SEISMIC DESIGN OF A MULTI-STORY CROSS LAMINATED TIMBER BUILDING BASED ON COMPONENT LEVEL TESTING

Size: px
Start display at page:

Download "SEISMIC DESIGN OF A MULTI-STORY CROSS LAMINATED TIMBER BUILDING BASED ON COMPONENT LEVEL TESTING"

Transcription

1 244 SEISMIC DESIGN OF A MULTI-STORY CROSS LAMINATED TIMBER BUILDING BASED ON COMPONENT LEVEL TESTING Shiling Pei 1, Marjan Popovski 2, John W. van de Lindt 3 ABSTRACT: Cross laminated timber (CLT) is a new type of timber structural system that has just been introduced in North America, but has been used successfully in Europe for over 20 years. There have not been any notable data sets developed on the performance of tall CLT buildings during major earthquakes and there are no seismic design criteria currently in place for CLT structures. Shake table testing of walls, assemblies and multi-storey CLT structures have been performed, and development of dedicated nonlinear numerical models has been initiated.. In order to provide the necessary information to develop practical seismic design procedure for mid-rise CLT buildings, a number of CLT walls with different geometry and connector configurations were tested at FPInnovations, Canada to obtain the subassembly level hysteresis. Then, a simplified numerical model to predict the reverse cyclic behaviour of CLT walls was developed and calibrated with the test results. Using the wall component capacity predicted by the model, a 10-story CLT building was designed using a performance-based seismic design procedure known as direct displacement design (DDD) to enable the structure to remain under the predefined drift limits at various seismic hazard levels. This design procedure was adopted in a recent research effort to successfully design a 6-story light frame wood building tested at Japan s E-Defense shake table in In the present study described in this paper, the 10-story CLT building was designed with 80% non-exceedance probability of remaining below 4% inter-story drift when subjected to a maximum credible earthquake intensity level (2500 year return period) for the City of Los Angeles, California. The DDD of the building was refined and verified with nonlinear time history simulation using a suite of bi-axial ground motions scaled to the predefined hazard levels. Based on the performance-based design results and laboratory testing of individual CLT shear walls, a response modification factor (R-factor) is proposed for structures with CLT wall components according to current force-based design approach (i.e. ASCE 7), thus providing quantitative insight into CLT design using traditional design procedures in North America. KEYWORDS: Cross laminated timber, performance based seismic design, multi-story, numerical model 1 INTRODUCTION 123 In Europe, a structural system known as Cross Laminated Timber (CLT) was introduced approximately 20 years ago for panelized construction of mixed use and light-commercial buildings. The CLT building components can be fully prefabricated in a factory environment. CLT can be made with lumber as small as 1x4 inch nominal. When small lumber is layered together to form the CLT panels, the final thickness of the panel is such that the building has better fire 1 Shiling Pei, Assistant professor, South Dakota State University, Brookings SD, U.S.A. shiling.pei@sdstate.edu 2 Marjan Popovski, Principal Scientist, FP Innovations, Vancouver, Canada. marjan.popovski@fpinnovations.ca 3 John W. van de Lindt, Professor and Garry Neil Drummond Endowed Chair in Civil Engineering, University of Alabama, Tuscaloosa AL, U.S.A. jwvandelindt@eng.ua.edu resistance than light-frame wood, essentially similar to heavy timber construction. The CLT system could be classified as Heavy Timber (HT) in the International Building Code [1] and can be a viable option for midrise buildings particularly.. However, most of the existing tall CLT buildings do not consider seismic load effects as they are not located in active seismic regions. In fact the seismic resistance of CLT components and systems has only been studied by a handful of researchers around the world. The current approach used to construct multi-story CLT buildings relies on mechanical connectors to rigidly connect the wall and floor panels together. Results from quasi-static tests on CLT wall panels showed that the connection layout and design has a strong influence on the overall behavior of the wall [2] and the resulting system can be very stiff [3]. At the component level, quasi-static monotonic and cyclic tests have been carried out on CLT walls to study the influence of boundary

2 245 conditions, magnitudes of vertical load, and the type of anchoring systems (e.g. [4] [5] [6]) on performance and capacity. It was shown that CLT panel walls can exhibit significant levels of ductility if the boundary condition is set up to allow rocking of the wall panels. At the system level, a shake table test of a seven-story CLT building was conducted by Ceccotti and colleagues at Japan s E- Defense facility in Miki, Japan, showing that the structural panel members remained essentially elastic and the accelerations in the higher levels were on the order of 4g, compared to the earthquake input acceleration of less than 1g [6]. Finally, a recent handbook published by FPInnovations in Canada summarizes recent development and practice in CLT design and construction [7]. Figure 1 shows an example of the CLT wall test conducted. Detailed description of the FPI test program and specimen can be found in [6]. The impact of Table 1: CLT wall tests conducted at FPInnovations The objective of the study summarized in this paper was to (1) perform a performance-based seismic design for a 10-story CLT apartment building which utilizes the ductility of CLT panel walls observed in wall level component tests, and (2) derive an appropriate strength reduction factor (R-factor) for force-based design procedures to achieve damage free performance during a MCE (Maximum Credible Earthquake) level event. In this study, a PBSD procedure termed the simplified Direct Displacement Design (DDD) developed in the NSF funded NEESWood project was used [8]. The load resisting characteristics of the CLT walls during cyclic loading were evaluated based on component tests performed at FPInnovations. Based on the PBSD result, a response modification factor (R factor) for force-based design procedure is calibrated approximately to obtain a design equivalent to the PBSD. 2 WALL LEVEL CALIBRATION 2.1 CLT WALL TESTS In order to perform PBSD, the nonlinear deformationresistance characteristics of CLT walls must be obtained. In this study, a nonlinear CLT wall model was developed and calibrated based on wall component data from FPInnovations. Figure 1: Behaviour of Wall 11 during the testing

3 246 multiple factors including panel geometry, bracket type, fastener type, and gravity loading on the lateral response of CLT walls was evaluated using those tests. A brief summary of the tested CLT walls and which test data was used in this study is shown in in Table KINEMATIC MODEL Because the shear deformation of the CLT wall panel itself is not significant compared to the deformation at the panel-to-floor or inter-panel connections, a simplified model was developed that assumes all CLT wall lateral deformation is a result of the CLT panels rotating as a rigid body about the corners, as shown in Figure 2. The lateral resistance of a CLT wall is essentially a scaled summation of the load-slip resistance of all the connectors engaged in the rocking movement of the wall. The scale factor for each connector is a function of their location and the geometry of the panel. The resistance F at lateral displacement D may be calculated as: (1) Figure 2: CLT wall kinematics model Figure 3: Hysteretic model for CLT connections 2.3 PARAMETER CALIBRATION The back-calibration procedure used in this study can be described as follows. The tested CLT walls were modelled numerically using the simplified model and were subjected to the same displacement protocols used in the experimental tests. Then the model hysteresis was compared with the experimental measurements. The parameters for nails, screws, and hold-down connections were adjusted systematically until the model closely matched the observed experimental response. As a result from this calibration, a group of connector parameters were obtained. These connector parameters were then used to develop the hysteretic responses for any given CLT wall configurations (including configurations different than those tested) based on the kinematic assumption illustrated in Figure 2. These models were also used to develop the design resistance values for the CLT design tables. Figures 4 and 5 illustrated the comparison between calibrated model prediction and test results for two different wall configurations. Note the effect of gravity is considered in the calibrated model as well (Figure 5). All parameters in equation (1) can be obtained from the wall configuration (as shown in Figure 2) except for the connector resistance. In this study, the connector hysteresis was assumed to follow the CUREE 10- parameter model, which has been widely adopted for wood frame shear wall and connection modelling [9]. The behavior of the model and each control parameter is shown in Figure 4. The parameters for each type of connector were computed in this study by backcalibration using the wall test results. Figure 4: Calibrated model compared with test (no gravity)

