On The Plastic Design Of Timber Beams With A Complex Cross-Section

Size: px
Start display at page:

Download "On The Plastic Design Of Timber Beams With A Complex Cross-Section"

Transcription

1 On The Plastic Design Of Timber Beams With A Complex Cross-Section Maurice Brunner 1 1. INTRODUCTION For the design of steel and concrete structures, most modern international design codes allow the use of plastic stressstrain-diagrams for the analysis of the bending resistance of the cross-section in the ultimate limit state. Curiously, in Europe and most other parts of the world, timber structures are still designed for the ultimate limit state with the old, conservative concept of full elastic behavior till failure. The situation is rather funny for two main reasons. First, it is well known that under compressive loading, timber exhibits a much better ductile behavior than concrete, for example. Secondly, between the two World Wars, timber scientists developed refined calculation methods to explain test results which showed that the bending strength of small, clear timber specimens lies well above the compressive strength. It is curious that these findings have never been developed to the stage where they could be integrated into modern timber design codes. There are of course reasons why the Plastic Design Approach is not yet used for timber structures. The main problem is the unreliable tensile strength. Even small, clear timber specimens exhibit brittle behavior under tensile loading. In the case of large specimens of the size used in structures, the tensile strength can be considerably reduced by defects and by the so-called volume effect. A good description of the volume effect or weakest link concept, as it is also known is given in [1]. One of the most important factors involved is the type of stress distribution: the failure stress in the case of a bending moment is much higher for timber of the same graded quality and dimensions than the failure stress under tensile loading (Fig. 1). In the latter case a greater area is under high tension, hence the probability of early failure due to the so-called weakest link. Fig. 1: Influence of the stress distribution on the magnitude of the failure stresses In the European Design Code EC5 for timber structures, the question of plastic design has been indirectly taken into account by the introduction of an apparent bending strength f M, which has been determined directly in loading tests. The calculation of the bending resistance M R is based on the full elastic approach. The concept of the fictitious bending strength is equivalent to full plastic design for solid, rectangular timber cross-sections and also for the glulam types listed in the Code, for which extensive studies have also been carried out. Since most structural timber used in the construction industry has a solid, rectangular cross-section, the concept of the fictitious bending strength will in effect lead to full plastic design for most practical purposes. There is a small but quietly growing market for highly stressed, high-tech timber cross-sections ([2]). For such applications, the design method based on the fictitious bending strength is inadequate, because the true failure mode of timber beams as depicted in fig. 1 is not evident. Indeed, the theory of the fictitious bending strength may in fact be misleading sometimes, since the impression is created that there is no difference between the compression and the tension 1 Professor, Swiss School of Engineering for the Wood Industry, Biel, Switzerland

2 zones of a beam. It is common knowledge among engineers that the weakness of a timber beam lies in the brittle tension zone, yet when engineered, complex cross-sections are necessary, the solution is typically a symmetrical strengthening of both tension and compression zones glulam is a typical example. In comparison, the concrete engineer, aware that the brittle tensile strength of concrete is too risky, typically prescribes reinforcement for the tension zone only. In a similar way, it might make engineering and economic sense to strengthen future engineered timber beams much more in the critical tension zone than in the compression zone. Fig. 2 shows some simple examples: Grading techniques should be used to strengthen in particular the tension side of glulam beams. In the case of flanged timber beams, the boards on the tension flange should exhibit the best material properties; alternatively, the tension flange could be made thicker than the compression flange. Existing beams could be strengthened in-situ by gluing a flat steel bar on the tension side only. Fig. 2: Vision for high-tech timber cross-sections: unsymmetrical strengthening of the tension side The present widely used design concept of the fictitious bending strength does not permit the engineer to take advantage of the good plastic properties of timber under compression in order to design highly stressed, high-tech cross-sections of the future. The purpose of this paper is to present simple models to illustrate how the existing Eurocodes for timber could be supplemented not changed! - in order to let this happen. 2. OVERVIEW PLASTICITY OF MATERIALS Fig. 3: Stress-strain-diagrams for common building materials Like most metals, a steel bar under tensile loading initially exhibits a linear relationship between the stress σ and the strain ε (Fig. 3). After the yield stress f y has been attained, the stress remains constant even when the strain increases considerably. In the case of European Standard Steel Fe235, failure occurs only after an enormous strain of about 250%o

