Seismic Analysis & Design of 10 Story RC Building

Size: px
Start display at page:

Download "Seismic Analysis & Design of 10 Story RC Building"

Transcription

1 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) Using ETABS (Metric Units) 0.3 yg

2

3 Table of Content Objective 5 Problem 5 Step by Step Open Existing Model and Unlock Model Delete Existing Seismic Load Case Define Time History Function Specify Time History Cases Run Analysis View Modal Analysis Results View Time History Analysis Results Run Concrete Frame Design and View Results Run Shear Wall Design and View Results 48

4

5 Objective Problem To demonstrate and practice step-by-step on time history analysis and design of 10 story RC building. Carry out modal time history analysis, and design of 10 story RC building using ELCENTRO time history data. 3D View Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 5/59

6 Plan View (Unit in m) 6.00 m 6.00 m 6.00 m 6.00 m 6.00 m m BASE STORY m 6.00 m 6.00 m 6.00 m 6.00 m m STORY 8 STORY 10 6/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

7 Elevation View Material Properties for Concrete (Unit in kg and cm) Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 7/59

8 Section Properties Member Beam (width x Height) Column Slab Shear wall Dimension 30 x 60 cm 50 x 50 cm Thickness = 15 cm Thickness = 20 cm Story Height Data Story Typical Story Story at base of building Height 3.00 m 4.00 m Static Load Cases Load Name Load Type Details Value Self Weight of Structural Members Calculate automatically using Self Weight Multiplier in ETABS - DEAD Dead Load Uniform Load on Slabs: (Finishing + Partition Load) 0.20 t/m 2 Uniform Load on Beams: (Wall Load) 0.50 t/m LIVE Reducible Live Load Uniform Load on Slabs: (Use Tributary Area: UBC97) 0.25 t/m 2 8/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

9 ELCENTRO Time History Function ELCENTRO Time History 0.3 Ground Accerelation Normalized by g Time (Sec) Note: Use Built-in Time History Data in ETABS located at Time History Functions subfolder in main folder that ETABS has been installed (normally at C:\Program Files\Computers and Structures\ETABS\Time History Functions) Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 9/59

10 Wind Load Cases (UBC97) Parameter WINDX Load Case WINDY Wind Direction X Y Wind Speed Exposure Type Importance Factor 90 mph B (Suburban area) 1 (Building normal importance) 10/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

11 Step by Step 1. Open Existing Model and Unlock Model Step 1-1: Open Existing Model Start up screen of ETABS, click on Open button file from previous example. or go to File >> Open and find Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 11/59

12 Step 1-2: Save As to New File Go to File >> Save As and specify new file name. 12/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

13 Step 1-3: Unlock Model Click on Unlock Model button Click on OK to confirm to unlock the model and delete all analysis results Note: ETABS has locked the model automatically from previous analysis. Model has to be unlocked first before do any modification by clicking on Unlock Model button. ETABS will delete all analysis and design results after unlock. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 13/59

14 2. Delete Existing Seismic Load Case Step 2-1: Delete Existing Seismic Load Case Case A: File from First Example (Equivalent Lateral Force) Go to Define >> Static Load Case, select EQXA and click on Delete Load Repeat this step to delete EQXB, EQYA and EQYB Case B: File from Second Example (Modal Response Spectra Analysis) Go to Define >> Response Spectrum Case, select EQX and click on Delete Spectrum. Repeat this step to delete EQY 14/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

15 3. Define Time History Function Step 3-1: Add New Time History Function Go to Define >> Functions >> Time History, select Function from File and click on Add New Function. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 15/59

16 Step 3-2: Locate ELCENTRO Time History Data Click on Browse, select Files of type to All files (*.*) and locate file named ELCENTRO (normally at C:\Program Files\Computers and Structures\ETABS\Time History Functions ) 16/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

17 Step 3-3: Display ELCENTRO Time History Function Select Time and Function Values and click on Display Graph. Note: To view coordinate of each point on graph, move cursor over this graph, location of current point over cursor on graph will display as red dot and coordinate of cursor is shown at bottom of graph. From above graph found that total time is 12 sec. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 17/59

18 4. Specify Time History Cases Step 4-1:Add New Time History Case Make sure that current working unit is Ton-m by checking in drop-down menu at right-bottom of page. Go to Define >> Time History Case and click on Add New History 18/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

19 Step 4-2: Specify Time History Case for EQX Specify time history case as shown in figure below Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 19/59

20 Note: 1. Output time step size should be set such a way that the peak amplitude points on the time history function are not missed. (0.1 sec for this example) 2. Because the values along Y axis of time history function as specified in step 3 are normalized by ground acceleration (g), the scale factor will be value of g (9.81 in metric unit). 3. This scale factor can also be used to increase or decrease the time history magnitude for difference soil condition, site location etc. 4. Total analysis time = Total time history function + 5 time of building period in first mode (for damping = 0.05). = x 1.2 = 18 sec 5. Number of output time steps = Total analysis time / Output time step size ELCENTRO Time History 0.3 Ground Accerelation Normalized by g Output time step size -0.3 Total analysis time -0.4 Time (Sec) 20/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

21 Step 4-3: Specify Damping for EQX Click on Modify/Show and enter Damping for all Modes as shown in figure below. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 21/59

22 Step 4-4: Specify Time History Case and Damping for EQY Repeat Step 4-1 to 4-3 to add EQY Time History Case as shown in figures below 22/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

23 5. Run Analysis Step 5-1: Set Dynamic Analysis Parameters Go to Analyze >> Set Analysis Options, select Dynamic Analysis, click on Set Dynamic Parameters and specify dynamic analysis parameters as shown in figure below Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 23/59

24 Step 5-2: Start Analysis Go to Analyze >> Run Analysis or click on Run Analysis button to start analysis. ETABS will display deformed shape of model when analysis complete. Note: ETABS will lock the model automatically from accidental or undesired changes. Model will be unlocked by clicking on Unlock Model button. ETABS will delete all analysis and design results after unlock. 24/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

25 Step 5-3: Check Error from Analysis Run Record Go to File >> Last Analysis Run Log and scroll down to check error message. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 25/59

26 6. View Modal Analysis Results Step 6-1: Display Mode Shape in 3D View Select 3D view window, go to Display >> Show Mode Shape or click on Show Mode Shape button and select desired mode. To view deformed shape in animation, click on Start Animation. Note: Time Period of current mode shows at top of 3D window 26/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

27 Step 6-2: Display Modal Displacement at Particular node Right click on desired node to display modal displacement at current mode shape Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 27/59

28 Step 6-3: View Modal Analysis in Tabular Form Go to Display >> Set Output Table Mode and select items as shown in figure below Select building modal information from drop-down menu Note: This table can be copied to MS Excel by using Edit >> Copy menu in this window (Not main menu). 28/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

