More information

Evaluation of negative skin friction on sheet pile walls at the Rio Grande dry dock, Brazil

Evaluation of negative skin friction on sheet pile walls at the Rio Grande dry dock, Brazil Geotechnical Aspects of Underground Construction in Soft Ground Viggiani (ed) 2012 Taylor & Francis Group, London, ISBN 978-0-415-68367-8 Evaluation of negative skin friction on sheet pile walls at the

More information

Jet Grouting to Increase Lateral Resistance of Pile Group in Soft Clay

Jet Grouting to Increase Lateral Resistance of Pile Group in Soft Clay GROUND MODIFICATION, PROBLEM SOILS, AND GEO-SUPPORT 265 Jet Grouting to Increase Lateral Resistance of Pile Group in Soft Clay Kyle M. Rollins 1, Matthew E. Adsero 2, and Dan A. Brown 3 1 Prof. Civil &

More information

Axially Loaded Behavior of Driven PC Piles

Axially Loaded Behavior of Driven PC Piles Axially Loaded Behavior of Driven PC Piles Shih-Tsung Hsu Associate Professor, Department of Construction Engineering, Chaoyang University of Technology, E-mail address: sthsu@cyut.edu.tw Abstract. To

More information

Deep Foundation. Deep Foundation Applications

Deep Foundation. Deep Foundation Applications Deep Foundation Deep Foundation Applications 1. Soils with: High compression Low shear strength Swelling/shrinkage 2. Resist lateral loads 3. Surface erosion 4. Resist tension (anchors) 1 Typical Applications

More information

The Updated Drilled Shaft Manual: Potential Impacts on AASHTO Specifications. J. Turner & D. Brown May 24, 2010 AASHTO T-15 Sacramento, CA

The Updated Drilled Shaft Manual: Potential Impacts on AASHTO Specifications. J. Turner & D. Brown May 24, 2010 AASHTO T-15 Sacramento, CA The Updated Drilled Shaft Manual: Potential Impacts on AASHTO Specifications J. Turner & D. Brown May 24, 2010 AASHTO T-15 Sacramento, CA Drilled Shafts: Construction Procedures and LRFD Design Methods

More information

An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading

An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading M. Suarjana, D. Kusumastuti & K.S. Pribadi Department of Civil Engineering, Institut Teknologi Bandung

More information

A.Zh.Zhussupbekov Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, USA

A.Zh.Zhussupbekov Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, USA UDK 69.0 A.Zh.Zhussupbekov Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, USA Research of displacement pile and continuous flight auger technologies on construction

More information

Bi-Directional Static Load Testing of Drilled Shafts

Bi-Directional Static Load Testing of Drilled Shafts Supplemental Technical Specification for Bi-Directional Static Load Testing of Drilled Shafts SCDOT Designation: SC-M-712 (9/15) September 2, 2015 1.0 GENERAL This work shall consist of furnishing all

More information

Bi-Directional Static Load Testing of Drilled Shafts

Bi-Directional Static Load Testing of Drilled Shafts Supplemental Technical Specification for Bi-Directional Static Load Testing of Drilled Shafts SCDOT Designation: SC-M-712 (01/18) 1.0 GENERAL This work shall consist of furnishing all materials, equipment,

More information

Laboratory and Full-Scale Simulations of the Behaviour of Reinforced Cement-Admixed Non- Plastic Soil for Deep Mixing Applications

Laboratory and Full-Scale Simulations of the Behaviour of Reinforced Cement-Admixed Non- Plastic Soil for Deep Mixing Applications From the SelectedWorks of Innovative Research Publications IRP India Summer May 1, 2015 Laboratory and Full-Scale Simulations of the Behaviour of Reinforced Cement-Admixed Non- Plastic Soil for Deep Mixing

More information

Over the last decade, drilled and postgrouted micropile foundations have

Over the last decade, drilled and postgrouted micropile foundations have Seismic Design of Micropile Foundation Systems Leo Panian, S.E., and Mike Korolyk, S.E. Over the last decade, drilled and postgrouted micropile foundations have come to be increasingly relied on for resisting

More information

SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP

SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 1733 SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP Nan DENG 1, Richard KULESZA 2 and

More information

SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS

SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS José I. Restrepo 1, Inho Ha 2 and M.J.Nigel Priestley 3 Abstract This paper discusses the results of two large-scale models of Four-Cast-In-Drilled-