3 has been attained, compared to the yield strain of about 1.1%o. Materials which exhibit an extensive yield plateau are called ductile ; their structural behavior in the ultimate limit state is characterized by the following advantages: Failure occurs only after large deflections have been attained: there is visible warning of danger The bending resistance is increased by the so-called plastification of the cross-section. In the case of statically indeterminate structures, the failure loads are higher than in the case of purely elastic behavior because the internal forces can be redistributed by plastic joints. The Theory of Plasticity is ideal for the design of steel structures. It is however also widely used today for the design of reinforced concrete structures. In this composite building material, steel bars are placed to take up the internal tensile forces, whilst the concrete itself deals with the compressive forces. The concrete engineer uses the so-called condition of ductility to make sure that the steel is the weakest link in reinforced concrete: in the ultimate limit state the steel yields in tension before the concrete compression zone fails, hence the ductile behavior of reinforced concrete structures. In comparison to steel, concrete cubes under compression exhibit fairly brittle behavior. Failure occurs at a relatively low strain of about 3.5%o. However, in the ultimate limit state, most design codes permit the plastification of the concrete compression side, thus helping to ensure economic design. Clear timber specimens exhibit very different behavior under tensile and compressive loading. The behavior depicted in fig. 3 has been known since the 1920 s ([3]). Under tensile loading, the stress-strain-diagram runs a straight line till brittle failure. Under compressive loading, the stress-strain-diagram exhibits an initial linear stage. At a strain level of about 3%o, the buckling of the timber fibers leads to the attainment of a yield plateau. The stress remains fairly constant whilst the strain increases to about 12% at failure. Structural timber is characterized by defects such as knots and resin pockets. The tensile strength in particular is very sensitive to such defects and may be sharply reduced. The compressive strength on the other hand is usually much less affected. This phenomenon is evident in Eurocode EN338: between the timber grades C22 and C40 the compressive strength rises from 20 to 26 N/mm2, whilst the tensile strength for an axial load changes from 13 to 24 N/mm2 (Fig. 4). 3. SIMPLE STRESS-STRAIN-DIAGRAMS FOR THE PLASTIC DESIGN OF TIMBER BEAMS WITH COMPLEX CROSS-SECTIONS Fig. 4: Tensile (f t ), compressive (f c ) and bending(f M ) strengths according to Eurocode EN 338 The table of fig. 4 shows in simplified form the system of Timber Strength Classification according to the European Standard EN 338. All values refer to stresses acting in the direction of the fibers. The fictitious bending stress f M plays a central role in the system and in fact the timber grade is directly named after the value of the bending strength. As shown in fig. 1, however, the bending stress f M is not identical with the real stress conditions in the ultimate limit state. It is a fictitious value derived mathematically from tests by assuming a linear stress distribution across the cross-section: f M = [ M f / W ] / f with M f = Bending moment at failure W = Moment of resistance (Rectangle: W = b.h 2 /6) f = Safety factor As mentioned above, the concept of the fictitious bending strength f M is very practical and it is equivalent to the plastic design of rectangular beams, which form the vast majority of structural timber members in use. For many complex, hightech cross-sections which may be needed for special applications, however, a more refined approach is called for.

4 There are many calculation models for the non-elastic distribution of stresses in a timber beam. One of the simplest and best-known, developed in 1939 by Thunell ([3]), is shown in fig. 5. The tension zone is characterized by a linear, brittle model, whereas the compression zone exhibits an initial linear stress rise followed by a clear yield plateau. The E-moduli for both tension and compression are the same. Fig. 5: Trapezoid-like stress distribution over the cross-section according to Thunell ([3]). The standard stress values listed in the Eurocodes can be used to obtain working values for the Thunell model if the following simple assumptions are taken: The so-called volume effect applies to the tension zone: under bending conditions, the true failure stress f t,m is much higher than the value f t under pure tension. Research work indicates that the compression zone is much less influenced by the volume effect ([1]). For simplicity, the failure stress f c under normal compressive force is assumed to remain unchanged in the compression zone of the beam under bending. Plastification of the cross-section is possible. The value f t,m, the true failure stress on the tension side of the beam, is not listed in the Eurocodes. It can however be determined by comparing the equations for the bending resistance M R of beam with a rectangular cross-section, calculated according to Thunell ([3]), and then according to the Eurocode. Thunell: M R = f c. (b.h 2 /6). c with c = [3 + 8.m + 6.m 2 m 4 ] / (1 + m) 4 and m = f c /f t,m Eurocode: M R = f M. (b.h 2 /6) The following equation is obtained which can be solved for m, and then for f t,m (Fig. 6): (3 + 8.m + 6.m 2 m 4 ) = f M (1 + m) 4 f c

5 Fig. 6:Characteristic values (f c and f t,m ) for Thunell s stress diagram, derived from the characteristic stress values of the Eurocode 4. CALCULATION EXAMPLE A simple example will now be presented to illustrate how a Plastic Design Approach could change the outlook for hightech, timber cross-sections of the future. A timber beam, Grade C27, has a width of 100mm and a height of 300mm. Its bending resistance is: W = 100 x / 6 = 1.5 x 10 6 mm3 M R = f M x W = 27 x 1.5 x 10 6 / 10 6 = 40.5 knm Since this resistance is inadequate, it is to be strengthened by gluing a steel plate (Fe335) on the tension side. The material properties involved can be listed as follows: Timber: C27 Steel: Fe335 E T = 12 kn/mm2 E S = 210 kn/mm2 f M = 27 N/mm2 f y = 335 N/mm2 f c = 22 N/mm2 ε y = 335 / = 1.60%o ε c = 22 / = 1.83%o The calculation according to Eurocode 5 is illustrated in fig. 7. Due to the high E-modulus of the steel plate, the neutral axis is shifted below the geometrical center of the 305mm high beam. The relevant characteristic values of the composite cross-section are: Relative stiffness of steel: n = E S / E T = 210 / 12 = 17.5 Position of neutral axis: z U = 121mm (z O = 184mm) Moments of resistance: Timber compression zone: W O = 2.07 x 10 6 mm3 Timber tension zone: W U = 3.31 x 10 6 mm3 Steel tension zone: W S = 3.16 x 10 6 mm3 The calculation suggests that the timber compression zone would be responsible for failure because the fictitious bending strength f M = 27 N/mm2 would be attained there first before the tension zone. The steel yield stress of 335 N/mm2 would not have been reached when the timber compression zone fails, hence the excellent plastic qualities of steel would be useless according to this calculation approach. The bending resistance would be: M R = W O x f M = 2.07x 10 6 x 27 / 10 6 = 56 knm