29 7. View Time History Analysis Results Step 7-1: View Analysis Result Diagrams of Frame Elements (Beam or Column) Select Plan View window by clicking on it, go to Display >> Show Member Forces/Stress Diagram >> Frame/ Pier/Spandrel Forces and select time history analysis ( EQX or EQY ) from Load and Component. Desired time step can be specified from Time dialogue box or click on button to view previous time step or button to view next time step. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 29/59

30 Note: Sign Convention for Frame Element 30/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

31 Step 7-2: View Analysis Result Diagram at Particular Frame Element Right click on desired beam to display particular analysis result diagram Note: To see analysis results in particular location, move mouse cursor over this diagram and see value at bottom of the window Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 31/59

32 Step 7-3: Change View to Elevation View at Elevator Location Click on Set Elevation View button and select elevation view at elevator location 32/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

33 Step 7-4: View Analysis Result Diagrams of Shear Wall (Pier) Right click on desired shear wall panel to view particular diagram Note: Same as frame element, move mouse cursor over this diagram and see value at bottom of this window to check analysis results in particular location Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 33/59

34 Step 7-5: View Analysis Result Contour in Shear Wall Panels (Elevation View) Change Plan View to Elevation View by clicking on Set Elevation View button and selecting desired elevation for elevator location, go to Display >> Show Member Forces/Stress Diagram >> Shell Stresses/Forces, select time history analysis case ( EQX or EQY ) from Load and Component. Right click on desired wall panel to view particular analysis result. Note: Analysis results at particular location will display at the bottom of window when move mouse cursor over this diagram. 34/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

35 Note: Sign Convention for Shell Element Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 35/59

36 Step 7-6: View Analysis Result Contour in Slab Panels (Plan View) Change to Plan View by clicking on Set Plan View button and selecting desired floor, go to Display >> Show Member Forces/Stress Diagram >> Shell Stresses/Forces and select time history analysis ( EQX or EQY ) and Component. Same as shear wall panel, right click on desired wall panel to view particular analysis result. 36/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

37 Step 7-7: View Analysis Results in Tabular Form Go to Display >> Show Output table Mode, select desired items and click on Select Loads to specify load case/combination. Select analysis results from drop-down menu at top-right of screen Note: This table can be copied to MS Excel by using Edit >> Copy menu in this window (Not main menu). Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 37/59

38 8. Run Concrete Frame Design and View Results ETABS will be defined load combination automatically based on load cases and select design code except time history analysis case that need to be defined manually as seismic load (E) for ACI load combination. Step 8-1: Select Design Code Go to Options >> Preference >> Concrete Frame Design and select ACI from Design Code 38/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

39 Step 8-2: View Load Combination for Concrete Frame Design Go to Design >> Concrete Frame Design >> Select Design Combo to view load combination for concrete frame design. Load combinations have been defined as selected code from previous step. Select desired load combination from Design Combos column and click on Show to view load combination parameters (load factors and details) Note: There is no seismic load case (E) in all load combination that are defined automatically by ETABS. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 39/59

40 Step 8-3: Add New Load Combination for Seismic Load (E) Go to Define >> Load Combinations, click on Add New Combo. 40/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

41 Step 8-4: Specify Load Case and Load Factor for CON11 Load Combination Select Case Name, enter Scale Factor and click on Add to specify load case and load factor one by one for CON11 load combination Note: DCON11 name can be used for manual load combination because DCON is reserved for auto load combination for RC concrete frame design. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 41/59

42 Step 8-5: Specify Load Case and Load Factor for the remaining of Load Combination Repeat Step 8-3 to 8-4 to define load combination as details shown in table below one by one. Load Comb. Name Load Case/ Load Factor DEAD LIVE WINDX WINDY EQX EQY CON CON CON CON CON CON CON CON /59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

43 Step 8-6: Specify Load Combination for Concrete Frame Design Go to Design >> Concrete Frame Design >> Select Design Combo, select CON11 to CON18 from left column and click on Add to add manual load combination to Design combo list. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 43/59

44 Step 8-7: Start Concrete Frame Design Go to Design >> Concrete Frame Design >> Start Design/Check of Structure 44/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

45 Step 8-8: Display Longitudinal Reinforcing for Concrete Frame Design Select kg-cm, go to Design >> Concrete Frame Design >> Display Design Info, click on Design Output and select Longitudinal Reinforcing from first drop-down menu. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 45/59

46 Step 8-9: Display Shear Reinforcing for Concrete Frame Design Go to Design >> Concrete Frame Design >> Display Design Info, click on Design Output and select Shear Reinforcing from first drop-down menu. 46/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

47 Step 8-10: Display Concrete Frame Design in Details To see concrete frame design in details, right mouse click on desired element. The highlighted row is the critical location along the element length (maximum required reinforcement). More details can be displayed by clicking on button below. Click OK to close this dialogue. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 47/59

48 9. Run Shear Wall Design and View Results Typical Shear Wall Design Procedure Following is a typical shear wall design process that might occur for a new building. Note that the sequence of steps you may take in any particular design may vary from this but the basic process will be essentially the same. 1. After create the building model Use the Options menu > Preferences > Shear Wall Design command to review the shear wall design preferences and revise them if necessary. Note that there are default values provided for all shear wall design preferences so it is not actually necessary for you to define any preferences unless you want to change some of the default preference values. 2. Run the building analysis using the Analyze menu > Run Analysis command. 3. Assign the wall pier and wall spandrel labels. Use the Assign menu > Frame/Line > Pier Label, the Assign menu > Shell/Area > Pier Label, the Assign menu > Frame/Line > Spandrel Label, and the Assign menu > Shell/Area > Spandrel Label commands to do this. Note that the labels can be assigned before or after the analysis is run. 4. Assign shear wall overwrites, if needed, using the Design menu > Shear Wall Design > View/Revise Pier Overwrites and the Design menu > Shear Wall Design > View/Revise Spandrel Overwrites commands. Note that you must select piers or spandrels first before using these commands. Also note that there are default values provided for all pier and spandrel design overwrites so it is not actually necessary for you to define any overwrites unless you want to change some of the default overwrite values. Note that the overwrites can be assigned before or after the analysis is run. Important note about selecting piers and spandrels: You can select a pier or spandrel simply by selecting any line or area object that is part of the pier or spandrel. 48/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

49 5. If you want to use any design load combinations other than the default ones created by ETABS for your shear wall design then click the Design menu > Shear Wall Design > Select Design Combo command. Note that you must have already created your own design combos by clicking the Define menu > Load Combinations command. 6. Click the Design menu > Shear Wall Design > Start Design/Check of Structure command to run the shear wall design. 7. Review the shear wall design results. To do this you might do one of the following: a. Click the Design menu > Shear Wall Design > Display Design Info command to display design information on the model. b. Right click on a pier or spandrel while the design results are displayed on it to enter the interactive wall design mode. Note that while you are in this mode you can revise overwrites and immediately see the new design results. If you are not currently displaying design results you can click the Design menu > Shear Wall Design > Interactive Wall Design command and then right click a pier or spandrel to enter the interactive design mode for that element. 1. Use the File menu > Print Tables > Shear Wall Design command to print shear wall design data. If you select a few piers or spandrels before using this command then data is printed only for the selected elements. 2. If desired, revise the wall pier and/or spandrel overwrites, rerun the shear wall design, and review the results again. Repeat this step as many times as needed. 3. If desired, create wall pier check sections with user-defined (actual) reinforcing specified for the wall piers using the Section Designer utility. Use the Design menu > Shear Wall Design > Define Pier Sections for Checking command to define the sections in Section Designer. Be sure to indicate that the reinforcing is to be checked. Use the Design menu > Shear Wall Design > Assign Pier Sections for Checking command to assign these sections to the piers. Rerun the design and verify that the actual flexural reinforcing provided is adequate. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 49/59