More information

INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE FOUNDATION FOR RC FRAME WITH STRUCTURAL WALL

INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE FOUNDATION FOR RC FRAME WITH STRUCTURAL WALL ICOVP, 3 th International Conference on Vibration Problems 29 th November 2 nd December, 27, Indian Institute of Technology Guwahati, INDIA INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE

More information

Experimental study on axial and lateral bearing capacities of nonwelded composite piles based on pile load test results

Experimental study on axial and lateral bearing capacities of nonwelded composite piles based on pile load test results NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Experimental study on axial and lateral bearing capacities of nonwelded composite

More information

EFFICIENCY OF MICROPILE FOR SEISMIC RETROFIT OF FOUNDATION SYSTEM

EFFICIENCY OF MICROPILE FOR SEISMIC RETROFIT OF FOUNDATION SYSTEM EFFICIENCY OF MICROPILE FOR SEISMIC RETROFIT OF FOUNDATION SYSTEM YAMANE TAKASHI, NAKATA YOSHINORI And OTANI YOSHINORI SUMMARY Micropile is drilled and grouted pile with steel pipes which diameters is

More information

Supervision of Piling Works

Supervision of Piling Works Page 1 of 7 Supervision of Piling Works Sayeed Ahmed Assistant Director (Planning & Development) Independent University Bangladesh, Dhaka, Bangladesh e-mail ABSTRACT Supervision is utmost important in

More information

Modelling of a pile row in a 2D plane strain FE-analysis

Modelling of a pile row in a 2D plane strain FE-analysis Numerical Methods in Geotechnical Engineering Hicks, Brinkgreve & Rohe (Eds) 2014 Taylor & Francis Group, London, 978-1-138-00146-6 Modelling of a pile row in a 2D plane strain FE-analysis J.J.M. Sluis,

More information

S.No Description Unit Quantity Rate (Rs) Amount (Rs)

S.No Description Unit Quantity Rate (Rs) Amount (Rs) , S.No Description Unit Quantity Rate (Rs) Amount (Rs) 1 2 Vertical load testing of piles in accordance with IS 2911 (Part IV) including installation of loading platform by Kentledge method and preparation

More information

Design and Construction of Drilled Full Displacement Piles using the Penetration Resistance Method

Design and Construction of Drilled Full Displacement Piles using the Penetration Resistance Method SUPERPILE 2009 Burlingame, CA Design and Construction of Drilled Full Displacement Piles using the Penetration Resistance Method Peter Faust Malcolm Drilling Company Inc. Alexandria Parking Garage, San

More information

Example of the Unified Design procedure for use in the September 8, 2014, short course on in Brazil

Example of the Unified Design procedure for use in the September 8, 2014, short course on in Brazil Introduction Example of the Unified Design procedure for use in the September 8, 2014, short course on in Brazil The Unified Design procedure involves two main steps. The first is verifying that the loads

More information

Full-Scale Well Instrumented Large Diameter Bored Pile Load Test in Multi Layered Soil: A Case Study of Damietta Port New Grain Silos Project 1

Full-Scale Well Instrumented Large Diameter Bored Pile Load Test in Multi Layered Soil: A Case Study of Damietta Port New Grain Silos Project 1 International Journal of Current Engineering and Technology EISSN 2277 4106, PISSN 2347 5161 2018 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article FullScale

More information

SEISMIC SOIL-STRUCTURE INTERACTION IN FULLY INTEGRAL ABUTMENT BRIDGES WITH HP STEEL PILES

SEISMIC SOIL-STRUCTURE INTERACTION IN FULLY INTEGRAL ABUTMENT BRIDGES WITH HP STEEL PILES SEISMIC SOIL-STRUCTURE INTERACTION IN FULLY INTEGRAL ABUTMENT BRIDGES WITH HP STEEL PILES YU BAO 1 and ANDREW RIETZ 2 1 : Assistant Professor, Department of Civil Engineering Technology, Environmental

More information

Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area

Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area L. Kellezi GEO - Danish Geotechnical Institute 1 Maglebjergvej, DK 2800 Copenhagen, Denmark G.