6 Fig. 7: Timber beam with an attached steel plate: bending resistance M R calculated in accordance with the fictitious bending strength approach The calculation of the bending resistance of the same beam according to the Plastic Design Approach described under chapter 3 is illustrated in fig. 8. The neutral axis is shifted even further down to z U = 115mm, and the critical strains are about 4.0%o at the top compression zone of the timber, 2.3%o at the bottom tension zone of the timber, and 2.4% at the very bottom of the steel. The compressive and tensile forces corresponding to these strains are in balance. The steel plate and the timber compression zone have both reached the plastic state, but failure is actually triggered when the tension zone of the timber attains the true brittle tensile strength f t,m. The bending resistance can be calculated to be: M R = 228 x x x = 67 knm Fig. 8: Timber beam strengthened with an attached steel plate: calculation with a Thunell-like stress distribution The bending moment thus derived with the plastic design method is 20% higher that the result obtained using the fictitious bending strength f M according to the Eurocodes. The Plastic Design Method also points out that the brittle tension zone of the timber, and not the ductile compression zone, will remain the weakest link in the beam. 5. FURTHER READING [1] Steiger Rene Mech. Eigenschaften von Schweiz. Fichten-Bauholz bei Biege-, Zug-, Druck- and komplizierter M/N-Beanspruchung, IBK-Bericht Nr. 221, June 1996, Birkhäuser Verlag Basel [2] Steurer Anton Holzkonstruktionen mit Stahl- und Kunststoffverstärkung, 31. SAH-Tagung, 1999, Lignum, Zürich [3] Kollmann/Côté Principles of Wood Science and Technology, Volume 1, 1984, Springer Verlag, Berlin, Chapter 7.4

7 [4] Eurocodes EC5 Design and Construction of Timber Structures EN338 Strength Grades of Structural Timber

EXPERIMENTAL STUDY REGARDING THE BEHAVIOR OF GLUE LAMINATED BEAMS DOUBLE REINFORCED WITH RECTANGULAR METAL PIPES (RMP)

EXPERIMENTAL STUDY REGARDING THE BEHAVIOR OF GLUE LAMINATED BEAMS DOUBLE REINFORCED WITH RECTANGULAR METAL PIPES (RMP) Bulletin of the Transilvania University of Braşov CIBv 2014 Vol. 7 (56) Special Issue No. 1-2014 EXPERIMENTAL STUDY REGARDING THE BEHAVIOR OF GLUE LAMINATED BEAMS DOUBLE REINFORCED WITH RECTANGULAR METAL

More information

Elastic versus Plastic Analysis of Structures

Elastic versus Plastic Analysis of Structures Elastic versus Plastic Analysis of Structures 1.1 Stress-Strain Relationships 1.2 Plastic Design Versus Elastic Design Chapter 1 Basic Concepts of Plastic Analysis 1.3 Elastic-Plastic Bending of Beams

More information

Flexural Analysis and Design of Beams. Chapter 3

Flexural Analysis and Design of Beams. Chapter 3 Flexural Analysis and Design of Beams Chapter 3 Introduction Fundamental Assumptions Simple case of axial loading Same assumptions and ideal concept apply This chapter includes analysis and design for

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 4 Properties in Bending and Shear Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

CHAPTER 2. Design Formulae for Bending

CHAPTER 2. Design Formulae for Bending CHAPTER 2 Design Formulae for Bending Learning Objectives Appreciate the stress-strain properties of concrete and steel for R.C. design Appreciate the derivation of the design formulae for bending Apply

More information

Basic quantities of earthquake engineering. Strength Stiffness - Ductility

Basic quantities of earthquake engineering. Strength Stiffness - Ductility Basic quantities of earthquake engineering Strength Stiffness - Ductility 1 Stength is the ability to withstand applied forces. For example a concrete element is weak in tension but strong in compression.

More information

Initial Tests of Kevlar Prestressed Timber Beams

Initial Tests of Kevlar Prestressed Timber Beams Initial Tests of Kevlar Prestressed Timber Beams Terrel L. Galloway, Christian Fogstad, Charles W. DoIan P. E., PhD., J. A. Puckett P. E., PhD., University of Wyoming Abstract The high strength, high modulus

More information

CHAPTER 12. Composite Beams Steel reinforced timber beams E, I, M,=- E, I, M,= - R

CHAPTER 12. Composite Beams Steel reinforced timber beams E, I, M,=- E, I, M,= - R CHAPTER 12 Composite Beams Frequently in civil engineering construction beams are fabricated from comparatively inexpensive materials of low strength which are reinforced by small amounts of high-strength

More information

A simple computational tool for the verification of concrete walls reinforced by embedded steel profiles.

A simple computational tool for the verification of concrete walls reinforced by embedded steel profiles. A simple computational tool for the verification of concrete walls reinforced by embedded steel profiles. T. Bogdan, H. Degée, A. Plumier University of Liège, Belgium C. Campian Technical University of

More information

Reinforcement of glulam beams with FRP reinforcement

Reinforcement of glulam beams with FRP reinforcement Reinforcement of glulam beams with FRP reinforcement H.J. Blaß and M. Romani University of Karlsruhe (TH), Germany 1 Introduction For several years possibilities to reinforce glulam beams parallel to the

More information

10.5 ECCENTRICALLY LOADED COLUMNS: AXIAL LOAD AND BENDING.

10.5 ECCENTRICALLY LOADED COLUMNS: AXIAL LOAD AND BENDING. 13 10.5 ECCENTRICALLY LOADED COLUMNS: AXIAL LOAD AND BENDING. Members that are axially, i.e., concentrically, compressed occur rarely, if ever, in buildings and other structures. Components such as columns