4 247 and DA stands for Double All, meaning all brackets in the panel are double sided. Based on Figure 6, the designer can specify, for example, the 3DE configuration for the entire story, etc. It should be noted that for the case of the wall panel with only 2 brackets, configurations DE and DA are identical. The maximum number of 16d nails that can be put in a single bracket is 6, due to the limitation of the bracket to floor connection strength. These typical walls will be used later in the design of the 10-story CLT building. Figure 5: Calibrated model compared with test (with gravity) The calibrated hysteretic parameters for three types of connectors are listed in Table 2, including the Simpson Strong-tie HTT-16 hold-downs installed at corners of CLT walls and 16d spiral nails with D=3.9mm and L=89mm with Simpson Strong Tie 90mm x 105mm x 105mm Bracket commonly used in CLT construction in Europe. The parameters listed for the 16d nails are for a single nail connection. The 16d with step joint is the equivalent nail parameter to be used for multiple panelled walls with step joints. With the numerical model and connector parameters calibrated, the loaddeformation curve or the hysteresis curve for any CLT wall configuration with specific connectors can be developed. This provides a useful tool to generate CLT wall backbone curves that will be used in PBSD and tables with lateral load design values that are needed for force-based design of CLT structures. Table 2: Calibrated CLT connector parameters Connector Type Hysteretic Parameters (N, mm) K0 r1 r2 r3 r4 HTT D-SN D-SN+step joint F0 F1 X a b HTT D-SN D-SN + step joint TYPICAL WALL CONFIGURATIONS Several typical CLT wall configurations were considered in this study as shown in Figure 6. It is assumed that a structural CLT wall in the multi-story building will have 2, 3, or 4 brackets attached at the bottom of the wall, providing connection between the wall and the floor panel. The size of a single panel can vary from 0.96 m (4 ft) to 1.83 m (6 ft). It is assumed that for walls longer than 1.83m, multiple1.22 m (4 ft) panels are to be combined together and each panel will have bracket configuration as shown in Figure 6. The notation S stands for Single sided brackets for each location, DE stands for Double sided brackets at the End of the panel, Figure 6: Typical wall configurations 3 DIRECT DISPLACEMENT DESIGN (DDD) OF CLT BUILDING 3.1 CAPSTONE BUILDING FLOOR PLAN The floor plan of the NEESWood Capstone structure, a six-story light frame wood apartment building tested at Japan s E-Defense shake table in 2009 [10], served as the model to develop the 10-story CLT structure, i.e. similar floor plan. The elevation and floor plan are presented in Figure 7. The building foot print is about 12 x 18 meters, with total height of 27.4 meter. All floor plans are identical except for the top story, where a penthouse unit may be integrated. The seismic weight of the building was assumed to be 2.2kN/m 2 for the first story, 1.4kN/m 2 for the roof, and 2.1kN/m 2 for all other stories. The total building weight is 4,537kN (462 metric tons). Given the floor plan, the wall selection is constrained in that only a limited amount of wall segments can be placed in each story. The design began by identifying the total usable wall segment length in each direction from the architectural floor plan. The numbers in Figure 7 show the maximum amount of CLT wall panel segments one can put in any particular line of the floor plan, which may or may not be fully utilized in the design process as the designer may choose to select some walls as non-structural partition and only apply minimal connections. The exterior walls are shown with window openings removed from the wall line. However, for CLT panels the windows are typically pre-cut into

5 248 the wall panel, so the window opening will not significantly affect the strength of the outside wall segments. For the interior, the door openings do interrupt the CLT walls (due to the height of the door openings) so these walls are broken into smaller segments. Note that the X direction is the longitudinal direction in the floor plan while the Y direction is the shorter direction. curve. The backbone curve for CLT walls used in the design can be readily obtained using the simplified model and calibrated connector parameters obtained earlier. Thus DDD can be utilized to design the CLT building presented in this paper. Detailed description of the DDD procedure can be found in [12]. The basic philosophy of DDD is to identify the required story lateral resistance at prescribed drift levels enabling the designer to select shear walls that satisfy this requirement. Three performance objectives were adopted in the design of the CLT building, limiting the maximum inter-story drift under different hazard levels. Because the inter-story drift level correlates well with seismically induced damage to a building, the performance objectives outlined in Table 3 will also ensure minimal damage during these earthquake events. Table 3: Performance Objectives Seismic Hazard Performance Expectations Inter-story Drift Non-exceedance 50%/50yr 1% 50% 10%/50yr 2% 50% 2%/50yr (MCE) 4% 80% Based on the performance objectives, the target point for the backbone curve for each story was identified using DDD. Design of the CLT building was conducted by choosing the CLT wall configuration for each story to produce a backbone curve that will satisfy (be larger than) the corresponding target point. The CLT walls selected for each story in both directions are listed in Table 4. The resulted backbone curves for all stories were plotted in Figure 8, together with the target points for these stories resulting from DDD. Table 4: Wall selection based on DDD Figure 7: CLT building architectural plan and wall segments location 3.2 PERFORMANCE OBJECTIVE AND DIRECT DISPLACEMENT DESIGN Direct Displacement Design (DDD [11]) was the design approach employed in the NEESWood research project to design the NEESWood Capstone building for prescribed drift limits under different levels of seismic intensity. It was validated through full scale shake table test of a six-story light frame wood building. In fact, the DDD method can also be applied to any lateral resistance system which has a clearly defined backbone CLT walls in X-direction 3.66 m 4.88 m 6.1 m ST # Con. # Con. # Con DA 2 4DA 8 4S 2 2 4DA 2 4DA 8 4S 3 2 4DA 2 4DA 7 4S 4 2 3DA 2 4DA 7 4S 5 2 3DA 2 3DA 7 3S 6 2 3DA 2 3DA 7 3S 7 2 4S 2 3DA 7 3S 8 2 2S 2 2S 7 3S 9 2 2S 2 2S 7 2S S 5 2S CLT walls in Y-direction 1.53 m 1.83 m 2.44 m 6.1 m ST # Con. # Con. # Con. # Con DA 2 4DA 14 4S 1 4DA 2 4 4DA 2 4DA 14 4S 1 4DA 3 4 4DA 2 4DA 14 4S 1 4DA 4 4 3DA 2 3DA 14 3S 1 4DA 5 4 3DA 2 3DA 16 3S 1 3DA 6 4 3DA 2 3DA 14 3S 1 3S 7 4 3DA 2 3S 14 3S 1 3S 8 4 2S 2 2S 14 2S 1 3S 9 2 2S 2 2S 10 2S 1 2S S 8 2S 0 -- In Figure 8, note that only targets for the level 3 design are shown in the Figures since this case controls the

6 249 design. From the plots, one can see that all of the backbone curves exceeded (are higher) the DDD target points associated with them, both in the X and Y directions. The design of the CLT building following DDD is completed once all CLT walls are selected. Practically, the other details of the building, such as hold-down details, still need to be designed. Additional PBSD procedures will be needed to design these details [13]. In this study, it is assumed that there will be adequate tie-down and over-turning restraints for each story thus the design will only focus on the lateral force resisting component. Generally, it can be used to predict non-linear building system seismic responses given the hysteretic response of the components, which makes it suitable for the purposes of this study. The model for as-designed CLT buildings was constructed in SAPWood and subjected to a suite of earthquake ground motion records scaled to the predefined hazard levels. Maximum inter-story drift within the building from each simulation was extracted to develop the distribution of the building maximum drift for that corresponding hazard level. The probability of exceedance associated with the design target can be evaluated by plotting the empirical cumulative distribution function curve based on all drift samples within that hazard level. The ground motion suite recommended for use in the U.S. Federal Emergency Management Agency Document P-695 [15] was adopted in this study, which includes 22 bi-axial far-field ground motions scaled to three target hazard levels. The response spectra of all these ground motions scaled to the Maximum Credible Earthquake (MCE, level 3) hazard level is shown in Figure 9. These bi-axial ground motions were also rotated by 90-degrees and applied to the model building. The building natural period estimated through the numerical model is 1.12 sec. At each performance level, the building was subjected to a total of 44 ground motions. The maximum inter-story drifts of the structure at any story and in either direction were recorded and rank-ordered as empirical cumulative distribution function curves shown in Figure 10. The PBSD objectives are also shown in Figure 10 as square shaped points for all three hazard levels. It can be seen that the building satisfied all performance requirements, i.e. the PNE (probability of non-exceedance) value for the designated drift level is equal to or higher than the performance requirements. Figure 8: DDD target points and design backbone curves 4 PERFORMANCE EVALUATION OF THE BUILDING WITH A NUMERICAL MODEL 4.1 SAPWood PROGRAM The CLT building designed using simplified DDD was subjected to different levels of seismic hazard through numerical simulation to verify that the design objectives have been achieved. The analysis was conducted using the software program Seismic Analysis Package for Woodframe Structures (SAPWood) [14]. SAPWood is a numerical tool specially developed to conduct nonlinear time history analysis for wood frame buildings but uses general enough hysteresis models that it has been used for modelling other types of system as is being done in the present case. It was part of the deliverables from the NEESWood project and has been validated by numerous component and system level shaking table tests, including the 6-story NEESWood Capstone building. Figure 9: Response spectra of ATC63 ground motions scaled to MCE hazard level