More information

DFI JOURNAL PAPERS: Vol. 4, No. 2 December The Journal of the Deep Foundations Institute

DFI JOURNAL PAPERS: Vol. 4, No. 2 December The Journal of the Deep Foundations Institute Vol. 4, No. 2 December 2010 DFI JOURNAL The Journal of the Deep Foundations Institute PAPERS: Evaluating Excavation Support Systems to Protect Adjacent Structures (The 2010 Michael W. O Neill Lecture)

More information

NPTEL Course GROUND IMPROVEMENT USING MICROPILES

NPTEL Course GROUND IMPROVEMENT USING MICROPILES Lecture 22 NPTEL Course GROUND IMPROVEMENT USING MICROPILES Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Email: gls@civil.iisc.ernet.in Contents

More information

STATIC ALTERNATING CYCLIC HORIZONTAL LOAD TESTS ON DRIVEN

STATIC ALTERNATING CYCLIC HORIZONTAL LOAD TESTS ON DRIVEN STATIC ALTERNATING CYCLIC HORIZONTAL LOAD TESTS ON DRIVEN STEEL PIPE PILES OF FOUNDATIONS FOR HIGHWAY BRIDGES Kouichi TOMISAWA, Civil Engineering Research Institute of Hokkaido, Japan Satoshi NISHIMOTO,

More information

Typical set up for Plate Load test assembly

Typical set up for Plate Load test assembly Major disadvantages of field tests are Laborious Time consuming Heavy equipment to be carried to field Short duration behavior Plate Load Test Sand Bags Platform for loading Dial Gauge Testing Plate Foundation

More information

Comparison of the results of load test done on stone columns and rammed aggregate piers using numerical modeling

Comparison of the results of load test done on stone columns and rammed aggregate piers using numerical modeling Comparison of the results of load test done on stone columns and rammed aggregate piers using numerical modeling Ece Kurt Civil Eng., M.Sc.& Geoph. Eng., Istanbul, Turkey Berrak Teymur Asst. Prof. Dr.,

More information

Numerical Analysis of Pipe Roof Reinforcement in Soft Ground Tunnelling

Numerical Analysis of Pipe Roof Reinforcement in Soft Ground Tunnelling Numerical Analysis of Pipe Roof Reinforcement in Soft Ground Tunnelling W.L.Tan and P.G. Ranjith School of Civil & Environmental Engineering, Nanyang Technological University, Singapore 639798 Phone: 65-67905267,

More information

Experimental study on axial and lateral bearing capacities of nonwelded composite piles based on pile load test results

Experimental study on axial and lateral bearing capacities of nonwelded composite piles based on pile load test results NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Experimental study on axial and lateral bearing capacities of nonwelded composite

More information

Post-Grouting of Drilled Shaft Tips on the Sutong Bridge: A Case History

Post-Grouting of Drilled Shaft Tips on the Sutong Bridge: A Case History Post-Grouting of Drilled Shaft Tips on the Sutong Bridge: A Case History Dr. Osama Safaqah 1, P.E., Robert Bittner 2, P.E. & Xigang Zhang 3 1 Project Manager, Ben C. Gerwick, Inc., 20 California Street,

More information

SEISMIC BEHAVIOR OF CONFINED MASONRY WALLS REINFORCED WITH WELDED STEEL AND DUCTILE STEEL

SEISMIC BEHAVIOR OF CONFINED MASONRY WALLS REINFORCED WITH WELDED STEEL AND DUCTILE STEEL 15 th International Brick and Block Masonry Conference Florianópolis Brazil 2012 SEISMIC BEHAVIOR OF CONFINED MASONRY WALLS REINFORCED WITH WELDED STEEL AND DUCTILE STEEL San Bartolomé Angel 1 ; Quiun,

More information

UNDERPINNING A CRANE FOUNDATION

UNDERPINNING A CRANE FOUNDATION UNDERPINNING A CRANE FOUNDATION Donald R. McMahon, P.E., McMahon & Mann Consulting Engineers, P.C., Buffalo, New York, USA Andrew J. Nichols, P.E., McMahon & Mann Consulting Engineers, P.C., Buffalo, New

More information

Deflection of Helical Piles: A Load Test Database Review

Deflection of Helical Piles: A Load Test Database Review Proceedings of 1st International Geotechnical Symposium on Helical Foundations, The International Society for Helical Foundations, August 2013, University of Massachusetts, Amherst, MA, USA Deflection

More information

BEHAVIOUR OF GEOTEXTILE REINFORCED STONE COLUMNS MANITA DAS, A.K.DEY ABSTRACT

BEHAVIOUR OF GEOTEXTILE REINFORCED STONE COLUMNS MANITA DAS, A.K.DEY ABSTRACT BEHAVIOUR OF GEOTEXTILE REINFORCED STONE COLUMNS MANITA DAS, A.K.DEY ABSTRACT Stone columns are being used to improve the bearing capacity and reduce the settlement of a weak or soft soil. The improvement