50 4. Assign these check sections to the piers, change the pier mode from Design to Check, and rerun the design. Verify that the actual flexural reinforcing provided is adequate. 5. If necessary, revise the geometry or reinforcing and rerun the design. 6. Print or display selected shear wall design results if desired. Note that shear wall design is performed as an iterative process. You can change your wall design dimensions and reinforcing during the design process without rerunning the analysis. However, you always want to be sure that your final design is based on analysis properties (wall dimensions) that are consistent with your design (actual) wall dimensions. A: Shear Wall with Line Loads B: Finite Element Model Rigid Beam Column 3 per rigid zone C: Define Beams & Columns D: Beam-Column Model 50/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

51 Step 9-1: Change view to Elevation View Click on Set Elevation View button, select desired elevation and use Rubber Band Zoom button to zoom shear wall view. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 51/59

52 Step 9-2: Select Design Code for Shear Wall Design Go to Options >> Preference >> Shear Wall Design and select parameters as shown in figure below. 52/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

53 Step 9-3: View Load Combination for Shear Wall Design Go to Design >> Shear Wall Design >> Select Design Combo to view load combination for shear wall design. Load combinations have been defined as selected code from previous step. Select desired load combination from Design Combos column and click on Show to view load combination parameters (load factors and details) Note: Same as concrete frame design, load combination for seismic load (E) from time history analysis are required to be defined manually. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 53/59

54 Step 8-11: Specify Load Combination for Shear Wall Design From Design Load Combination Selection dialogue, select CON11 to CON18 from left column and click on Add to add manual load combination to Design combo list. Note: Load combination for concrete frame design that have been defined in step 8-3 to 8-5 can be used for shear wall design 54/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

55 Step 9-4: Start Shear Wall Design Go to Design >> Shear Wall Design >> Start Design/Check Structure Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 55/59

56 Step 9-5: Display Pier Design Information for Shear Wall Design Go to Design >> Shear Wall Design >> Display Design Info, click on Design Output and select Pier Longitudinal Reinforcing. Note: Longitudinal reinforcing area displayed in above figure is for all 3 shear wall panels because all of them have been assigned in same pier label (P1) from previous example 56/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

57 Step 9-6: Display Pier Design Details for Shear Wall Design To see pier design in details, right mouse click on desired pier panel. Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 57/59

58 Reinforcement Location for Pier 58/59 Seismic Analysis & Design of 10 Story RC Building (Time History Analysis)

59 Note: Typical Detailing of Shear Wall Seismic Analysis & Design of 10 Story RC Building (Time History Analysis) 59/59

NONLINEAR STATIC ANALYSIS OF R.C.C. FRAMES (Software Implementation ETABS 9.7)

NONLINEAR STATIC ANALYSIS OF R.C.C. FRAMES (Software Implementation ETABS 9.7) NONLINEAR STATIC ANALYSIS OF R.C.C. FRAMES (Software Implementation ETABS 9.7) Mrugesh D. Shah M.E Structure student, B.V.M Engineering College Abstract:- Nonlinear static analysis is an iterative procedure

More information

Keyboard Shortcuts for Making Selections of Objects Onscreen. Keyboard Shortcuts for Various ETABS Menu Items

Keyboard Shortcuts for Making Selections of Objects Onscreen. Keyboard Shortcuts for Various ETABS Menu Items Keyboard Shortcuts for Making Selections of Objects Onscreen Keystroke E Spacebar Ctrl key + left click Ctrl key + right click Purpose Puts you in a mode to select edges of area objects Removes you from

More information

ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode

ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode Update: August 2016 Copyright ADAPT Corporation all rights reserved ADAPT-PT/RC 2016-Tutorial- 1 This ADAPT-PTRC 2016 Getting Started Tutorial is

More information

AASHTOWare BrD 6.8 Substructure Tutorial Solid Shaft Pier Example

AASHTOWare BrD 6.8 Substructure Tutorial Solid Shaft Pier Example AASHTOWare BrD 6.8 Substructure Tutorial Solid Shaft Pier Example Sta 4+00.00 Sta 5+20.00 (Pier Ref. Point) Sta 6+40.00 BL SR 123 Ahead Sta CL Brgs CL Pier CL Brgs Bridge Layout Exp Fix Exp CL Brgs Abut

More information

COMPARATIVE REPORT CYPECAD VS. ETABS

COMPARATIVE REPORT CYPECAD VS. ETABS COMPARATIVE REPORT CYPECAD VS. ETABS Contents SIMPLE FRAME EXAMPLE... 3 1. Introduction... 4 2. Dimensions and applied loads... 4 3. Materials and applied design code... 5 4. Nodes... 7 5. Moment and shear

More information

Italic words marked in cyan are linked to their definition.

Italic words marked in cyan are linked to their definition. This document gives a detailed summary of the new features and modifications of FEM-Design version 13. We hope you will enjoy using the program and its new tools and possibilities. We wish you success.

More information

Bridging Your Innovations to Realities

Bridging Your Innovations to Realities Tutorial 2 Prestressed Concrete Bridge Bridging Your Innovations to Realities 1 Contents 2 1. Project Information 2. Definition of materials 3. Definition of Sections 4. Definition of Time dependent Materials

More information

STUDY ON TALL BUILDING STRUCTURE ANALYSIS

STUDY ON TALL BUILDING STRUCTURE ANALYSIS STUDY ON TALL BUILDING STRUCTURE ANALYSIS Liu Huafeng 1, Zhao Ning 2 ABSTRACT TBSA (Tall Building Structure Analysis) is a three-dimension analysis program for tall buildings based on a member structure

More information

FAQ. for Midas Gen Link, Preference and Drawings. Design + Solution for Structural Member Design with Drawing & Report

FAQ. for Midas Gen Link, Preference and Drawings. Design + Solution for Structural Member Design with Drawing & Report F Design + for Midas Gen Link, Preference and Drawings Solution for Structural Member Design with Drawing & Report midas Design + Contents F 01. midas Gen Link 3 How to link with midas Gen? Member forces

More information

NONLINEAR PERFORMANCE OF A TEN-STORY REINFORCED CONCRETE SPECIAL MOMENT RESISTING FRAME (SMRF)