7 250 design, i.e. the higher factor one uses, the higher the computed R factor. Since at this point the design values for CLT walls are not defined neither in US nor in Canada, it was decided to do the analyses with the design level equal to the ultimate divided by a factor of 2.5; that is utilizing only 40% of the wall ultimate strength in the design. The resulting design resistance values for standard CLT wall configurations using the 16d spiral nails is shown in Table 5. Table 5: CLT wall design resistance values (kn) Figure 10: Performance objective target points and simulated structural performance 5 APPROXIMATE RESPONSE MODIFICATION FACTOR R FOR THE CLT BUILDING The equivalent lateral force procedure (ELFP) is one of the most commonly used design procedures for seismic design of multi-story buildings in many force based design codes (e.g. ASCE7-10 [16], NBCC [17]). The lateral force demand for each story is obtained by calculating the total base shear, and re-distributing it to each story. This study utilized the recommended ELFP procedure in the 2010 ASCE7 to calculate the level of story shear forces required in traditional force-based design for the CLT Capstone building. The objective of this analysis is to identify a suitable response modification factor (R-factor in ASCE7) to be used in the ELFP design calculation, so that the force-based design will result in a final design will be similar to what has been obtained from PBSD procedure earlier. As the design using PBSD has been verified by the nonlinear time history simulation using the state-of-the-art computer model, it is assumed that the codified design using the calibrated R-factor will lead to satisfactory building performance. In other words, when subjected to an MCE event in Los Angeles, California, the CLT building will have an 80% chance of not exceeding 4% inter-story drift (experience only minor damage) as was also observed in the NEESWood Capstone Building shaking table tests. For light frame wood buildings, the selection of wood shear walls can be conducted based on the codified shear wall design capacity tables (NDS Wind and Seismic Supplement) once the story shear demand is obtained using ELFP. The design resistance values for CLT walls in this study were developed in a similar way to those for wood-frame shear walls, which is by taking the ultimate strength of the CLT wall backbone curve under monotonic pushover test (which in this case was generated using the simplified model and the parameters obtained earlier), and dividing it by a factor. Note that this factor will eventually affect the R factor used in Bracket# Config S DE DA S DE DA S DE DA 0.92 m 1.22 m 1.53 m 1.83 m 2x1.22 m 3x1.22 m 4x1.22 m 5x1.22 m With the CLT wall selection for the building already determined from PBSD, the equivalent force-based design storey shear resistance can be obtained by adding the resistance of all the walls at that storey based on individual wall resistance listed in Table 5. This step can be easily performed for each story in both the X and Y directions. The resulting minimum story shear resistance (minimum between the two directions) is the demand that should be produced by force-based design procedure, i.e. ELFP with the appropriate R factor. The required story resistance is listed in Table 6 in the Target column. Following the ELFP in section 12.8 of ASCE 7-10, the Importance Factor (I) was taken as 1.0; the building period was calculated based on empirical formula (ASCE7) to be 0.58 sec. The seismic hazard map design values for the city of Los Angeles were obtained from the USGS Design maps application (conforms to ASCE 7-10) as S DL =0.57g and S DS =1.62g. The R value was changed manually until the final resistance distribution matched the target resistance. The calibrated R factor and the detailed calculation results are listed in Table 6. Table 6: ELFP design of the 10-story CLT building Cs I Tn SDL SDS

8 251 Figure 11 illustrates the impact of the variation of the R- factor to the storey shear distribution and how will the shear resistance profile compare to the target one. The story resistance of the PBSD design configuration for stories 1 through 10 was plotted along with the resistance calculated based on the ELFP, with different R values. The dashed lines approximately represents the appropriate lower and upper bounds for the R values equal to 3 and 5.5, with the line in between representing the calibrated chosen R-factor (4.3) in this study. Note that the bounds presented here are not an indication that the building should be designed using these R factors, but just to illustrate the sensitivity of story demand distribution to the R factor. In fact, the numerical simulation indicated that the controlling drift level occurs at higher stories. It is critical for force based design to capture the PBSD demand at higher stories. If the design only satisfies the lower stories, such as the case when designing with R=5.5, such design will not satisfy the drift requirement based on numerical simulation results at the upper floors. Figure 11: Story shear demand distribution with different R factors 6 CONCLUSIONS AND DISCUSSION Based on the analysis conducted in this study, CLT is a viable option for mid-rise wood buildings up to ten stories in moderate to high seismic regions, given the buildings are correctly designed. It may also be reasonable to expect only limited damage under MCE level earthquake excitation in high seismic regions. By adjusting the response modification factor, equivalent force-based design that will meet the PBSD performance objectives can be developed. Based on the results of this study a value of R=4.3 can be assigned to the analysed building and similar symmetrical buildings in ASCE7 as examples of structures with CLT wall panels that utilize spiral nails in the brackets, provided that the design values for such walls implemented in the material design standard are similar to the values included in Table 5. The holddowns and adequate overturning restraints should always be installed at both ends of a wall in order to ensure the desired performance. From the comparison between the story shear demand from ELFP and PBSD, it appears that over-design for lower stories in the force-based design procedure will result if the PBSD performance objectives need to be satisfied using current ELFP method. It should be kept in mind that both the design resistance value and the actual as-built resistance value were simulated indirectly in this study through a numerical model calibrated with limited number of wall level tests. However, the conclusions on the R factors drawn from this study are believed to be representative of a typical CLT system. Also, it should be noted that the results in this study are based on the assumption that the walls in the system will be installed in a way that enables them to rotate as in the tests conducted and generate similar backbone curves. If the boundary conditions of the walls differ significantly to the ones used in the analyses (the walls are not allowed to rock), the backbone curves of such wall configurations may be different and the results of this study might not fully apply. However, the kinematic assumption used in this study should be valid for the inter-story range (0~3%) of interest in this study. Thus the results are reliable unless one needs to extrapolate the conclusions to very large inter-story drift levels. In the future, if component testing is conducted with different boundary conditions and backbone curves are obtained for CLT walls at large deformation range, the same procedure utilized in this study can be used to derive the R-factor for that situation. Finally, the response modification factor computed in this study was based on one ten-story building with a given floor plan and one type of fasteners used in the brackets and the hold-downs. A variation of the R value may exist if different fasteners are used in the brackets and the hold-downs. Such variation may also exist as a function of the floor plan and the building height. If buildings with different heights are analysed, it is unlikely that the R-factor will change significantly, provided that the building floor plans remain symmetrical in both directions. However, it is recommended that further studies with a wider scope look into issues related to R-factors for structures with different archetypes and non-symmetrical floor plans according to FEMA P-695 guidelines. REFERENCES [1] International Code Council, (2009). International Building Code International Code Council. [2] Ceccotti, A., Follesa, M., Lauriola, M.P., Sandhaas, C. (2006) Sofie Project Test Conference on Earthquake Engineering and Seismicity, Geneva, Switzerland. [3] Lauriola, M.P., Sandhaas, C. (2006) Quasi-Static and Pseudo-Dynamic Tests on XLAM Walls and Buildings COST E29 International Workshop on Earthquake Engineering on Timber Structures, Coimbra, Portugal.

9 252 [4] Dujic B., Aicher S. Zarnic R. (2006) Testing of Wooden Wall Panels Applying Realistic Boundary Conditions Proceedings of the 9th World Conference on Timber Engineering, Portland, Oregon, USA. [5] Dujic, B., Pucelj, J., Zarnic, R. (2004) Testing of Racking Behavior of Massive Wooden Wall Panels Proceedings of the 37th CIB-W18 Meeting, Edinburgh, Scotland. [6] Popovski, M., Schneider, J., Schweinsteiger, M. (2010) Lateral load resistance of cross-laminated wood panels World Conference on Timber Engineering 2010, Trentino, Italy. [7] Popovski, M., Karacabeyli, E., Ceccotti, A. (2011) Seismic Performance of Cross-Laminated Timber Buildings - Chapter 4 CLT Handbook - Cross- Laminated Timber, FPInnovations Special Publication SP-528E, Canadian Edition. [8] Pei, S., van de Lindt, J.W., Pryor, S.E., Shimizu, H., and Isoda, H. (2010) Seismic testing of a full-scale six-story light-frame wood building: NEESWood Capstone test, NEESWood Report NW-04. [9] Filiatrault, A. and Folz, B. (2002). Performancebased seismic design of wood framed buildings, ASCE Journal of Structural Engineering, 128(1): [10] van de Lindt, J.W., Pei, S., Pryor, S.E., Shimizu, H., and Isoda, H. (2010) Experimental seismic response of a full-scale six-story light-frame wood building ASCE Journal of Structural Engineering, 136(10): [11] Pang, W., Rosowsky, D.V., van de Lindt, J.W., and Pei S.(2009) Simplified Direct Displacement Design of Six-story NEESWood Capstone Building and Pre-Test Seismic Performance Assessment, NEESWood Report NW-05. [12] Pang, W., Rosowsky, D.V., Pei, S., and van de Lindt, J.W. (2010) Simplified Direct Displacement Design of Six-story Woodframe Building and Pretest Seismic Performance Assessment. ASCE Journal of Structural Engineering. 136(7): [13] van de Lindt, J.W., Rosowsky, D.V., Pang, W., and Pei, S. (2012) Performance-Based Seismic Design of Mid-Rise Woodframe Buildings Journal of Structural Engineering, Accepted. [14] Pei, S., and van de Lindt, J.W. (2011) Seismic Numerical modeling of a six-story light-frame wood building: Comparison with experiments Journal of Earthquake Engineering, 15(6): [15] FEMA (2009) Quantification of building seismic performance factors: FEMA P695 Federal Emergency Management Agency. [16] ASCE (2010) Minimum design loads for buildings and other structures American Society of Civil Engineers. [17] NBCC (2010). National Building Code of Canada. National Research Council of Canada.