More information

composite elements, lateral loads, strain analysis, behavior Composite steel concrete elements made by steel and concrete are used in world wide almos

composite elements, lateral loads, strain analysis, behavior Composite steel concrete elements made by steel and concrete are used in world wide almos V. Stoian *1, D. Dan 1, A. Fabian 1 Rezumat 唗 ţ ᗷ唷 唗 z z ţ z 唗 z ţ z ţ ţ z ţ 唗 ţ ţ 唗 唗 ţ z ţ ţ I ţ z ţ â ᗷ唷 ţ 唗ţ ᗷ唷 ᗷ唷 唗 ţ z ţ ţ ᗷ唷 ţ Ş ţ ᗷ唷 z ᗷ唷 ţ 唗 z 唗 ţ 唗 唗 唗 ᗷ唷 z z ţ ţ ᗷ唷 唗 ᗷ唷 z ţ 唗 唗 ţ z ţ ţ 唗 *

More information

MECHANICS OF SOLIDS IM LECTURE HOURS PER WEEK STATICS IM0232 DIFERENTIAL EQUAQTIONS

MECHANICS OF SOLIDS IM LECTURE HOURS PER WEEK STATICS IM0232 DIFERENTIAL EQUAQTIONS COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE MECHANICS OF SOLIDS IM0233 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 96 HOURS OF INDEPENDENT WORK STATICS IM0232

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210303 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 MECHANICS OF SOLIDS ( Common to Mechanical Engineering, Mechatronics, Metallurgy & Material Technology, Production

More information

FRP Strengthening of RC Flexural Members - Ductility Issues

FRP Strengthening of RC Flexural Members - Ductility Issues FRP Strengthening of RC Flexural Members - Ductility Issues A presentation to ACIC 22 15 April 22, Southampton Professor R. Delpak Division of Civil Engineering School of Technology University of Glamorgan

More information

Practical Methods for the Analysis of Differential Strain Effects

Practical Methods for the Analysis of Differential Strain Effects Practical Methods for the Analysis of Differential Strain Effects Doug Jenkins, Principal, Interactive Design Services, Sydney, Australia Abstract: In the assessment of time and temperature related strain

More information

Design of Doubly Reinforced Rectangular Beam Limit State Method

Design of Doubly Reinforced Rectangular Beam Limit State Method Design of Doubly Reinforced Rectangular Beam Limit State Method If the applied bending moment is greater than the moment resisting capacity or ultimate moment carrying capacity of the section (i.e. over

More information

How to Design a Singly Reinforced Concrete Beam

How to Design a Singly Reinforced Concrete Beam Time Required: 45 minutes Materials: -Engineering Paper -Calculator -Pencil -Straight Edge Design For Flexural Limit State How to Design a Singly Reinforced Concrete Beam Goal: ΦMn > Mu Strength Reduction

More information

BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS

BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS Slide No. 1 Bending of In the previous discussion, we have considered only those beams that are fabricated from a single material such as steel. However, in

More information

A DESIGN-BASED APPROACH TO ESTIMATE THE MOMENT-CURVATURE RELATIONSHIP OF FIBER REINFORCED ELEMENTS FAILING IN BENDING. Report A0.T0.UM.

A DESIGN-BASED APPROACH TO ESTIMATE THE MOMENT-CURVATURE RELATIONSHIP OF FIBER REINFORCED ELEMENTS FAILING IN BENDING. Report A0.T0.UM. A DESIGN-BASED APPROACH TO ESTIMATE THE MOMENT-CURVATURE RELATIONSHIP OF FIBER REINFORCED ELEMENTS FAILING IN BENDING Report A0.T0.UM.1 December 2009 PONTALUMIS PROJECT Development of a pedestrian bridge

More information

DESIGN OF POST-TENSIONED MEMBERS IN BENDING USING ACI SIMPLIFIED PROCEDURE

DESIGN OF POST-TENSIONED MEMBERS IN BENDING USING ACI SIMPLIFIED PROCEDURE Structural Concrete Software System TN 179 Aci_simplified_M_design3 011005 DESIGN OF POST-TENSIONED MEMBERS IN BENDING USING ACI 318 2002 SIMPLIFIED PROCEDURE 1. BACKGROUND 1.1 GENERAL The following describes

More information

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar.

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. 11.1 AXIAL STRAIN When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. In addition, the bar increases in length, as shown: 11.1

More information

Seismic performance of New Steel Concrete Composite Beam-Columns

Seismic performance of New Steel Concrete Composite Beam-Columns Seismic performance of New Steel Concrete Composite Beam-Columns Toshiaki FUJIMOTO, Hiroshi KOMATSU, Tomoyuki SAKURADA & Noritaka MOROHASHI College of Industrial Technology, Nihon University, Japan SUMMARY:

More information

NON-LINEAR BEHAVIOR OF STEEL PLATE SHEAR WALL WITH LARGE RECTANGULAR OPENING

NON-LINEAR BEHAVIOR OF STEEL PLATE SHEAR WALL WITH LARGE RECTANGULAR OPENING NON-LINEAR BEHAVIOR OF STEEL PLATE SHEAR WALL WITH LARGE RECTANGULAR OPENING Ardeshir DEYLAMI 1 And Hossein DAFTARI 2 SUMMARY Steel plate shear walls have been used more and more in the steel structures

More information

11 Beams of two materials

11 Beams of two materials Beams of two materials.i Introduction Some beams used in engineering structures are composed of two materials. A timber joist, for example, may be reinforced by bolting steel plates to the flanges. Plain

More information

Experiments on Stainless Steel Hollow Sections Part 2: Member Behaviour of Columns and Beams

Experiments on Stainless Steel Hollow Sections Part 2: Member Behaviour of Columns and Beams Gardner, L. and Nethercot, D. A. (2004). Experiments on stainless steel hollow sections Part 2: Member behaviour of columns and beams. Journal of Constructional Steel Research. 60(9), 1319-1332. Experiments