NONLINEAR PERFORMANCE OF A TEN-STORY REINFORCED CONCRETE SPECIAL MOMENT RESISTING FRAME (SMRF) NONLINEAR PERFORMANCE OF A TEN-STORY REINFORCED CONCRETE SPECIAL MOMENT RESISTING FRAME (SMRF) Houssam Mohammad Agha, Li Yingmin, Oday Asal Salih and A ssim Al-Jbori Doctoral Candidate, College of Civil

More information

AASHTOWare BrR/BrD 6.8 Reinforced Concrete Structure Tutorial RC5 Schedule Based Tee Example

AASHTOWare BrR/BrD 6.8 Reinforced Concrete Structure Tutorial RC5 Schedule Based Tee Example AASHTOWare BrR/BrD 6.8 Reinforced Concrete Structure Tutorial RC5 Schedule Based Tee Example BrR and BrD Training RC5 Schedule Based Tee Example Topics Covered Reinforced concrete schedule based tee input

More information

Summary of Steel Joist Output

Summary of Steel Joist Output COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA JANUARY 2002 STEEL JOIST DESIGN Technical Note This Technical Note describes the steel joist design output that can be printed to a printer or to a

More information

CSiBridge Version Release Notes

CSiBridge Version Release Notes CSiBridge Version 20.0.0 Release Notes Copyright Computers and Structures, Inc., 2017 Notice Date: 2017-12-14 This file lists all changes made to CSiBridge since the previous version. Most changes do not

More information

Assessment of P-Delta Effect on High Rise Buildings

Assessment of P-Delta Effect on High Rise Buildings Assessment of P-Delta Effect on High Rise Buildings Prashant Dhadve 1, Alok Rao 2, Atul Rupanvar 3, Deokate K. 4, Admile P.R 5, Dr. Nemade. P. D. 6 1,2,3,4 under graduate student, Civil Engineering S.B.

More information

Design Example 2 Reinforced Concrete Wall with Coupling Beams

Design Example 2 Reinforced Concrete Wall with Coupling Beams Design Example 2 Reinforced Concrete Wall with Coupling Beams OVERVIEW The structure in this design example is a six story office building with reinforced concrete walls as its seismic force resisting

More information

Lateral Loads Manual

Lateral Loads Manual Lateral Loads Manual Lateral Loads Manual For ETABS 2016 ISO ETA122815M4 Rev. 1 Proudly developed in the United States of America October 2016 Copyright Copyright Computers & Structures, Inc., 1978-2016

More information

BrD Superstructure Tutorial

BrD Superstructure Tutorial AASHTOWare BrD 6.8 BrD Superstructure Tutorial PS12 Prestressed Concrete I Beam Using BrD LRFD Engine BrD Superstructure Training PS12 - Prestressed Concrete I Beam Using BrD LRFD Engine 1'-9" 55'-6" Total

More information

STRUCTURAL CONCRETE SOFTWARE ADAPT-PT/RC 2017 USER MANUAL. Copyright 2017

STRUCTURAL CONCRETE SOFTWARE ADAPT-PT/RC 2017 USER MANUAL. Copyright 2017 STRUCTURAL CONCRETE SOFTWARE ADAPT-PT/RC 2017 USER MANUAL Copyright 2017 support@adaptsoft.com www.adaptsoft.com ADAPT Corporation, Redwood City, California, 94061, USA, Tel: +1 (650) 306-2400 Fax +1 (650)

More information

Seismic Analysis and Design of Vertically Irregular RC Building Frames

Seismic Analysis and Design of Vertically Irregular RC Building Frames Seismic Analysis and Design of Vertically Irregular RC Building Frames Himanshu Bansal 1, Gagandeep 2 1 Student (M.E.), PEC University of Technology, Civil Department, Chandigarh, India 2 Student (M.E.),

More information

MWF Advanced Floor. User Guide. Last Updated on July 27 th 2015

MWF Advanced Floor. User Guide. Last Updated on July 27 th 2015 MWF Advanced Floor User Guide Last Updated on July 27 th 2015 2 Table of contents 1. Introduction... 3 1.1 Before starting... 3 2. Project Configuration... 5 2.1 Code Requirements - Analyses Configuration...

More information

Minimum slab thickness of RC slab to prevent undesirable floor vibration. Technology, Dhaka-1000, Bangladesh. 2.

Minimum slab thickness of RC slab to prevent undesirable floor vibration. Technology, Dhaka-1000, Bangladesh. 2. Minimum slab thickness of RC slab to prevent undesirable floor vibration Mohammad Rakibul Islam Khan 1, *Zafrul Hakim Khan 2,Mohammad Fahim Raiyan 3 and Khan Mahmud Amanat 4 1, 2, 3, 4 Department of Civil

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SPECIAL ISSUE FOR NATIONAL LEVEL CONFERENCE "SUSTAINABLE TECHNOLOGIES IN CIVIL

More information

EARTHQUAKE ANALYSIS OF A G+12 STOREY BUILDING WITH AND WITHOUT INFILL FOR BHUJ AND KOYNA EARTHQUAKE FUNCTIONS

EARTHQUAKE ANALYSIS OF A G+12 STOREY BUILDING WITH AND WITHOUT INFILL FOR BHUJ AND KOYNA EARTHQUAKE FUNCTIONS EARTHQUAKE ANALYSIS OF A G+12 STOREY BUILDING WITH AND WITHOUT INFILL FOR BHUJ AND KOYNA EARTHQUAKE FUNCTIONS Jyothi. C. Hawaldar, Dr. D. K. Kulkarni Student, 4 th sem, M.Tech(CADS), Department of Civil

More information

Shear Wall Design Manual ACI

Shear Wall Design Manual ACI Shear Wall Design Manual ACI 318-11 Shear Wall Design Manual ACI 318-11 For ETABS 2016 ISO ETA122815M37 Rev. 0 Proudly developed in the United States of America December 2015 Copyright Copyright Computers

More information

FAST NONLINEAR SEISMIC SSI ANALYSIS OF LOW-RISE CONCRETE SHEARWALL BUILDINGS FOR DESIGN-LEVEL (DBE) AND BEYOND DESIGN-LEVEL (BDBE)

FAST NONLINEAR SEISMIC SSI ANALYSIS OF LOW-RISE CONCRETE SHEARWALL BUILDINGS FOR DESIGN-LEVEL (DBE) AND BEYOND DESIGN-LEVEL (BDBE) Transactions, SMiRT-24 FAST NONLINEAR SEISMIC SSI ANALYSIS OF LOW-RISE CONCRETE SHEARWALL BUILDINGS FOR DESIGN-LEVEL (DBE) AND BEYOND DESIGN-LEVEL (BDBE) Dan M. Ghiocel 1 YoungSun Jang 2 and InHee Lee