Construction and Experimental Seismic Performance of a Full-scale Six-story Light-frame Wood Building

Construction and Experimental Seismic Performance of a Full-scale Six-story Light-frame Wood Building Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 1599 1605 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Construction and Experimental Seismic

More information

Overview of a Project to Quantify Seismic Performance Factors for Cross Laminated Timber Structures in the United States

Overview of a Project to Quantify Seismic Performance Factors for Cross Laminated Timber Structures in the United States Overview of a Project to Quantify Seismic Performance Factors for Cross Laminated Timber Structures in the United States M. Omar Amini 1 ; John W. van de Lindt 2 ; Shiling Pei 3 ; Douglas Rammer 4 ; Phil

More information

SOFIE Project - Cyclic Tests on Cross-Laminated Wooden Panels

SOFIE Project - Cyclic Tests on Cross-Laminated Wooden Panels SOFIE Project - Cyclic Tests on Cross-Laminated Wooden Panels Ario Ceccotti Director Marco Pio Lauriola, Mario Pinna, Carmen Sandhaas Researchers CNR-IVALSA Italian National Research Council, Trees and

More information

PERFORMANCE-BASED SEISMIC DESIGN OF MID-RISE LIGHT-FRAME WOOD BUILDINGS

PERFORMANCE-BASED SEISMIC DESIGN OF MID-RISE LIGHT-FRAME WOOD BUILDINGS PERFORMANCE-BASED SEISMIC DESIGN OF MID-RISE LIGHT-FRAME WOOD BUILDINGS John W. van de Lindt 1, David V. Rosowsky 2, Weichiang Pang 3, and Shiling Pei 4 ABSTRACT: Light-frame wood (woodframe) buildings

More information

The Wood Products Council and AIA/CES. Concept, Performance and. Learning Objectives. FPInnovations - Background

The Wood Products Council and AIA/CES. Concept, Performance and. Learning Objectives. FPInnovations - Background The Wood Products Council and AIA/CES www.fpinnovations.ca Midply Shearwall System: Concept, Performance and Code Implementation C. Ni, M. Popovski FPInnovations, Building Systems The Wood Products Council

More information

Performance-Based Design of Wood Shearwalls Considering Performance of the Overall Structure

Performance-Based Design of Wood Shearwalls Considering Performance of the Overall Structure Performance-Based Design of Wood Shearwalls Considering Performance of the Overall Structure David V. Rosowsky Ph.D. (99), Johns Hopkins University Richardson Chair in Wood Engineering Professor of Civil

More information

Seismic design of core-walls for multi-storey timber buildings

Seismic design of core-walls for multi-storey timber buildings Seismic design of core-walls for multi-storey timber buildings A. Dunbar, S. Pampanin, A. Palermo & A.H. Buchanan Department of Civil Engineering, University of Canterbury, Christchurch. ABSTRACT: 2013

More information

RECENT PROGRESS IN NORTH AMERICAN RESEARCH ON SEISMIC RESILIENT WOOD BUILDINGS

RECENT PROGRESS IN NORTH AMERICAN RESEARCH ON SEISMIC RESILIENT WOOD BUILDINGS 17th U.S.-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resilience RECENT PROGRESS IN NORTH AMERICAN RESEARCH ON SEISMIC RESILIENT WOOD BUILDINGS Asif Iqbal 1, John van de

More information

Full-Scale Shaking Table Tests of XLam Panel Systems - Correlation With Cyclic Quasi-Static Tests

Full-Scale Shaking Table Tests of XLam Panel Systems - Correlation With Cyclic Quasi-Static Tests Full-Scale Shaking Table Tests of XLam Panel Systems - Correlation With Cyclic Quasi-Static Tests V. Hristovski, M. Stojmanovska Institute of Earthquake Engineering and Engineering Seismology (IZIIS),Skopje,

More information

Comparison of the IBC 2006 Equivalent Lateral Force Procedure to FEMA 356/ASCE 41 Life Safety Acceptance Criteria for Timber Structures

Comparison of the IBC 2006 Equivalent Lateral Force Procedure to FEMA 356/ASCE 41 Life Safety Acceptance Criteria for Timber Structures Comparison of the IBC 2006 Equivalent Lateral Force Procedure to FEMA 356/ASCE 41 Life Safety Acceptance Criteria for Timber Structures D.P. Dodge 1 and C.B. Chadwell 2 1 Staff Structural Engineer, URS

More information

MIDPLY Portal Frame as Lateral Bracing System in Light- Frame Wood Buildings

MIDPLY Portal Frame as Lateral Bracing System in Light- Frame Wood Buildings 3 rd International Structural Specialty Conference 3 ième conférence internationale spécialisée sur le génie des structures Edmonton, Alberta June 6-9, 2012 / 6 au 9 juin 2012 MIDPLY Portal Frame as Lateral

More information

Seismic Performance and Design of Linked Column Frame System (LCF)

Seismic Performance and Design of Linked Column Frame System (LCF) Seismic Performance and Design of Linked Column Frame System (LCF) M. Malakoutian & J.W. Berman Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA P. Dusicka

More information

EXPERIMENTAL AND ANALYTICAL INVESTIGATIONS ОF SOLID WOODEN WALL PANEL ELEMENTS SUBJECTED TO LATERAL LOADS

EXPERIMENTAL AND ANALYTICAL INVESTIGATIONS ОF SOLID WOODEN WALL PANEL ELEMENTS SUBJECTED TO LATERAL LOADS October 12-17, 28, Beijing, China EXPERIMENTAL AND ANALYTICAL INVESTIGATIONS ОF SOLID WOODEN WALL PANEL ELEMENTS SUBJECTED TO LATERAL LOADS M.Stojmanovska 1 and V.Hristovski 2 1 Research Assistant, Dept.

More information

Tall CLT Building for Seismic Regions: Opportunities and Challenges

Tall CLT Building for Seismic Regions: Opportunities and Challenges Tall CLT Building for Seismic Regions: Opportunities and Challenges -- Findings from The Workshop on Resilient Tall CLT buildings Shiling Pei, Colorado School of Mines James D. Dolan, Washington State

More information

SHAKE-TABLE TESTING OF A 3-STORY, FULL-SCALE, REINFORCED MASONRY WALL SYSTEM

SHAKE-TABLE TESTING OF A 3-STORY, FULL-SCALE, REINFORCED MASONRY WALL SYSTEM 15 th International Brick and Block Masonry Conference Florianópolis Brazil 2012 SHAKE-TABLE TESTING OF A 3-STORY, FULL-SCALE, REINFORCED MASONRY WALL SYSTEM Stavridis, Andreas 1 ; Mavridis, Marios 2 ;

More information

Modelling the seismic response of light-timber-framed buildings

Modelling the seismic response of light-timber-framed buildings Modelling the seismic response of light-timber-framed buildings B.L. Deam & P.J. Moss Wood Technology Research Centre and Department of Civil Engineering, University of Canterbury, Christchurch NZSEE 2001

More information

Research on seismic behavior of Wood-Concrete Hybrid Structure

Research on seismic behavior of Wood-Concrete Hybrid Structure Research on seismic behavior of Wood-Concrete Hybrid Structure ABSTRACT: Haibei Xiong 1 and Guocheng Jia 1 Associate Professor, College of Civil Engineering, Tongji University, Shanghai, China Master,