More information

Section A A: Slab & Beam Elevation

Section A A: Slab & Beam Elevation CE 331, Spring 2011 Flexure Strength of Reinforced Concrete s 1 / 5 A typical reinforced concrete floor system is shown in the sketches below. The floor is supported by the beams, which in turn are supported

More information

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams 111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

More information

Design of Laterally Unrestrained Beams

Design of Laterally Unrestrained Beams Design of Laterally Unrestrained Beams In this chapter, the resistance of members against instability phenomena caused by a bending moment will be presented in standard cross sectional shapes, such as

More information

ST7008 PRESTRESSED CONCRETE

ST7008 PRESTRESSED CONCRETE ST7008 PRESTRESSED CONCRETE QUESTION BANK UNIT-I PRINCIPLES OF PRESTRESSING PART-A 1. Define modular ratio. 2. What is meant by creep coefficient? 3. Is the deflection control essential? Discuss. 4. Give

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

Moment curvature analysis of concrete flexural members confined with CFRP grids

Moment curvature analysis of concrete flexural members confined with CFRP grids Materials Characterisation V 131 Moment curvature analysis of concrete flexural members confined with CFRP grids A. Michael & P. Christou Department of Civil Engineering, Frederick University, Cyprus Abstract

More information

Appendix M 2010 AASHTO Bridge Committee Agenda Item

Appendix M 2010 AASHTO Bridge Committee Agenda Item Appendix M 2010 AASHTO Bridge Committee Agenda Item 2010 AASHTO BRIDGE COMMITTEE AGENDA ITEM: SUBJECT: LRFD Bridge Design Specifications: Section 5, High-Strength Steel Reinforcement TECHNICAL COMMITTEE:

More information

COLUMNS. Classification of columns:

COLUMNS. Classification of columns: COLUMNS are vertical compression members in structures, the effective length of which exceeds three times its lateral dimension. Which are provided for bear the load of Beam, Slab, etc. since columns support

More information

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF POLYURETHANE SANDWICH PANELS

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF POLYURETHANE SANDWICH PANELS SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 EXPERIMENTAL AND NUMERICAL INVESTIGATION OF POLYURETHANE

More information

Field Load Testing of the First Vehicular Timber Bridge in Korea

Field Load Testing of the First Vehicular Timber Bridge in Korea Field Load Testing of the First Vehicular Timber Bridge in Korea Ji-Woon Yi Ph.D. Student Department of Civil & Environmental Engineering Seoul National University Seoul, Korea jwyi@sel.snu.ac.kr Wonsuk

More information

Verification of the reinforced concrete beam model based on the results of a full-scale experimental study

Verification of the reinforced concrete beam model based on the results of a full-scale experimental study Verification of the reinforced concrete beam model based on the results of a full-scale experimental study Oleg Mkrtychev 1, and Mikhail Andreev 1,* 1 Moscow State University of Civil Engineering, Yaroslavskoe

More information

ASPECTS OF FLEXURAL BEHAVIOR OF HIGH STRENGTH

ASPECTS OF FLEXURAL BEHAVIOR OF HIGH STRENGTH Construcţii Aspects of flexural behaviour of SFRHSC elements G. Bărbos ASPECTS OF FLEXURAL BEHAVIOR OF HIGH STRENGTH CONCRETE ELEMENTS WITH OR WITHOUT STEEL FIBERS Gheorghe-Alexandru BĂRBOS Eng., Research

More information

Finite Element Studies on the Behavior of Reinforced Concrete Structures Using LUSAS

Finite Element Studies on the Behavior of Reinforced Concrete Structures Using LUSAS ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Finite Element Studies on the Behavior of Reinforced Concrete Structures Using LUSAS M.Z. Yusof School

More information

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II No. of Printed Pages : 6 BCE-041 Diploma in Civil Engineering Term-End Examination June, 2012 00819 BCE-041 : THEORY OF STRUCTURES II Time : 2 hours Maximum Marks : 70 Note : Question number 1 is compulsory.

More information

PLASTIC DESIGN OF STAINLESS STEEL STRUCTURES

PLASTIC DESIGN OF STAINLESS STEEL STRUCTURES SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 PLASTIC DESIGN OF STAINLESS STEEL STRUCTURES Marios Theofanous*

More information

AN ANALYSIS OF MEMBRANE ACTION IN ONE-WAY CONCRETE MEMBERS EXTERNALLY BONDED WITH FRP

AN ANALYSIS OF MEMBRANE ACTION IN ONE-WAY CONCRETE MEMBERS EXTERNALLY BONDED WITH FRP The 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & The 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015) Joint

More information

Effect of Cracked Section on Lateral Response of Reinforced Concrete Flanged Beams

Effect of Cracked Section on Lateral Response of Reinforced Concrete Flanged Beams Vol.2, Issue.5, Sep-Oct. 212 pp-3384-3389 ISSN: 2249-6645 Effect of Cracked Section on Lateral Response of Reinforced Concrete Flanged Beams Wakchaure M. R. 1, Varpe Charulata S. 2 1(Asso.Professor. Civil

More information

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 41 (2016) (2016) - 31-37 Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section by Mohammad Hamid ELMY *1 and Shunichi

More information

Experimental and numerical validation of the technical solution of a brace with pinned connections for seismic-resistant multi-story structures

Experimental and numerical validation of the technical solution of a brace with pinned connections for seismic-resistant multi-story structures Experimental and numerical validation of the technical solution of a brace with pinned connections for seismic-resistant multi-story structures Ramona Gabor, Cristian Vulcu, Aurel Stratan, Dan Dubina Politehnica

More information

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition REINFORCED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to statics loads and for such elements, statics failure theories are used to predict failure (yielding or fracture).