More information

Shear Wall Design Manual CSA A

Shear Wall Design Manual CSA A Shear Wall Design Manual CSA A23.3-04 Shear Wall Design Manual CSA A23.3-04 For ETABS 2016 ISO ETA12285M42 Rev. 0 Proudly developed in the United States of America December 2015 Copyright Copyright Computers

More information

1. Stress Analysis of a Cantilever Steel Beam

1. Stress Analysis of a Cantilever Steel Beam . Stress Analysis of a Cantilever Steel Beam Applicable CivilFEM Product: All CivilFEM Products Level of Difficulty: Easy Interactive Time Required: 5-0 minutes Discipline: Structural Steel Analysis Type:

More information

Slab Bridge Designer 2.1 Help: Example Analysis

Slab Bridge Designer 2.1 Help: Example Analysis August 21, 2006 Slab Bridge Designer 2.1 Help: Example Analysis Using data from the Portland Cement Association Engineering Bulletin 232, AASHTO LRFD Design of Cast-In-Place Concrete Bridges This example

More information

EZ-Shear Wall for ETABS v1.1

EZ-Shear Wall for ETABS v1.1 EZ-Shear Wall for ETABS v1.1 INSTALLATION Download the installation folder and run the EXE file, which will install the program in your PC To uninstall use windows program uninstaller via control panel

More information

S T R U C T U R. Technology. magazine. Software for the Structural Design of Masonry. The Design Basis. Copyright

S T R U C T U R. Technology. magazine. Software for the Structural Design of Masonry. The Design Basis. Copyright Software for the Structural Design of Masonry By Russell H. Brown, James K. Nelson, Jr. and Dennis Graber Using software can free the design engineer from the drudgery of routine calculations and enable

More information

STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT-PT. Version 2010 USER MANUAL. Copyright 2010

STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT-PT. Version 2010 USER MANUAL. Copyright 2010 STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT-PT Version 2010 USER MANUAL Copyright 2010 support@adaptsoft.com www.adaptsoft.com ADAPT Corporation, Redwood City, California, 94061, USA, Tel: +1 (650) 306-2400

More information

AASHTOWare BrD 6.8. BrR and BrD Tutorial. PS7-3 Stem PS Bridge Example

AASHTOWare BrD 6.8. BrR and BrD Tutorial. PS7-3 Stem PS Bridge Example AASHTOWare BrD 6.8 BrR and BrD Tutorial PS7-3 Stem PS Bridge Example BrR and BrD Training PS7 3 Stem PS Bridge Example From the Bridge Explorer create a new bridge and enter the following description data.

More information

OPTIMUM POSITION OF OUTRIGGER SYSTEM FOR HIGH RAISED RC BUILDINGS USING ETABS (PUSH OVER ANALYSIS)

OPTIMUM POSITION OF OUTRIGGER SYSTEM FOR HIGH RAISED RC BUILDINGS USING ETABS (PUSH OVER ANALYSIS) OPTIMUM POSITION OF OUTRIGGER SYSTEM FOR HIGH RAISED RC BUILDINGS USING ETABS 2013.1.5 (PUSH OVER ANALYSIS) Karthik.N.M 1, N.Jayaramappa 2 1 Assistant Professor, Dept. of Civil Engineering Chikka Muniyappa

More information

HILLCREST MANOR Palo Verde, California

HILLCREST MANOR Palo Verde, California STRUCTURAL ENGINEERING CONSULTANTS TN358_MAT_RC_desogm_example_040110 HILLCREST MANOR Palo Verde, California Structural Design of Mat (Raft) Foundation First draft ADAPT Corporation Redwood City, CA, USA

More information

Seismic Assessment of an RC Building Using Pushover Analysis

Seismic Assessment of an RC Building Using Pushover Analysis Engineering, Technology & Applied Science Research Vol. 4, No. 3, 014, 631-635 631 Seismic Assessment of an RC Building Using Pushover Analysis Riza Ainul Hakim ainul7@yahoo.com Mohammed Sohaib Alama sohaib.alama@hotmail.com

More information

ETABS 2016 (Version ) Release Notes

ETABS 2016 (Version ) Release Notes ETABS 2016 (Version 16.2.0) Release Notes Copyright Computers and Structures, Inc., 2017 Notice Date: 2017-06-19 This file lists all changes made to ETABS since the previous version. Most changes do not

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

Composite Beam Design Manual AISC

Composite Beam Design Manual AISC Composite Beam Design Manual AISC 360-10 Composite Beam Design Manual AISC 360-10 For ETABS 2016 ISO ETA122815M54 Rev. 0 Proudly developed in the United States of America December 2015 Copyright Copyright

More information

This point intends to acquaint the reader with some of the basic concepts of the earthquake engineer:

This point intends to acquaint the reader with some of the basic concepts of the earthquake engineer: Chapter II. REVIEW OF PREVIOUS RESEARCH II.1. Introduction: The purpose of this chapter is to review first the basic concepts for earthquake engineering. It is not intended to review the basic concepts

More information

Nonlinear Static Pushover Analysis of a Shear Wall Building in Madinah

Nonlinear Static Pushover Analysis of a Shear Wall Building in Madinah Nonlinear Static Pushover Analysis of a Shear Wall Building in Madinah M. Ajmal,M.K. Rahman and M.H. Baluch King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia Recent Seismic Activities in

More information

V B D S. Visual Bridge Design System. S. Q. Wang, Ph.D., P.E. and Chung C. Fu, Ph.D., P.E. Distributed By

V B D S. Visual Bridge Design System. S. Q. Wang, Ph.D., P.E. and Chung C. Fu, Ph.D., P.E. Distributed By V B D S Visual Bridge Design System By S. Q. Wang, Ph.D., P.E. and Chung C. Fu, Ph.D., P.E. Distributed By The Bridge Engineering Software and Technology (BEST) Center University of Maryland, College Park,

More information

Seismic Analysis of Monolithic Coupling Beams of Symmetrical Coupled Shear Wall System

Seismic Analysis of Monolithic Coupling Beams of Symmetrical Coupled Shear Wall System Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2012 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Seismic Analysis of Monolithic

More information

DESIGN PROCESS USING ADAPT-BUILDER PLATFORM

DESIGN PROCESS USING ADAPT-BUILDER PLATFORM Structural Concrete Software System TN 182 Builder_design_process_12 111404 DESIGN PROCESS USING ADAPT-BUILDER PLATFORM Update November 13, 2004 This Technical Note walks you through the steps you would

More information

AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example

AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example STL6 - Two Span Plate Girder Example (BrDR 6.5) 1'-6" 37'-0" 34'-0" 1'-6" 8 1/2" including 1/2" integral wearing surface FWS @ 25 psf

More information

COMPARATIVE STUDY ON DESIGN RESULTS OF A MULTI-STORIED BUILDING USING STAAD PRO AND ETABS FOR REGULAR AND IRREGULAR PLAN CONFIGURATION