More information

REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS

REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS Ahmed GHOBARAH 1 And Maged YOUSSEF 2 SUMMARY A developed macroscopic model is applied to the analysis of an example structure to demonstrate the use

More information

PERFORMANCE BASED SEISMIC EVALUATION OF MULTI-STOREYED REINFORCED CONCRETE BUILDINGS USING PUSHOVER ANALYSIS

PERFORMANCE BASED SEISMIC EVALUATION OF MULTI-STOREYED REINFORCED CONCRETE BUILDINGS USING PUSHOVER ANALYSIS PERFORMANCE BASED SEISMIC EVALUATION OF MULTI-STOREYED REINFORCED CONCRETE BUILDINGS USING PUSHOVER ANALYSIS S.P. AKSHARA Assistant Professor, Department of Civil Engineering, Federal Institute of Science

More information

EVALUATION OF NONLINEAR STATIC PROCEDURES FOR SEISMIC DESIGN OF BUILDINGS

EVALUATION OF NONLINEAR STATIC PROCEDURES FOR SEISMIC DESIGN OF BUILDINGS EVALUATION OF NONLINEAR STATIC PROCEDURES FOR SEISMIC DESIGN OF BUILDINGS By H.S. Lew 1 and Sashi K. Kunnath Presented at the rd Joint Meeting of the UJNR Panel on Wind and Seismic Effects ABSTRACT This

More information

STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING

STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING B.B. Canbolat 1 1 Assistant Professor, Dept. of Civil Engineering, Middle East Technical University,

More information

Damage Assessment of a Full-Scale Six-Story Wood-Frame Building Following Triaxial Shake Table Tests

Damage Assessment of a Full-Scale Six-Story Wood-Frame Building Following Triaxial Shake Table Tests Damage Assessment of a Full-Scale Six-Story Wood-Frame Building Following Triaxial Shake Table Tests John W. van de Lindt, M.ASCE 1 ; Rakesh Gupta, M.ASCE 2 ; Shiling Pei, M.ASCE 3 ; Kazuki Tachibana 4

More information

COMPUTER AIDED DESIGN AND ANALYSIS OF RC FRAME BUILDINGS SUBJECTED TO EARTHQUAKES

COMPUTER AIDED DESIGN AND ANALYSIS OF RC FRAME BUILDINGS SUBJECTED TO EARTHQUAKES COMPUTER AIDED DESIGN AND ANALYSIS OF RC FRAME BUILDINGS SUBJECTED TO EARTHQUAKES ABSTRACT O. El Kafrawy 1, M. Yousuf 1 and A. Bagchi 2 Computer use in structural analysis and design dates back a number

More information

Index terms Diagrid, Nonlinear Static Analysis, SAP 2000.

Index terms Diagrid, Nonlinear Static Analysis, SAP 2000. Pushover Analysis of Diagrid Structure Ravi K Revankar, R.G.Talasadar P.G student, Dept of Civil Engineering, BLDEA S V.P Dr P.G Halakatti College of Engineering & Technology Bijapur-586101 Associate Professor,

More information

Structural characterization of multi-storey CLT buildings braced with cores and additional

Structural characterization of multi-storey CLT buildings braced with cores and additional INTER / 48-15 - 5 Structural characterization of multi-storey CLT buildings braced with cores and additional shear walls Andrea Polastri, Research Associate, Trees and Timber Institute - National Research

More information

DYNAMIC ANALYSIS OF NAILED WOOD-FRAME SHEAR WALLS

DYNAMIC ANALYSIS OF NAILED WOOD-FRAME SHEAR WALLS DYNAMIC ANALYSIS OF NAILED WOOD-FRAME SHEAR WALLS Ario CECCOTTI 1 And Erol KARACABEYLI 2 SUMMARY Most design codes contain force modification factors to account for the energy dissipating characteristics

More information

The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames

The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames International Journal of Civil and Environmental Engineering 6 212 The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames David A. Roke and M. R. Hasan Abstract

More information

EFFECTS OF STRONG-MOTION DURATION ON THE RESPONSE OF REINFORCED CONCRETE FRAME BUILDINGS ABSTRACT

EFFECTS OF STRONG-MOTION DURATION ON THE RESPONSE OF REINFORCED CONCRETE FRAME BUILDINGS ABSTRACT Proceedings of the 9th U.S. National and 1th Canadian Conference on Earthquake Engineering Compte Rendu de la 9ième Conférence Nationale Américaine et 1ième Conférence Canadienne de Génie Parasismique

More information

SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS

SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS Frank Devine, 1 Omri Olund, 2 Ken Elwood 3 and Perry Adebar 4 1 Graduate Student, Dept. of Civil Engineering, University

More information

Performance Based Seismic Design of Reinforced Concrete Building

Performance Based Seismic Design of Reinforced Concrete Building Open Journal of Civil Engineering, 2016, 6, 188-194 Published Online March 2016 in SciRes. http://www.scirp.org/journal/ojce http://dx.doi.org/10.4236/ojce.2016.62017 Performance Based Seismic Design of

More information

PERFORMANCE BASED PUSHOVER ANALYSIS OF WOOD FRAMED BUILDINGS

PERFORMANCE BASED PUSHOVER ANALYSIS OF WOOD FRAMED BUILDINGS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 2004 Paper No. 27 PERFORMANCE BASED PUSHOVER ANALYSIS OF WOOD FRAMED BUILDINGS Anurag JAIN, PhD, CE Gary C. HART 2, PhD,

More information

Literature Review of Wood-frame Structure Tests

Literature Review of Wood-frame Structure Tests CHAPTER 2 Literature Review of Wood-frame Structure Tests This dissertation focuses on the investigative process of extracting dynamic characteristics of wood-frame structures from measured seismic response.

More information

Stress-Strain Properties of Cross Laminated. Timber in Compression

Stress-Strain Properties of Cross Laminated. Timber in Compression Stress-Strain Properties of Cross Laminated Timber in Compression Zachary R. Duskin Alia Amer, Dr. James Ricles, Dr. Richard Sause Lehigh University ATLSS Abstract: Cross-Laminated Timber (CLT) is created

More information

A CASE STUDY OF PERFORMANCE-BASED SEISMIC EVALUATION AND RETROFIT OF AN EXISTING HOSPITAL BUILDING IN CALIFORNIA, U.S.

A CASE STUDY OF PERFORMANCE-BASED SEISMIC EVALUATION AND RETROFIT OF AN EXISTING HOSPITAL BUILDING IN CALIFORNIA, U.S. A CASE STUDY OF PERFORMANCE-BASED SEISMIC EVALUATION AND RETROFIT OF AN EXISTING HOSPITAL BUILDING IN CALIFORNIA, U.S. W. Huang 1, L.A. Toranzo-Dianderas 1, A.D. Reynolds 1, J.R. Gavan 1, and J.W. Wallace

More information

Modeling of Shear Walls for Nonlinear and Pushover Analysis of Tall Buildings

Modeling of Shear Walls for Nonlinear and Pushover Analysis of Tall Buildings Asian Center for Engineering Computations and Software, AIT Asian Institute of Technology, Thailand 14th ASEP International Convention, Philippines, May 2009 Modeling of Shear Walls for Nonlinear and Pushover

More information

PROGRESS ON THE DEVELOPMENT OF SEISMIC RESILIENT TALL CLT BUILDINGS IN THE PACIFIC NORTHWEST

PROGRESS ON THE DEVELOPMENT OF SEISMIC RESILIENT TALL CLT BUILDINGS IN THE PACIFIC NORTHWEST PROGRESS ON THE DEVELOPMENT OF SEISMIC RESILIENT TALL CLT BUILDINGS IN THE PACIFIC NORTHWEST Shiling Pei 1, Jeffrey Berman 2, Daniel Dolan 3, John van de Lindt 4, James Ricles 5, Richard Sause 6, Hans-Erik

More information

SEISMIC VULNERABILITY OF EXISTING RC BUILDINGS IN INDIA

SEISMIC VULNERABILITY OF EXISTING RC BUILDINGS IN INDIA 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1207 SEISMIC VULNERABILITY OF EXISTING RC BUILDINGS IN INDIA Prathibha S 1 and A Meher Prasad 2 SUMMARY

More information

Seismic Performance of a Full Scale Soft Story Woodframed Building with Energy Dissipation Retrofit