More information

The SUREBridge Software Tool

The SUREBridge Software Tool The SUREBridge Software Tool Ing. Cristiano Alocci University of Pisa 2017-09-22 Outline The SUREBridge Software Tool Overview Main features Design model Hypotheses Iterative algorithm Calculation example

More information

Lateral-torsional buckling resistance of cold-formed high strength steel rectangular hollow beams

Lateral-torsional buckling resistance of cold-formed high strength steel rectangular hollow beams Insights and Innovations in Structural Engineering Mechanics and Computation Zingoni (Ed.) 016 Taylor & Francis Group London ISBN 978-1-138-097-9 Lateral-torsional buckling resistance of cold-formed high

More information

Engineering Materials

Engineering Materials Engineering Materials PREPARED BY IAT Curriculum Unit August 2010 Institute of Applied Technology, 2010 Module Objectives After the completion of this module, the student will be able to: Explain the difference

More information

Question Paper Code : 11410

Question Paper Code : 11410 Reg. No. : Question Paper Code : 11410 B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011 Fourth Semester Mechanical Engineering ME 2254 STRENGTH OF MATERIALS (Common to Automobile Engineering and Production

More information

DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP INTRODUCTION

DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP INTRODUCTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3242 DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP Javad

More information

COMPOSITE STRUCTURES PREPARED BY : SHAMILAH

COMPOSITE STRUCTURES PREPARED BY : SHAMILAH COMPOSITE STRUCTURES PREPARED BY : SHAMILAH ANUDAI@ANUAR INTRODUCTION Steel and Concrete Composite Construction Composite construction aims to make each material perform the function it is best at or to

More information

Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH

Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH Robustness of continuous steel-concrete composite beams of slender plain webbed and cellular open webbed sections Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH Faculty of Civil Engineering Warsaw

More information

Application nr. 6 (Connections) Strength of welded connections to EN (Eurocode 3, Part 1.8)

Application nr. 6 (Connections) Strength of welded connections to EN (Eurocode 3, Part 1.8) Application nr. 6 (Connections) Strength of welded connections to EN 1993-1-8 (Eurocode 3, Part 1.8) PART 1: Design of a fillet weld connection in shear Initial data of the problem: Given two overlapping

More information

STRENGTHENING EFFECTS OF CONCRETE FLEXURAL MEMBERS RETROFITTED WITH HYBRID FRP COMPOSITES. Abstract. Introduction

STRENGTHENING EFFECTS OF CONCRETE FLEXURAL MEMBERS RETROFITTED WITH HYBRID FRP COMPOSITES. Abstract. Introduction STRENGTHENING EFFECTS OF CONCRETE FLEXURAL MEMBERS RETROFITTED WITH HYBRID FRP COMPOSITES Prof.Zhishen Wu, Ibaraki University, Hitachi,Japan Koji Sakamoto, Ibaraki University, Hitachi,Japan Dr.Hedong Niu,

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS Year/ Sem. : IV / VII Staff Name : S.LUMINA JUDITH Subject Code : CE 6702 Sub. Name : PRE STRESSED

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

A COMPARATIVE STUDY OF PROBABILITY OF FAILURE OF CONCRETE IN BENDING AND DIRECT COMPRESSION AS PER IS 456:2000 AND AS PER IS 456:1978

A COMPARATIVE STUDY OF PROBABILITY OF FAILURE OF CONCRETE IN BENDING AND DIRECT COMPRESSION AS PER IS 456:2000 AND AS PER IS 456:1978 A COMPARATIVE STUDY OF CONCRETE IN AND DIRECT COMPRESSION AS PER IS 456:2000 AND AS PER IS 456:1978 Khan A. H. and Balaji K. V. G. D. Department of Civil Engineering, Gandhi Institute of Technology and

More information

Elastic-plastic load-carrying capacity of steel members

Elastic-plastic load-carrying capacity of steel members Elastic-plastic load-carrying capacity of steel members Pavol Juhas 1,* 1 Institute of Technology and Business in České Budějovice, Okružní 517/10, 37001 České Budějovice, Czech Republic Abstract. The

More information

STRUCTURAL PERFORMANCE OF STEEL-CONCRETE-STEEL SANDWICH COMPOSITE BEAMS WITH CHANNEL STEEL CONNECTORS

STRUCTURAL PERFORMANCE OF STEEL-CONCRETE-STEEL SANDWICH COMPOSITE BEAMS WITH CHANNEL STEEL CONNECTORS Transactions, SMiRT-22 STRUCTURAL PERFORMANCE OF STEEL-CONCRETE-STEEL SANDWICH COMPOSITE BEAMS WITH CHANNEL STEEL CONNECTORS Meng Chu 1, Xiaobing Song 2, Honghui Ge 3 1 Senior Engineer, Shanghai nuclear

More information

BOUNDARY CONDITIONS OF SHEAR WALLS IN MULTI-STOREY MASONRY STRUCTURES UNDER HORIZONTAL LOADINGS

BOUNDARY CONDITIONS OF SHEAR WALLS IN MULTI-STOREY MASONRY STRUCTURES UNDER HORIZONTAL LOADINGS BOUNDARY CONDITIONS OF SHEAR WALLS IN MULTI-STOREY MASONRY STRUCTURES UNDER HORIZONTAL LOADINGS K. ZILCH Professor, Institute of Building Materials and Structures Chair of Concrete Structures Technische