COMPARATIVE STUDY ON DESIGN RESULTS OF A MULTI-STORIED BUILDING USING STAAD PRO AND ETABS FOR REGULAR AND IRREGULAR PLAN CONFIGURATION COMPARATIVE STUDY ON DESIGN RESULTS OF A MULTI-STORIED BUILDING USING STAAD PRO AND ETABS FOR REGULAR AND IRREGULAR PLAN CONFIGURATION K VENU MANIKANTA 1*, Dr. DUMPA VENKATESWARLU 2* 1. Student, Dept of

More information

DYNAMIC ANALYSIS OF STEEL TUBE STRUCTURE WITH BRACING SYSTEMS

DYNAMIC ANALYSIS OF STEEL TUBE STRUCTURE WITH BRACING SYSTEMS DYNAMIC ANALYSIS OF STEEL TUBE STRUCTURE WITH BRACING SYSTEMS Dhanapalagoud Patil 1, Naveena M P 2 1 Student, Structural Engineering, MVJ College of Engg, Karnataka, India 2 Assistant Professor, Structural

More information

TUTORIAL: PCR ANALYSIS AND PRIMER DESIGN

TUTORIAL: PCR ANALYSIS AND PRIMER DESIGN C HAPTER 8 TUTORIAL: PCR ANALYSIS AND PRIMER DESIGN Introduction This chapter introduces you to tools for designing and analyzing PCR primers and procedures. At the end of this tutorial session, you will

More information

REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION

REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION 1NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 1-, 1 Anchorage, Alaska REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION

More information

Direct Analysis Method in Robot Structural Analysis Professional

Direct Analysis Method in Robot Structural Analysis Professional Direct Analysis Method in Robot Structural Analysis Professional Lin Gallant, P.E. Souza, True & Partners, Inc. Todd Blake, P.E. Souza, True & Partners, Inc. SE5788 This class will review the American

More information

STRUCTURAL CONCRETE SOFTWARE ADAPT RC For Design of Reinforced Concrete Floor Systems and Beam Frames USER MANUAL.

STRUCTURAL CONCRETE SOFTWARE ADAPT RC For Design of Reinforced Concrete Floor Systems and Beam Frames USER MANUAL. STRUCTURAL CONCRETE SOFTWARE ADAPT RC 2010 For Design of Reinforced Concrete Floor Systems and Beam Frames USER MANUAL VolI_0410_v0_3 Copyright 2010 support@adaptsoft.com www.adaptsoft.com ADAPT Corporation,

More information

SEAU 5 th Annual Education Conference 1. ASCE Concrete Provisions. Concrete Provisions. Concrete Strengths. Robert Pekelnicky, PE, SE

SEAU 5 th Annual Education Conference 1. ASCE Concrete Provisions. Concrete Provisions. Concrete Strengths. Robert Pekelnicky, PE, SE ASCE 41-13 Concrete Provisions Robert Pekelnicky, PE, SE Principal, Degenkolb Engineers Chair, ASCE 41 Committee* *The view expressed represent those of the author, not the standard s committee as a whole.

More information

Structural Technical Report 1 Structural Concepts / Structural Existing Conditions Report

Structural Technical Report 1 Structural Concepts / Structural Existing Conditions Report Michael A. Troxell Structural Option Advisor: Professor Parfitt College of Business Administration Oct. 5, 2005 Structural Technical Report 1 Structural Concepts / Structural Existing Conditions Report

More information

4.2 Tier 2 Analysis General Analysis Procedures for LSP & LDP

4.2 Tier 2 Analysis General Analysis Procedures for LSP & LDP 4.2 Tier 2 Analysis 4.2.1 General Four analysis procedures are provided in this section: Linear Static Procedure (LSP), Linear Dynamic Procedure (LDP), Special Procedure, and Procedure for Nonstructural

More information

Seismic Base Isolation of RC Frame Structures With and Without Infill

Seismic Base Isolation of RC Frame Structures With and Without Infill Seismic Base Isolation of RC Frame Structures With and Without Infill Sunil Shirol 1, Dr. Jagadish G. Kori 2 1PG student, Dept. of Civil Engineering, Government Engineering College, Haveri, Karnataka,

More information

Effect of Edge Beam and Shear Wall on the Structural Behavior of Flat Plate Multistoried Building: A Computing Modeling for lateral load Analysis

Effect of Edge Beam and Shear Wall on the Structural Behavior of Flat Plate Multistoried Building: A Computing Modeling for lateral load Analysis Effect of Edge Beam and Shear Wall on the Structural Behavior of Flat Plate Multistoried Building: A Computing Modeling for lateral load Analysis Zasiah Tafheem 1, A.S.M Rubaiat Nahid 2, Tanzeelur Rahman

More information

Seismic performance assessment of reinforced concrete buildings using pushover analysis

Seismic performance assessment of reinforced concrete buildings using pushover analysis IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684 Volume 5, Issue 1 (Jan. - Feb. 2013), PP 44-49 Seismic performance assessment of reinforced concrete buildings using pushover

More information

Seismic Analysis of Steel Frames with Different Bracings using ETSBS Software.

Seismic Analysis of Steel Frames with Different Bracings using ETSBS Software. Seismic Analysis of Steel Frames with Different s using ETSBS Software. Muhammed Tahir Khaleel 1, Dileep Kumar U 2 1M.Tech Student, Dept of Civil Engg, SCEM, Karnataka, India 2Asst Professor, Dept of Civil

More information

Earthquakes Analysis of High Rise Buildings with Shear Walls at the Center Core and Center of Each Side of the External Perimeter with Opening

Earthquakes Analysis of High Rise Buildings with Shear Walls at the Center Core and Center of Each Side of the External Perimeter with Opening Earthquakes Analysis of High Rise Buildings with Shear Walls at the Center Core and Center of Each Side of the External Perimeter with Opening Mahdi Hosseini 1, N. V. Ramana Rao 2 1 Ph.D. scholar student

More information

Design check of BRBF system according to Eurocode 8 Use of pushover analysis

Design check of BRBF system according to Eurocode 8 Use of pushover analysis 2010 Design check of BRBF system according to Eurocode 8 Use of pushover analysis This report presents a simple computerbased push-over analysis for a steel structure with Buckling Restrained Braced Frame

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): 2321-0613 Seismic analysis of RC Building Frame with Different Bracing Systems Mohammed Ali Khan

More information

Two-way slabs. Flat plate with or without drop panels / capitals

Two-way slabs. Flat plate with or without drop panels / capitals Two-way slabs Two-way slab behavior is described by plate bending theory which is a complex extension of beam bending. Codes of practice allow use of simplified methods for analysis and design of two-way

More information

Nonlinear Analysis And Performance Assessment for 3D Structure

Nonlinear Analysis And Performance Assessment for 3D Structure Exclusive Distributor in the Middle East for CSI Software licensing, technical support and training solutions www.techiesoft.com For Sales: sales@techiesoft.com For Technical Support: support@techiesoft.com