Seismic Performance of a Full Scale Soft Story Woodframed Building with Energy Dissipation Retrofit Seismic Performance of a Full Scale Soft Story Woodframed Building with Energy Dissipation Retrofit Jingjing Tian, Ph.D. and Michael D. Symans, Ph.D. Dept. of Civil and Environmental Engineering Rensselaer

More information

PUSHOVER ANALYSIS (NON-LINEAR STATIC ANALYSIS) OF RC BUILDINGS USING SAP SOFTWARE

PUSHOVER ANALYSIS (NON-LINEAR STATIC ANALYSIS) OF RC BUILDINGS USING SAP SOFTWARE PUSHOVER ANALYSIS (NON-LINEAR STATIC ANALYSIS) OF RC BUILDINGS USING SAP SOFTWARE PROJECT REFERENCE NO. : 37S0221 COLLEGE : DAYANANDA SAGAR COLLEGE OF ENGINEERING, BANGALORE BRANCH : CIVIL ENGINEERING

More information

MODELLING OF SHEAR WALLS FOR NON-LINEAR AND PUSH OVER ANALYSIS OF TALL BUILDINGS

MODELLING OF SHEAR WALLS FOR NON-LINEAR AND PUSH OVER ANALYSIS OF TALL BUILDINGS MODELLING OF SHEAR WALLS FOR NON-LINEAR AND PUSH OVER ANALYSIS OF TALL BUILDINGS Naveed Anwar 1, Thaung Htut Aung 2 ABSTRACT: The Performance Based Analysis and design of buildings and structures, especially

More information

Exploring the Implication of Multi-plastic Hinge Design Concept of Structural Walls in Dual Systems

Exploring the Implication of Multi-plastic Hinge Design Concept of Structural Walls in Dual Systems Exploring the Implication of Multi-plastic Hinge Design Concept of Structural Walls in Dual Systems N. Samadzadegan School of Civil Engineering, University of Tehran, Iran M. Khanmohammadi School of Civil

More information

Checker Building Structural Analysis and Design

Checker Building Structural Analysis and Design Checker Building Structural Analysis and Design Zhiyong Chen 1, Minghao Li 2, Ying H. Chui 1, Marjan Popovski 3, Eric Karsh 4, and Mahmoud Rezai 4 1 Univ. of New Brunswick, 2 Univ. Canterbury, 3 FPInnovations,

More information

Cross-Laminated Timber (CLT) in California: Guidelines, Testing and Recommendations

Cross-Laminated Timber (CLT) in California: Guidelines, Testing and Recommendations Cross-Laminated Timber (CLT) in California: Guidelines, Testing and Recommendations Presented by Scott Breneman, PhD, PE, SE Senior Technical Director Scott.Breneman@woodworks.org 1 The Wood Products Council

More information

Statewide Alternate Method January 2015 No Cross-Laminated Timber Provisions

Statewide Alternate Method January 2015 No Cross-Laminated Timber Provisions Statewide Alternate Method January 2015 No. 15-01 Cross-Laminated Timber Provisions (Ref.: ORS 455.060) Statewide Alternate Methods are approved by the Division administrator in consultation with the appropriate

More information

Checker Building Structural Analysis and Design

Checker Building Structural Analysis and Design Checker Building Structural Analysis and Design Zhiyong Chen 1, Minghao Li 2, Ying H. Chui 1, Marjan Popovski 3, Eric Karsh 4, and Mahmoud Rezai 4 1 Univ. of New Brunswick, 2 Univ. Canterbury, 3 FPInnovations,

More information

ANALYTICAL MODELING OF IN PLANE SHEAR OF BRICK VENEER AND WOOD STUD WALLS

ANALYTICAL MODELING OF IN PLANE SHEAR OF BRICK VENEER AND WOOD STUD WALLS 10 th Canadian Masonry Symposium, Banff, Alberta, June 8 12, 2005 ANALYTICAL MODELING OF IN PLANE SHEAR OF BRICK VENEER AND WOOD STUD WALLS Eric N. Johnson 1 and W. Mark McGinley 2 1 Director of Engineering,

More information

REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION

REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION 1NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 1-, 1 Anchorage, Alaska REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 EFFECTS OF CLT-INFILL WALLS ON THE COLLAPSE BEHAVIOR OF STEEL MOMENT RESISTING FRAMES Matiyas A Bezabeh PhD Student, The University of British Columbia, Canada Solomon

More information

Seismic performance of multi-storey light wood frame buildings with hybrid bracing systems

Seismic performance of multi-storey light wood frame buildings with hybrid bracing systems Congrès annuel 2011 de la SCGC CSCE 2011 Annual Conference Ottawa, ON 14 au 17 juin 2011 / June 14-17, 2011 Seismic performance of multi-storey light wood frame buildings with hybrid bracing systems Andi

More information

Pushover Analysis of Reinforced Concrete Structures with Coupled Shear Wall and Moment Frame. *Yungon Kim 1)

Pushover Analysis of Reinforced Concrete Structures with Coupled Shear Wall and Moment Frame. *Yungon Kim 1) Pushover Analysis of Reinforced Concrete Structures with Coupled Shear Wall and Moment Frame *Yungon Kim 1) 1) R&D Division, Hyundai Engineering and Construction, Yong-in 446-716, Korea 1) yungon.kim@hdec.co.kr

More information

Seismic safety assessment of an unreinforced masonry building in Albania

Seismic safety assessment of an unreinforced masonry building in Albania Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) C. Adam, R. Heuer, W. Lenhardt & C. Schranz (eds) 28-30 August 2013, Vienna, Austria Paper No. 205

More information

Feasibility and Detailing of Post-tensioned Timber Buildings for Seismic Areas

Feasibility and Detailing of Post-tensioned Timber Buildings for Seismic Areas Feasibility and Detailing of Post-tensioned Timber Buildings for Seismic Areas T. Smith, S. Pampanin, A. Buchanan, M. Fragiacomo, University of Canterbury, Christchurch, New Zealand. 2008 NZSEE Conference

More information

PERIODS OF REINFORCED CONCRETE FRAMES DURING NONLINEAR EARTHQUAKE RESPONSE

PERIODS OF REINFORCED CONCRETE FRAMES DURING NONLINEAR EARTHQUAKE RESPONSE PERIODS OF REINFORCED CONCRETE FRAMES DURING NONLINEAR EARTHQUAKE RESPONSE Arthur C HEIDEBRECHT And Nove NAUMOSKI SUMMARY This paper presents the results of a detailed evaluation of the relationships between

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SPECIAL ISSUE FOR NATIONAL LEVEL CONFERENCE "SUSTAINABLE TECHNOLOGIES IN CIVIL

More information

Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame

Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame 12 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 2 (215) 12 129 Research Paper Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame Kruti Tamboli, J. A. Amin * Department of

More information

DYNAMIC SHEAR AMPLIFICATION IN HIGH-RISE CONCRETE WALLS: EFFECT OF MULTIPLE FLEXURAL HINGES AND SHEAR CRACKING

DYNAMIC SHEAR AMPLIFICATION IN HIGH-RISE CONCRETE WALLS: EFFECT OF MULTIPLE FLEXURAL HINGES AND SHEAR CRACKING DYNAMIC SHEAR AMPLIFICATION IN HIGH-RISE CONCRETE WALLS: EFFECT OF MULTIPLE FLEXURAL HINGES AND SHEAR CRACKING B.R. Rad 1 and P. Adebar 2 1 Doctoral Candidate, Dept. of Civil Engineering, University of

More information

SEISMIC DAMAGE CONTROL WITH PASSIVE ENERGY DEVICES: A CASE STUDY

SEISMIC DAMAGE CONTROL WITH PASSIVE ENERGY DEVICES: A CASE STUDY SEISMIC DAMAGE CONTROL WITH PASSIVE ENERGY DEVICES: A CASE STUDY by Robert J. McNamara, SE McNamara/Salvia, Inc. Consulting Structural Engineers One International Place Boston, MA 02110 This paper presents

More information

Seismic Assessment of an RC Building Using Pushover Analysis

Seismic Assessment of an RC Building Using Pushover Analysis Engineering, Technology & Applied Science Research Vol. 4, No. 3, 014, 631-635 631 Seismic Assessment of an RC Building Using Pushover Analysis Riza Ainul Hakim ainul7@yahoo.com Mohammed Sohaib Alama sohaib.alama@hotmail.com

More information

ctbuh.org/papers CTBUH Recommendations for the Seismic Design of High-Rise Buildings

ctbuh.org/papers CTBUH Recommendations for the Seismic Design of High-Rise Buildings ctbuh.org/papers Title: Author: Subject: CTBUH Recommendations for the Seismic Design of High-Rise Buildings Michael Willford, Council on Tall Buildings and Urban Habitat Structural Engineering Publication

More information

Investigating the Performance of Wood Portal Frames as Alternative Bracing Systems in Light-Frame Wood Buildings

Investigating the Performance of Wood Portal Frames as Alternative Bracing Systems in Light-Frame Wood Buildings Investigating the Performance of Wood Portal Frames as Alternative Bracing Systems in Light-Frame Wood Buildings By Abdullah Al Mamun July 2012 Ottawa-Carleton Institute for Civil Engineering Department

More information

Understanding cladding damage: A numerical investigation into a Christchurch earthquake case study

Understanding cladding damage: A numerical investigation into a Christchurch earthquake case study Understanding cladding damage: A numerical investigation into a Christchurch earthquake case study A. Baird, A. Palermo, & S. Pampanin University of Canterbury, Christchurch, New Zealand 0 NZSEE Conference

More information

Pushover Analysis Of RCC Building With Soft Storey At Different Levels.