More information

Challenges of Offshore Geotechnical Engineering

Challenges of Offshore Geotechnical Engineering Challenges of Offshore Geotechnical Engineering OCE 582 - Seabed Geotechnics Professor Kate Moran presented by Ursula Hebinck Overview Content of Paper recent developments in offshore site investigation

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING 2 MARK QUESTIONS WITH ANSWERS CE FOUNDATION ENGINEERING UNIT 1

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING 2 MARK QUESTIONS WITH ANSWERS CE FOUNDATION ENGINEERING UNIT 1 DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING 2 MARK QUESTIONS WITH ANSWERS CE6502 - FOUNDATION ENGINEERING Subject Code: CE6502 UNIT 1 1. What are the informations obtained

More information

Foundation Engineering

Foundation Engineering Foundation Engineering P.C. Varghese Foundation Engineering P.C. VARGHESE Honorary Professor, Anna University, Madras Formerly, Professor and Head, Department of Civil Engineering Indian Institute of Technology

More information

Conference: IFCEE International Foundations Congress and Equipment Exposition

Conference: IFCEE International Foundations Congress and Equipment Exposition Conference: IFCEE2018 - International Foundations Congress and Equipment Exposition Paper Title: Bonner Bridge Replacement Project - Pile Driving Experience Authors: Scott Webster 1, Karen Webster 2 1

More information

STAGE GROUTING PRELOADING OF LARGE PILES ON SAND

STAGE GROUTING PRELOADING OF LARGE PILES ON SAND STAGE GROUTING PRELOADING OF LARGE PILES ON SAND CHARGEMENT PRELIMINAIRE DES PIEUX CAISSONS EN MILIEUX SABLEUX PAR L'INJECTION EN ETAGES A. J. L. BOLOGNESI, CE, Ms - O. MORETTO, CE, PhD. Bolognesi-Moretto

More information

Simplified Approach to Consider Cracking Effect on the Behavior of Laterally Loaded RC Piles

Simplified Approach to Consider Cracking Effect on the Behavior of Laterally Loaded RC Piles Simplified Approach to Consider Cracking Effect on the Behavior of Laterally Loaded RC Piles Ahmed M. Ebid Lecturer, Structural Department, Faculty of Engineering & Technology, Future University, Cairo,

More information

Life Science Journal 2018;15(7) Behaviour of Laterally Loaded Flexible Piles in Soft Clay

Life Science Journal 2018;15(7)   Behaviour of Laterally Loaded Flexible Piles in Soft Clay Behaviour of Laterally Loaded Flexible Piles in Soft Clay Azza Hassan Moubarak 1 ; Kamal Mohamed Hafez 2 andkarem Farouk Ibraheem 3 1 Assistant Professor of Soil Mechanics and Foundation, Suez Canal University,

More information

RIGID INCLUSIONS FOR SOIL IMPROVEMENT IN A 76 BUILDING COMPLEX

RIGID INCLUSIONS FOR SOIL IMPROVEMENT IN A 76 BUILDING COMPLEX RIGID INCLUSIONS FOR SOIL IMPROVEMENT IN A 76 BUILDING COMPLEX Walter I. Paniagua, PILOTEC, Mexico City Enrique Ibarra, ingeum, Mexico City Jose A. Valle, PILOTEC, Mexico City Abstract: A 76 building complex

More information

3.1 Scope of the work-capacity Estimation of Drilled Shaft Bearing on Rock

3.1 Scope of the work-capacity Estimation of Drilled Shaft Bearing on Rock Chapter 3-Methodology 3.1 Scope of the work-capacity Estimation of Drilled Shaft Bearing on Rock The research work involved the use of high strain dynamic stress wave measurements for capacity estimation

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 1, 2011 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 1, 211 Copyright 21 All rights reserved Integrated Publishing services Research article ISSN 976 4399 Structural performance of Eccentrically

More information

A RATIONAL APPROACH TO ANALYTICAL MODELING OF MASONRY INFILLS IN REINFORCED CONCRETE FRAME BUILDINGS

A RATIONAL APPROACH TO ANALYTICAL MODELING OF MASONRY INFILLS IN REINFORCED CONCRETE FRAME BUILDINGS A RATIONAL APPROACH TO ANALYTICAL MODELING OF MASONRY INFILLS IN REINFORCED CONCRETE FRAME BUILDINGS Hemant B. Kaushik 1, Durgesh C. Rai 2, and Sudhir K. Jain 3 1 Assistant Professor, Dept. of Civil Engineering,