More information

Ground + 4 floor RCC frame structure in Goa Floor to floor height is 3.0m Plan dimension, 24.0 m x 13.5 m SBC = 20 t/sqm, hard Strata is consider for

Ground + 4 floor RCC frame structure in Goa Floor to floor height is 3.0m Plan dimension, 24.0 m x 13.5 m SBC = 20 t/sqm, hard Strata is consider for Ground + 4 floor RCC frame structure in Goa Floor to floor height is 3.0m Plan dimension, 24.0 m x 13.5 m SBC = 20 t/sqm, hard Strata is consider for seismic analysis Analysis done using structural designing

More information

Council on Tall Buildings

Council on Tall Buildings Structure Design of Sino Steel (Tianjin) International Plaza Xueyi Fu, Group Chief Engineer, China Construction Design International 1 1 Brief of Project 2 Location: Tianjin Xiangluowan Business District

More information

MIDAS Training Series

MIDAS Training Series MIDAS midas Civil Title: All-In-One Super and Sub Structure Design NAME Edgar De Los Santos / MIDAS IT United States 2016 Substructure Session 1: 3D substructure analysis and design midas Civil Session

More information

Load Xpert - Load Planning

Load Xpert - Load Planning Load Xpert - Load Planning User Guide 5990 Auteuil Ave., Brossard, QC, Canada, J4Z 1N2 Tel.: (450) 923-1458 Fax: (450) 923 2077 email: info@loadxpert.com www.loadxpert.com Copyright 2006-2010, CIE-TECH

More information

EARTHQUAKE DESIGN CONSIDERATIONS OF BUILDINGS. By Ir. Heng Tang Hai

EARTHQUAKE DESIGN CONSIDERATIONS OF BUILDINGS. By Ir. Heng Tang Hai EARTHQUAKE DESIGN CONSIDERATIONS OF BUILDINGS By Ir. Heng Tang Hai SYPNOSIS 1. Earthquake-Induced Motions 2. Building Configurations 3. Effectiveness Of Shear Walls 4. Enhancement Of Ductility In Buildings

More information

COMPARATIVE STUDY ON REGULAR & IRREGULAR STRUCTURES USING EQUIVALENT STATIC AND RESPONSE SPECTRUM METHODS

COMPARATIVE STUDY ON REGULAR & IRREGULAR STRUCTURES USING EQUIVALENT STATIC AND RESPONSE SPECTRUM METHODS International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 1, January 2017, pp. 615 622 Article ID: IJCIET_08_01_071 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=1

More information

Seismic fragility curves for RC buildings and bridges in Thessaloniki

Seismic fragility curves for RC buildings and bridges in Thessaloniki Seismic fragility curves for RC buildings and bridges in Thessaloniki Georgios Tsionis, Joint Research Centre, ELSA (formerly University of Patras) Michael N. Fardis, University of Patras, Greece Typologies

More information

AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine

AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine STL6 - Two Span Plate Girder Example 1'-6" 37'-0" 34'-0" 1'-6" 8 1/2" including 1/2" integral wearing surface FWS @ 25 psf 3'-6" 3

More information

REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS

REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS Ahmed GHOBARAH 1 And Maged YOUSSEF 2 SUMMARY A developed macroscopic model is applied to the analysis of an example structure to demonstrate the use

More information

Pushover analysis of RC frame structure using ETABS 9.7.1

Pushover analysis of RC frame structure using ETABS 9.7.1 IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 1 Ver. V (Feb. 2014), PP 08-16 Pushover analysis of RC frame structure using ETABS 9.7.1

More information

LARSA 2000/4th Dimension: Staged Construction Analysis

LARSA 2000/4th Dimension: Staged Construction Analysis LARSA 2000/4th Dimension: Staged Construction Analysis LARSA 2000/4th Dimension: Staged Construction Analysis for LARSA 2000 Finite Element Analysis and Design Software Larsa, Inc. Melville, New York,

More information

EVALUATION OF COLLECTOR DESIGN FOR CONCRETE DIAPHRAGMS

EVALUATION OF COLLECTOR DESIGN FOR CONCRETE DIAPHRAGMS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska EVALUATION OF COLLECTOR DESIGN FOR CONCRETE DIAPHRAGMS J. S. LeGrue

More information

Nonlinear Finite Element Modeling & Simulation

Nonlinear Finite Element Modeling & Simulation Full-Scale Structural and Nonstructural Building System Performance during Earthquakes & Post-Earthquake Fire A Joint Venture between Academe, Industry and Government Nonlinear Finite Element Modeling

More information

SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE BUILDINGS SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE BUILDINGS MODEL BUILDING CODES A model building code is a document containing standardized building requirements applicable throughout the United States.

More information

SEISMIC CAPACITY EVALUATION OF POST-TENSIONED CONCRETE SLAB-COLUMN FRAME BUILDINGS BY PUSHOVER ANALYSIS

SEISMIC CAPACITY EVALUATION OF POST-TENSIONED CONCRETE SLAB-COLUMN FRAME BUILDINGS BY PUSHOVER ANALYSIS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 827 SEISMIC CAPACITY EVALUATION OF POST-TENSIONED CONCRETE SLAB-COLUMN FRAME BUILDINGS BY PUSHOVER ANALYSIS

More information

Embassy Suites Hotel Springfield, Virginia. Dominick Lovallo Structural Option AE Senior Thesis Thesis Advisor: Dr.

Embassy Suites Hotel Springfield, Virginia. Dominick Lovallo Structural Option AE Senior Thesis Thesis Advisor: Dr. Embassy Suites Hotel Springfield, Virginia Dominick Lovallo Structural Option AE Senior Thesis 2012-2013 Thesis Advisor: Dr. Hanagan Lobby Rendering Presentation Overview Proposed Building Presentation

More information

Design of buildings using EC8

Design of buildings using EC8 Design of buildings using EC8 & 1 can be applied to all buildings and is obligatory for buildings which do not satisfy the regularity criteria specified by EC8. The response of all modes of vibration contributing

More information

> 0. 1 f, they are treated as beam-columns.

> 0. 1 f, they are treated as beam-columns. 223 A- Flexural Members (Beams) of Special Moment Frames Requirements of ACI 21.5 are applicable for special moment frame members proportioned primarily to resist flexure with factored axial forces 0.