Pushover Analysis Of RCC Building With Soft Storey At Different Levels. Pushover Analysis Of RCC Building With Soft Storey At Different Levels. Achyut S. Naphade 1, Prof. G. R. Patil 2 1 (M.E. (Structure) Student, Department of Civil Engineering Rajarshi Shahu College of Engineering,

More information

SEISMIC PERFORMANCE OF CONVENTIONAL WOOD-FRAME BUILDINGS

SEISMIC PERFORMANCE OF CONVENTIONAL WOOD-FRAME BUILDINGS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3195 SEISMIC PERFORMANCE OF CONVENTIONAL WOOD-FRAME BUILDINGS J. Hans RAINER 1, Peggy LEPPER 2 and Erol

More information

Sequential Phased Displacement Tests of Wood-framed Shear Walls with Corners

Sequential Phased Displacement Tests of Wood-framed Shear Walls with Corners VPI&SU Report TE-1997-003 1 Sequential Phased Displacement Tests of Wood-framed Shear Walls with Corners Virginia Polytechnic Institute and State University Department of Wood Science and Forests Products

More information

Determining the Optimum Slip Load of the Friction Damped Concentrically Braced Multi-Storey Timber Frame

Determining the Optimum Slip Load of the Friction Damped Concentrically Braced Multi-Storey Timber Frame Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Determining the Optimum Slip Load of the Friction Damped

More information

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars October 1-17, 8, Beijing, China Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars F. Kusuhara 1 and H. Shiohara 1 Assistant Professor, Dept.

More information

COMPARATIVE STUDY OF REINFORCED CONCRETE SHEAR WALL ANALYSIS IN MULTI- STOREYED BUILDING WITH OPENINGS BY NONLINEAR METHODS

COMPARATIVE STUDY OF REINFORCED CONCRETE SHEAR WALL ANALYSIS IN MULTI- STOREYED BUILDING WITH OPENINGS BY NONLINEAR METHODS Int. J. Struct. & Civil Engg. Res. 2013 Satpute S G and D B Kulkarni, 2013 Research Paper COMPARATIVE STUDY OF REINFORCED CONCRETE SHEAR WALL ANALYSIS IN MULTI- STOREYED BUILDING WITH OPENINGS BY NONLINEAR

More information

STRUCTURAL REDUNDANCY IN CROSS-LAMINATED TIMBER BUILDINGS

STRUCTURAL REDUNDANCY IN CROSS-LAMINATED TIMBER BUILDINGS STRUCTURAL REDUNDANCY IN CROSS-LAMINATED TIMBER BUILDINGS Ildiko Lukacs 1, Anders Björnfot 2, Themistoklis Tsalkatidis 3, Roberto Tomasi 4 ABSTRACT: In high timber structures, cross-laminated timber panels

More information

Use of Energy Efficient Wood Structural Insulation Panels in Seismic Regions

Use of Energy Efficient Wood Structural Insulation Panels in Seismic Regions Use of Energy Efficient Wood Structural Insulation Panels in Seismic Regions Rupa Purasinghe, Professor of Civil Engineering, California State University at Los Angeles, California. Email: rpurasi@calstatela.edu

More information

Evaluation of Seismic Behavior for Low-Rise RC Moment Resisting Frame with Masonry Infill Walls

Evaluation of Seismic Behavior for Low-Rise RC Moment Resisting Frame with Masonry Infill Walls October 12-17, 28, Beijing, China Evaluation of Seismic Behavior for Low-Rise RC Moment Resisting Frame with Masonry Infill Walls Hyun Ko 1, Yong-Koo Park 2 and Dong-Guen Lee 3 1 Ph.D Candidate, Department

More information

NON LINEAR STATIC ANALYSIS OF DUAL RC FRAME STRUCTURE

NON LINEAR STATIC ANALYSIS OF DUAL RC FRAME STRUCTURE NON LINEAR STATIC ANALYSIS OF DUAL RC FRAME STRUCTURE Sauhardra Ojha 1,Arunendra Mishra 2 Mohd Firoj 3,Dr.K.Narayan 4 1,2,3 P.G.student of Civil Engineering department, Institute of Engineering and Technology

More information

Experimental Evaluation of The Seismic Behavior of Steel- Braced RC Frames

Experimental Evaluation of The Seismic Behavior of Steel- Braced RC Frames 1/7 Paper IFHS-211 Experimental Evaluation of The Seismic Behavior of Steel- Braced RC Frames M. L. Nehdi Currently at Alhosn University, Abu Dhabi, United Arab Emirates M. A. Youssef and H. Ghaffarzadeh

More information

International Journal of Intellectual Advancements and Research in Engineering Computations

International Journal of Intellectual Advancements and Research in Engineering Computations www.ijiarec.com ISSN:2348-2079 Volume-5 Issue-1 International Journal of Intellectual Advancements and Research in Engineering Computations Pushover analysis on rc frames with and without shear wall Parishith

More information

ACCEPTANCE CRITERIA FOR PREFABRICATED WOOD SHEAR PANELS PREFACE

ACCEPTANCE CRITERIA FOR PREFABRICATED WOOD SHEAR PANELS PREFACE ICC EVALUATION SERVICE, INC. Evaluate P Inform P Protect ACCEPTANCE CRITERIA FOR PREFABRICATED WOOD SHEAR PANELS AC130 Approved October 2007 Effective November 1, 2007 Previously approved February 2004,

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EVALUATION OF RESPONSE REDUCTION FACTOR FOR REINFORCED CONCRETE FRAME ABHIJIT P.

More information

Comparison of Chilean and US Seismic Design Provisions for Timber Structures

Comparison of Chilean and US Seismic Design Provisions for Timber Structures Comparison of Chilean and US Seismic Design Provisions for Timber Structures J. Daniel Dolan Professor and Director of Codes and Standards, Wood Materials and Engineering Laboratory, Washington Peter Dechent

More information

Seismic Evaluation of the Historic East-Memorial Building Retrofitted with Friction Dampers, Ottawa, Canada

Seismic Evaluation of the Historic East-Memorial Building Retrofitted with Friction Dampers, Ottawa, Canada Seismic Evaluation of the Historic East-Memorial Building Retrofitted with Friction Dampers, Ottawa, Canada S. Jabbour & D.J. Carson Parsons Brinckerhoff Halsall Inc. SUMMARY: A seismic evaluation under

More information

EXPRIMENTAL AND ANALYTICAL STUDY ON SEISMIC BEHAVIOR OF TRADITIONAL WOODEN FRAMES CONSIDERING HORIZONTAL DIAPHRAGM DEFORMATION AND COLUMN SLIPPAGE

EXPRIMENTAL AND ANALYTICAL STUDY ON SEISMIC BEHAVIOR OF TRADITIONAL WOODEN FRAMES CONSIDERING HORIZONTAL DIAPHRAGM DEFORMATION AND COLUMN SLIPPAGE October 12-17, 28, Beijing, China EXPRIMENTAL AND ANALYTICAL STUDY ON SEISMIC BEHAVIOR OF TRADITIONAL WOODEN FRAMES CONSIDERING HORIZONTAL DIAPHRAGM DEFORMATION AND COLUMN SLIPPAGE K. Mukaibo 1, T. Kawakami

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Solution of Shear Wall Location

More information

THE STUDY OF THE OVER STRENGTH FACTOR OF STEEL PLATE SHEAR WALLS BY FINITE ELEMENT METHOD

THE STUDY OF THE OVER STRENGTH FACTOR OF STEEL PLATE SHEAR WALLS BY FINITE ELEMENT METHOD THE STUDY OF THE OVER STRENGTH FACTOR OF STEEL PLATE SHEAR WALLS BY FINITE ELEMENT METHOD Mahin Abdollahzadeh 1, *Arman Kabiri 1 and Ramin Amjadi 2 1 Department of Civil Engineering, Islamic Azad University,