More information

BEHAVIOR OF STEEL FIBRE REINFORCED CONCRETE IN COMPRESSION

BEHAVIOR OF STEEL FIBRE REINFORCED CONCRETE IN COMPRESSION BEHAVIOR OF STEEL FIBRE REINFORCED CONCRETE IN COMPRESSION R.P. Dhakal 1, C. Wang 1 and J.B. Mander 1 1 Department of Civil Engineering, University of Canterbury, Private Bag 48, Christchurch 8, New Zealand

More information

STRENGTHENING OF INFILL MASONRY WALLS USING BONDO GRIDS WITH POLYUREA

STRENGTHENING OF INFILL MASONRY WALLS USING BONDO GRIDS WITH POLYUREA I.1 June 2005 STRENGTHENING OF INFILL MASONRY WALLS USING BONDO GRIDS WITH POLYUREA SUMMARY Glass fiber reinforced polymer (GFRP) grids reinforced polyurea was used to strengthen unreinforced concrete

More information

Modelling shearing characteristics of reinforced concrete

Modelling shearing characteristics of reinforced concrete University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Modelling shearing characteristics of reinforced concrete Hossein

More information

TABLE OF CONTENTS FINITE ELEMENT MODELING OF CONCRETE FILLED DOUBLE SKIN

TABLE OF CONTENTS FINITE ELEMENT MODELING OF CONCRETE FILLED DOUBLE SKIN TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives and Scope of Work... 2 1.2.1 Experimental Phase... 2 1.2.2 Analytical Phase... 3 1.3 Outline of the Report... 4 SECTION

More information

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties.

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. 1 2 Mechanical properties. 3 The intended learning outcomes from this lecture summary are that you

More information

Improved Student Understanding of Materials and Structures through Non-Traditional Laboratory Project

Improved Student Understanding of Materials and Structures through Non-Traditional Laboratory Project Improved Student Understanding of Materials and Structures through Non-Traditional Laboratory Project Andrew Assadollahi 1 and Adel Abdelnaby 2 Abstract - A final project of the mechanics of materials

More information

BEHAVIOR OF PILES IN SAND SUBJECTED TO INCLINED LOADS

BEHAVIOR OF PILES IN SAND SUBJECTED TO INCLINED LOADS BEHAVIOR OF PILES IN SAND SUBJECTED TO INCLINED LOADS Martin Achmus, Khalid Abdel-Rahman & Klaus Thieken Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering, Leibniz University

More information

High strain dynamic testing in micropiles. Comparison of static and dynamic test results

High strain dynamic testing in micropiles. Comparison of static and dynamic test results High strain dynamic testing in micropiles. Comparison of static and dynamic test results Oteo, C. Dpto. Ingeniería del Terreno, A Coruña University, A Coruña, Spain Arcos, J.L. & Gil, R. Kronsa Internacional,

More information

Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load

Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load Rildova, D. Kusumastuti, M. Suarjana & K.S. Pribadi Faculty of Civil and Environmental Engineering, Institut

More information

Soil-pile-structure interaction analysis using 3D FEM

Soil-pile-structure interaction analysis using 3D FEM Soil-pile-structure interaction analysis using 3D FEM R. Tuladhar 1, H. Mutsuyoshi 2, T. Maki 3 1. Corresponding Author: Postdoctoral Fellow, Structural Material Laboratory, Saitama University, 255 Shimo

More information

Soil-Structure Interaction (SSI) Testing Facility and Capabilities at Lehigh University

Soil-Structure Interaction (SSI) Testing Facility and Capabilities at Lehigh University Soil-Structure Interaction (SSI) Testing Facility and Capabilities at Lehigh University Muhannad T. Suleiman, Ph.D. Associate Professor Civil and Environmental Engineering Department 1 SSI Testing Facility

More information

CONTINUOUS FLIGHT AUGER (CFA) PILES QC/QA PROCEDURES. Preferred QC/QA Procedures

CONTINUOUS FLIGHT AUGER (CFA) PILES QC/QA PROCEDURES. Preferred QC/QA Procedures Preferred QC/QA Procedures The Federal Highway Administration (FHWA) has provided QC/QA guidance for this technology as noted below. The reference document also contains information about construction