More information

Scientific Seminar Design of Steel and Timber Structures SPbU, May 21, 2015

Scientific Seminar Design of Steel and Timber Structures SPbU, May 21, 2015 Riga Technical University Institute of Structural Engineering and Reconstruction Scientific Seminar The research leading to these results has received the funding from Latvia state research programme under

More information

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS Jan Hricák, jan.hricak@fsv.cvut.cz WG3 - Michal Jandera, michal.jandera@fsv.cvut.cz WG2 František Wald, wald@fsv.cvut.cz 7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS Summary A significant progress in

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 ADVANCED STRUCTURAL ANALYSIS AND DESIGN MODULE NO: CIE6001 Date: Tuesday 12

More information

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 87 CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 7.1 GENERAL With the advances in modern computing techniques, finite element analysis has become a practical and powerful tool for engineering analysis and

More information

DESIGN OF STEEL FIBRE REINFORCED CONCRETE BEAMS USING THE NEW FIB MODEL CODE 2010 AN EVALUATIVE

DESIGN OF STEEL FIBRE REINFORCED CONCRETE BEAMS USING THE NEW FIB MODEL CODE 2010 AN EVALUATIVE 147 Paper No. 739 DESIGN OF STEEL FIBRE REINFORCED CONCRETE BEAMS USING THE NEW FIB MODEL CODE 2010 AN EVALUATIVE AMMAR ABID, K. B. FRANZEN 148 Ammar Abid, K. B. Franzen 72 nd Annual Session of Pakistan

More information

Subject with Code: Strength of Materials(16CE104) Course& Branch: B. Tech - CE Year &Sem : II-B. Tech &I-Sem Regulation: R16

Subject with Code: Strength of Materials(16CE104) Course& Branch: B. Tech - CE Year &Sem : II-B. Tech &I-Sem Regulation: R16 SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY:: PUTTUR (Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu) (Accredited by NBA & Accredited by NAAC with A Grade) (An ISO 9001:2008 Certified

More information

Determination of the main characteristics of semi-rigid beam-to-column connections through numerical and experimental method

Determination of the main characteristics of semi-rigid beam-to-column connections through numerical and experimental method Determination of the main characteristics of semi-rigid beam-to-column connections through numerical and experimental method K. Vértes & M. Iványi Budapest University of Technology and Economics, Department

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module - 4: Design of Members Lecture - 17: Design of Members for Axial Tension

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

Numerical Modeling of Innovative Connection Between RC Beam and Steel Column

Numerical Modeling of Innovative Connection Between RC Beam and Steel Column Numerical Modeling of Innovative Connection Between RC Beam and Steel Column Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil Abstract Transferring the load from beam to

More information

Design Values of Materials

Design Values of Materials 9 Chapter 3 Design Values of Materials 3.1 General (1) This chapter provides general guidelines on the material characteristics of the UFC, particularly required for design activities. The material characteristics

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code :Strength of Materials-II (16CE111) Course & Branch: B.Tech - CE Year

More information

LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER

LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER Lander Vasseur 1, Stijn Matthys 2, Luc Taerwe 3 Department of Structural Engineering, Ghent University, Magnel

More information

NEW COMPOSITE CONSTRUCTION OF HYBRID BEAMS COMBINING STEEL INVERTED T-SECTION AND RC FLANGE

NEW COMPOSITE CONSTRUCTION OF HYBRID BEAMS COMBINING STEEL INVERTED T-SECTION AND RC FLANGE NEW COMPOSITE CONSTRUCTION OF HYBRID BEAMS COMBINING STEEL INVERTED T-SECTION AND RC FLANGE Alex Remennikov 1, Marcus Roche 2 ABSTRACT: Steel and concrete composite beams are typically formed by shear

More information

UNIT IVCOMPOSITE CONSTRUCTION PART A

UNIT IVCOMPOSITE CONSTRUCTION PART A UNIT IVCOMPOSITE CONSTRUCTION PART A 1. What is composite section of pestressed concrete? [A/M 16] A composite section in context of prestressed concrete members refers to a section with a precast member

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK CE 6306 - STRENGTH OF MATERIALS UNIT I STRESS STRAIN DEFORMATION OF SOLIDS PART- A (2 Marks) 1. What is Hooke s Law? 2.

More information

Wood-based beams strengthened with FRP laminates Improved performance with pre-stressed systems

Wood-based beams strengthened with FRP laminates Improved performance with pre-stressed systems COST Action FP1004 Final Meeting 15 April 17 April 2015 Lisbon, Portugal Wood-based beams strengthened with FRP laminates Improved performance with pre-stressed systems Robert Kliger and Reza Haghani -

More information

Modelling of shrinkage induced curvature of cracked concrete beams

Modelling of shrinkage induced curvature of cracked concrete beams Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8 Modelling of shrinkage induced curvature of cracked concrete beams R. Mu, J.P. Forth

More information

STRUCTURAL EFFICIENCY AND FLEXURE STRENGTH OF MIX-GLULAM TIMBER BEAMS ARE COMPOSED OF SENGON AND COCONUT WOOD AS GREEN MATERIAL CONSTRUCTIONS

STRUCTURAL EFFICIENCY AND FLEXURE STRENGTH OF MIX-GLULAM TIMBER BEAMS ARE COMPOSED OF SENGON AND COCONUT WOOD AS GREEN MATERIAL CONSTRUCTIONS STRUCTURAL EFFICIENCY AND FLEXURE STRENGTH OF MIX-GLULAM TIMBER BEAMS ARE COMPOSED OF SENGON AND COCONUT WOOD AS GREEN MATERIAL CONSTRUCTIONS Kusnindar Abdul Chauf, Sri Murni Dewi Brawijaya University,