More information

Span Length Effect on Seismic Demand on Column Splices in Steel Moment Resisting Frames

Span Length Effect on Seismic Demand on Column Splices in Steel Moment Resisting Frames Span Length Effect on Seismic Demand on Column Splices in Steel Moment Resisting Frames B. Akbas Gebze Institute of Technology, Turkey Blank Line 9 pt O. Seker Yildiz Technical University, Turkey Blank

More information

The influence of washer reinforced nail connections on the lateral resistance of shear walls with large openings

The influence of washer reinforced nail connections on the lateral resistance of shear walls with large openings The influence of washer reinforced nail connections on the lateral resistance of shear walls with large openings Richard, Nicolas 1, Prion, H.G.L. 2, and Daudeville L 3. ABSTRACT This paper is a summary

More information

Determination of Acceptable Structural Irregularity Limits for the Use of Simplified Seismic Design Methods

Determination of Acceptable Structural Irregularity Limits for the Use of Simplified Seismic Design Methods Determination of Acceptable Structural Irregularity Limits for the Use of Simplified Seismic Design Methods V.K. Sadashiva, G.A. MacRae, B.L. Deam & R. Fenwick Department of Civil Engineering, University

More information

Inelastic Torsional Response of Steel Concentrically Braced Frames

Inelastic Torsional Response of Steel Concentrically Braced Frames Inelastic Torsional Response of Steel Concentrically Braced Frames R. Comlek, B. Akbas & O. Umut Gebze Institute of Technology, Gebze-Kocaeli, Turkey J. Shen & N. Sutchiewcharn Illinois Institute of Technology,

More information

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System Dr.Binu Sukumar #1, A.Hemamathi *2, S.Kokila #3 C.Hanish #4 #1 Professor &Head, Department of Civil Engineering,

More information

FULL-SCALE SHAKE TABLE TESTING OF A TWO- STORY MASS TIMBER BUILDING WITH RESILIENT ROCKING WALL LATERAL SYSTEM

FULL-SCALE SHAKE TABLE TESTING OF A TWO- STORY MASS TIMBER BUILDING WITH RESILIENT ROCKING WALL LATERAL SYSTEM EXECUTIVE REPORT FULL-SCALE SHAKE TABLE TESTING OF A TWO- STORY MASS TIMBER BUILDING WITH RESILIENT ROCKING WALL LATERAL SYSTEM Prepared for Softwood Lumber Board by: NHERI Tall Wood Project Team Shiling

More information

Seismic Evaluation of Steel Moment Resisting Frame Buildings with Different Hysteresis and Stiffness Models

Seismic Evaluation of Steel Moment Resisting Frame Buildings with Different Hysteresis and Stiffness Models Seismic Evaluation of Steel Moment Resisting Frame Buildings with Different Hysteresis and Stiffness Models ABSTRACT : Jiwook Shin 1 and Kihak Lee 2* 1 M.S. student, Dept. of Architectural Engineering,

More information

Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building

Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building J. Sanchez, L. Toranzo & T. Nixon KPFF Consulting Engineers, Los Angeles, CA, USA SUMMARY: Nonlinear analysis has become

More information

MODAL PUSHOVER ANALYSIS OF RC FRAME BUILDING WITH STAIRCASE AND ELEVATOR CORE

MODAL PUSHOVER ANALYSIS OF RC FRAME BUILDING WITH STAIRCASE AND ELEVATOR CORE 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska MODAL PUSHOVER ANALYSIS OF RC FRAME BUILDING WITH STAIRCASE AND ELEVATOR

More information

Research on the Seismic Performance of an Externally Prestressed Rocking Reinforced Concrete Frame

Research on the Seismic Performance of an Externally Prestressed Rocking Reinforced Concrete Frame 6 th International Conference on Advances in Experimental Structural Engineering th International Workshop on Advanced Smart Materials and Smart Structures Technology August -, 5, University of Illinois,

More information

Damage-control Seismic Design of Moment-resisting RC Frame Buildings

Damage-control Seismic Design of Moment-resisting RC Frame Buildings Damage-control Seismic Design of Moment-resisting RC Frame Buildings Huanun Jiang* 1, Bo Fu 2 and Linzhi Chen 3 1 Professor, State Key Laboratory of Disaster Reduction in Civil Engineering, Tongi University,

More information

GUIDELINES ON NONLINEAR DYNAMIC ANALYSIS FOR SEISMIC DESIGN OF STEEL MOMENT FRAMES

GUIDELINES ON NONLINEAR DYNAMIC ANALYSIS FOR SEISMIC DESIGN OF STEEL MOMENT FRAMES Eleventh U.S. National Conference on Earthquake Engineering Integrating Science, Engineering & Policy June 25-29, 2018 Los Angeles, California GUIDELINES ON NONLINEAR DYNAMIC ANALYSIS FOR SEISMIC DESIGN

More information

Seismic performance assessment of reinforced concrete buildings using pushover analysis

Seismic performance assessment of reinforced concrete buildings using pushover analysis IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684 Volume 5, Issue 1 (Jan. - Feb. 2013), PP 44-49 Seismic performance assessment of reinforced concrete buildings using pushover

More information

STRUCTURAL DESIGN REQUIREMENTS (SEISMIC PROVISIONS) FOR EXISTING BUILDING CONVERTED TO JOINT LIVING AND WORK QUARTERS

STRUCTURAL DESIGN REQUIREMENTS (SEISMIC PROVISIONS) FOR EXISTING BUILDING CONVERTED TO JOINT LIVING AND WORK QUARTERS INFORMATION BULLETIN / PUBLIC - BUILDING CODE REFERENCE NO.: LABC Chapter 85 Effective: 01-01-2011 DOCUMENT NO.: P/BC 2011-110 Revised: Previously Issued As: P/BC 2002-110 STRUCTURAL DESIGN REQUIREMENTS

More information

Seismic Assessment of Non-Seismically Designed Reinforced Concrete Frames with Core Walls

Seismic Assessment of Non-Seismically Designed Reinforced Concrete Frames with Core Walls American Journal of Applied Sciences Original Research Paper Seismic Assessment of Non-Seismically Designed Reinforced Concrete Frames with Core Walls 1 Taek-Hyun Lee, 2 Ki-Bong Choi and 3 Taher Abu-Lebdeh

More information

Dynamic Stability of Elastomeric Bearings at Large Displacement

Dynamic Stability of Elastomeric Bearings at Large Displacement Dynamic Stability of Elastomeric Bearings at Large Displacement A. Masroor, J. Sanchez, G. Mosqueda University at Buffalo, NY, USA K. L. Ryan University of Nevada, Reno, USA SUMMARY: Bearings used in the

More information

BEHAVIOR OF STEEL PLATE SHEAR WALLS WITH IN-SPAN PLASTIC HINGES

BEHAVIOR OF STEEL PLATE SHEAR WALLS WITH IN-SPAN PLASTIC HINGES 716 BEHAVIOR OF STEEL PLATE SHEAR WALLS WITH IN-SPAN PLASTIC HINGES Ronny Purba 1 and Michel Bruneau 2 1 Graduate Research Assistant, Department of Civil, Structural, and Environmental Engineering, University

More information

SEISMIC DESIGN AND RESPONSE OF HEAVY INDUSTRIAL STEEL BUILDINGS

SEISMIC DESIGN AND RESPONSE OF HEAVY INDUSTRIAL STEEL BUILDINGS COMPDYN 211 3 rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25 28 May 211 SEISMIC

More information

3.5 Tier 1 Analysis Overview Seismic Shear Forces

3.5 Tier 1 Analysis Overview Seismic Shear Forces Chapter 3.0 - Screening Phase (Tier ) 3.5 Tier Analysis 3.5. Overview Analyses performed as part of Tier of the Evaluation Process are limited to Quick Checks. Quick Checks shall be used to calculate the

More information

COMPARATIVE PERFORMANCE OF BUCKLING-RESTRAINED BRACES AND MOMENT FRAMES

COMPARATIVE PERFORMANCE OF BUCKLING-RESTRAINED BRACES AND MOMENT FRAMES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2887 COMPARATIVE PERFORMANCE OF BUCKLING-RESTRAINED BRACES AND MOMENT FRAMES Ronald L. MAYES 1, Craig GOINGS

More information