More information

Desktop guide to aggregate pier ground improvement

Desktop guide to aggregate pier ground improvement Desktop guide to aggregate pier ground improvement Table of Contents Intro... 01 Ground improvement 101... 02 A deep dive into aggregate pier ground improvement... 03 Feasibility and cost discussion of

More information

Available online at ScienceDirect. Procedia Engineering 125 (2015 )

Available online at   ScienceDirect. Procedia Engineering 125 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 125 (2015 ) 918 924 The 5th International Conference of Euro Asia Civil Engineering Forum (EACEF-5) The effect of different

More information

SECTION XXXXX AGGREGATE PIERS PART 1 - GENERAL

SECTION XXXXX AGGREGATE PIERS PART 1 - GENERAL SECTION XXXXX AGGREGATE PIERS PART 1 - GENERAL 1.1 RELATED DOCUMENTS: Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 00 and Division

More information

COURSE ON COMPUTATIONAL GEOTECHNICS A Geotechnical Design Tool. Faculty of Civil Engineering UiTM, Malaysia

COURSE ON COMPUTATIONAL GEOTECHNICS A Geotechnical Design Tool. Faculty of Civil Engineering UiTM, Malaysia COURSE ON COMPUTATIONAL GEOTECHNICS A Geotechnical Design Tool Faculty of Civil Engineering, Malaysia Name : COURSE CONTENTS Use of Plaxis Getting Started Exercise 1: Elastic analysis of drained footing

More information

BEHAVIOUR OF LATERALLY LOADED PILES IN LAYERED SOIL

BEHAVIOUR OF LATERALLY LOADED PILES IN LAYERED SOIL BEHAVIOUR OF LATERALLY LOADED PILES IN LAYERED SOIL by Mohammad Shazzath Hossain A thesis submitted to the Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka, in

More information

Cyclic Lateral Response of Model Pile Groups in Clay

Cyclic Lateral Response of Model Pile Groups in Clay The 2 th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) -6 October, 28 Goa, India Cyclic Lateral Response of Model Pile Groups in Clay

More information

SECTION DUCTILE IRON PILES

SECTION DUCTILE IRON PILES SECTION 31 66 13 DUCTILE IRON PILES PART 1 - GENERAL 1.1 GENERAL REQUIREMENTS A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents. B.

More information

BEHAVIOR OF REINFORCED CONCRETE ONE-WAY SLABS STRENGTHENED BY CFRP SHEETS IN FLEXURAL ZONE

BEHAVIOR OF REINFORCED CONCRETE ONE-WAY SLABS STRENGTHENED BY CFRP SHEETS IN FLEXURAL ZONE International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 10, October 2018, pp. 1872 1881, Article ID: IJCIET_09_10_097 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=10

More information

Chapter 7. Finite Elements Model and Results

Chapter 7. Finite Elements Model and Results Chapter 7 Finite Elements Model and Results 7.1 Introduction In this chapter, a three dimensional model was presented. The analytical model was developed by using the finite elements method to simulate

More information

PILE RAFT FOUNDATION BEHAVIOR WITH DIFFERENT PILE DIAMETERS

PILE RAFT FOUNDATION BEHAVIOR WITH DIFFERENT PILE DIAMETERS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1114 PILE RAFT FOUNDATION BEHAVIOR WITH DIFFERENT PILE DIAMETERS Reza ZIAIE_MOAYED 1, Meysam SAFAVIAN 2 ABSTRACT

More information

CHAPTER III DYNAMIC BEHAVIOR OF A LABORATORY SPECIMEN

CHAPTER III DYNAMIC BEHAVIOR OF A LABORATORY SPECIMEN CHAPTER III DYNAMIC BEHAVIOR OF A LABORATORY SPECIMEN To address the vibration response of a long span deck floor system, an experiment using a specimen that resembles the conditions found in the in-situ

More information

Table of Contents 18.1 GENERAL Overview Responsibilities References

Table of Contents 18.1 GENERAL Overview Responsibilities References Table of Contents Section Page 18.1 GENERAL... 18.1-1 18.1.1 Overview... 18.1-1 18.1.2 Responsibilities... 18.1-1 18.1.3 References... 18.1-2 18.2 MISCELLANEOUS FOUNDATION DESIGNS... 18.2-1 18.2.1 Buildings...

More information