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 5: Analysis and Design for Shear and Torsion Lecture-23: Analysis

More information

ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303

ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303 Instruction : Answer all question ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303 1. A rectangular concrete beam, 100 mm wide by 250 mm deep, spanning over 8 m is prestressed by a straight

More information

Ce 479 Reinforced Masonry Fall 2005

Ce 479 Reinforced Masonry Fall 2005 INTRODUCTION TO STRUCTURAL DESIGN OF REINFORCED MASONRY In the preceding lecture on structural design of masonry, we have seen examples of unreinforced masonry bearing walls. In bearing walls, when the

More information

Unit 48: Structural Behaviour and Detailing for Construction. Limit State Design

Unit 48: Structural Behaviour and Detailing for Construction. Limit State Design 2.1 Introduction Limit State Design Limit state design of an engineering structure must ensure that (1) under the worst loadings the structure is safe, and (2) during normal working conditions the deformation

More information

Questions with solution

Questions with solution Questions with solution Q 1: The rectangular beam of width, 250 mm is having effective depth of 317 mm. The concrete grade is M20 and the grade of reinforcing steel is Fe415. The moment capacity of the

More information

Nonlinear Finite Element Modeling & Simulation

Nonlinear Finite Element Modeling & Simulation Full-Scale Structural and Nonstructural Building System Performance during Earthquakes & Post-Earthquake Fire A Joint Venture between Academe, Industry and Government Nonlinear Finite Element Modeling

More information

2016 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES

2016 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES R13 SET - 1 DESIGN AND DRAWING OF REINFCED CONCRETE STRUCTURES 1 Design a simply supported rectangular beam to carry 30kN/m superimposed load over a span of 6m on 460mm wide supports. Use M20 grade concrete

More information

CHAPTER 4 METHODOLOGY

CHAPTER 4 METHODOLOGY 41 CHAPTER 4 METHODOLOGY 4.1 Introduction The performance of geopolymer concrete mixture was experimentally studied and the experimental testing procedures used for the evaluation of different concrete

More information

15 Plastic bending of mild-steel beams

15 Plastic bending of mild-steel beams 5 Plastic bending of mild-steel beams 5. Introduction We have seen that in the bending of a beam the greatest direct stresses occur in the extreme longitudinal fibres; when these stresses attain the yield-point

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.0. GENERAL Modern civilization relies upon the continuing performance of civil engineering infrastructure ranging from industrial building to power station and bridges. For the

More information

A SEMI-RIGOROUS APPROACH FOR INTERACTION BETWEEN LOCAL AND GLOBAL BUCKLING IN STEEL STRUCTURES

A SEMI-RIGOROUS APPROACH FOR INTERACTION BETWEEN LOCAL AND GLOBAL BUCKLING IN STEEL STRUCTURES A SEMI-RIGOROUS APPROACH FOR INTERACTION BETWEEN LOCAL AND GLOBAL BUCKLING IN STEEL STRUCTURES KULDEEP VIRDI METNET Seventh International Seminar, Izmir, 11-12 October 2012 1 OUTLINE Stiffened Plate Panels

More information

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 Composites in Construction 2005 Third International Conference Lyon, France, July 11 13, 2005 MECHANICAL CHARACTERIZATION OF SANDWICH STRCTRE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 S.V. Rocca

More information

Ductile FRP Strengthening Systems

Ductile FRP Strengthening Systems Ductile FRP Strengthening Systems Hybridization allows strengthening of reinforced concrete beams without drawbacks typical of fiber-reinforced polymer systems BY NABIL F. GRACE, WAEL F. RAGHEB, AND GEORGE

More information

Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer

Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer Lander VASSEUR Civil Engineer Magnel Laboratory for Concrete Research, Ghent University, Ghent, BELGIUM

More information

BUCKLING OF STEEL AND COMPOSITE STEEL AND CONCRETE COLUMNS IN CASE OF FIRE

BUCKLING OF STEEL AND COMPOSITE STEEL AND CONCRETE COLUMNS IN CASE OF FIRE SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 BUCKLING OF STEEL AND COMPOSITE STEEL AND CONCRETE COLUMNS

More information

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil UNIVERSITY QUESTIONS PART A UNIT 1: INTRODUCTION THEORY AND BEHAVIOUR 1. List the loss of prestress. 2. Define axial prestressing. 3. What is the need for the use of high strength concrete and tensile

More information

Questions with Solution

Questions with Solution Questions with Solution Q 1. Vus/d depends on a) Asv b) spacing of shear reinforcement c) grade of steel d) all of these. Refer Cl. 40.4 (a), pg. 73 IS 456:2000 V us = 0.87 f y A sv d s v 1. (d) all of

More information

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP)

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Abstract This paper presents the potential use of externally bonded fiber reinforced

More information

SHEAR BEHAVIOR OF RC DEEP BEAMS WITH SOLID CIRCULAR CROSS SECTION UNDER SIMPLY SUPPORTED CONDITION AND ANTI-SYMMETRIC MOMENT

SHEAR BEHAVIOR OF RC DEEP BEAMS WITH SOLID CIRCULAR CROSS SECTION UNDER SIMPLY SUPPORTED CONDITION AND ANTI-SYMMETRIC MOMENT SHEAR BEHAVIOR OF RC DEEP BEAMS WITH SOLID CIRCULAR CROSS SECTION UNDER SIMPLY SUPPORTED CONDITION AND ANTI-SYMMETRIC MOMENT Koji MATSUMOTO (Tokyo Institute of Technology) Moe YONEHANA (Kajima Corporation)

More information