More information

Stability Analysis of Rigid Steel Frames With and Without Bracing Systems under the Effect of Seismic and Wind Loads

Stability Analysis of Rigid Steel Frames With and Without Bracing Systems under the Effect of Seismic and Wind Loads Stability Analysis of Rigid Steel Frames With and Without Bracing Systems under the Effect of Seismic and Wind Loads Hussain Imran K.M 1, Mrs.Sowjanya G.V 2 1 M.Tech student, Department of Civil Engineering,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 10, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 10, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 10, 2016 ISSN (online): 2321-0613 Seismic Response of Tall Irregular Buildings under Influence of Torsion Lohith Kumar

More information

PERFORMANCE OF MECHANICAL SEISMIC LOAD TRANSMISSION DEVICE BASED ON IMPACT

PERFORMANCE OF MECHANICAL SEISMIC LOAD TRANSMISSION DEVICE BASED ON IMPACT 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2517 PERFORMANCE OF MECHANICAL SEISMIC LOAD TRANSMISSION DEVICE BASED ON IMPACT Jae Kwan KIM 1, Min Hyuk

More information

Performance Based Seismic Design of Reinforced Concrete Building

Performance Based Seismic Design of Reinforced Concrete Building Open Journal of Civil Engineering, 2016, 6, 188-194 Published Online March 2016 in SciRes. http://www.scirp.org/journal/ojce http://dx.doi.org/10.4236/ojce.2016.62017 Performance Based Seismic Design of

More information

TREATMENT OF BEAMS IN FLOOR PRO

TREATMENT OF BEAMS IN FLOOR PRO Structural Concrete Software System TN255_beam_treatment_in_FP_10 062507 TREATMENT OF BEAMS IN FLOOR PRO First draft FLOOR-Pro program is capable of simulating the treatment of the structural components

More information

Effective Length of RC Column with Spandrel Wall

Effective Length of RC Column with Spandrel Wall Effective Length of RC Column with Spandrel Wall *Eun-Lim Baek 1), and Sang-Hoon Oh 2) and Sang-Ho Lee 3) 1), 2) Department of Architectural Engineering, Pusan National University, Busan 69-735, Korea

More information

Analytical Study on Seismic Performance of Hybrid (DUAL) Structural System Subjected To Earthquake

Analytical Study on Seismic Performance of Hybrid (DUAL) Structural System Subjected To Earthquake Vol.2, Issue.4, July-Aug. 2012 pp-2358-2363 ISSN: 2249-6645 Analytical Study on Seismic Performance of Hybrid (DUAL) Structural System Subjected To Earthquake Nabin Raj.C 1, S.Elavenil 2 Department of

More information

Parametric Study of Dual Structural System using NLTH Analysis Ismaeel Mohammed 1 S. M. Hashmi 2

Parametric Study of Dual Structural System using NLTH Analysis Ismaeel Mohammed 1 S. M. Hashmi 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 9, 214 ISSN (online): 2321-613 Ismaeel Mohammed 1 S. M. Hashmi 2 1 P.G. Student 2 Head of the Department 1,2 Department

More information

Application of Pushover Analysis for Evaluating Seismic Performance of RC Building

Application of Pushover Analysis for Evaluating Seismic Performance of RC Building Application of Pushover Analysis for Evaluating Seismic Performance of RC Building Riza Ainul Hakim* MSc Student in Civil Engineering, Faculty of Engineering, King Abdul-Aziz University, Jeddah, KSA Mohammed

More information

Structural Option April 7 th, 2010

Structural Option April 7 th, 2010 Gravity System (Depth Topic I) Post Tensioned Slab A new floor system was designed in an attempt to create a more consistent flooring system throughout the entire building. This new design consists of

More information

Evaluation of Earthquake Risk Buildings with Masonry Infill Panels

Evaluation of Earthquake Risk Buildings with Masonry Infill Panels Evaluation of Earthquake Risk Buildings with Masonry Infill Panels D.K. Bell Compusoft Engineering Ltd, Auckland B.J.Davidson Department of Civil & Resource Engineering, University of Auckland, Auckland

More information

Effect of Column Discontinuity on Base Shear and Displacement of Structure

Effect of Column Discontinuity on Base Shear and Displacement of Structure Effect of Column Discontinuity on Base Shear and Displacement of Structure Kabade P P 1, Prof.Dr. Shinde D.N. 2 1 Student M.E. Civil structure,department of Civil Engineering, PVPIT Budhgaon, Maharashtra,India

More information

Design Provisions for Earthquake Resistance of Structures. The Standards Institution of Israel

Design Provisions for Earthquake Resistance of Structures. The Standards Institution of Israel Israeli Standard SI 413 June 1995 Amendment No. 5 December 2013 Design Provisions for Earthquake Resistance of Structures The Standards Institution of Israel 42 Haim Levanon, Tel Aviv 69977, tel. 03-6465154,

More information

EQUIVALENT UNIFORM DAMPING RATIOS for Irregular in Height Concrete / Steel Structural systems

EQUIVALENT UNIFORM DAMPING RATIOS for Irregular in Height Concrete / Steel Structural systems EUROSTEEL 2008, 3-5 September 2008, Graz, Austria 1485 EQUIVALENT UNIFORM DAMPING RATIOS for Irregular in Height Concrete / Steel Structural systems A.V. Papageorgiou a, C.J. Gantes a a National Technical

More information

DESIGN CRITERIA. Allowable Stress Design (ASD) AISC-1999.

DESIGN CRITERIA. Allowable Stress Design (ASD) AISC-1999. DESIGN CRITERIA 1. INTRODUCTION This appendix summarizes the codes, standards, criteria, and practices that are generally used in the design and construction structural engineering system for the Sarker

More information

Seismic Retrofitting of Building with Soft Storey and Floating Column

Seismic Retrofitting of Building with Soft Storey and Floating Column Seismic Retrofitting of Building with Soft Storey and Floating Column Ganesh Kumbhar 1, Anirudhha Banhatti 2 1Department of Civil Engineering, G. H. Raisoni College of Engineering and Management, Wagholi,

More information

AASHTOWare Bridge Rating/DesignTraining. STL9 Curved Steel 3D Example (BrR/BrD 6.5)

AASHTOWare Bridge Rating/DesignTraining. STL9 Curved Steel 3D Example (BrR/BrD 6.5) AASHTOWare Bridge Rating/DesignTraining STL9 Curved Steel 3D Example (BrR/BrD 6.5) Last Modified: 7/31/2013 STL9-1 AASHTOWare BrR/BrD 6.5 Last Modified: 7/31/2013 STL9-2 AASHTOWare BrR/BrD 6.5 AASHTOWare

More information

SEISMIC BEHAVIOR OF RC BUILDING FRAME WITH STEEL BRACING SYSTEM USING VARIOUS ARRANGEMENTS

SEISMIC BEHAVIOR OF RC BUILDING FRAME WITH STEEL BRACING SYSTEM USING VARIOUS ARRANGEMENTS SEISMIC BEHAVIOR OF RC BUILDING FRAME WITH STEEL BRACING SYSTEM USING VARIOUS ARRANGEMENTS Shachindra Kumar Chadhar 1, Dr. Abhay Sharma 2 1 M.Tech. Student, Department of Civil Engineering, MANIT, Bhopal

More information

Research on the Influence of Infill Walls on Seismic Performance of Masonry Buildings with Bottom Frame-Shear Walls

Research on the Influence of Infill Walls on Seismic Performance of Masonry Buildings with Bottom Frame-Shear Walls AMSE JOURNALS-AMSE IIETA publication-7-series: Modelling B; Vol. 8; N ; pp - Submitted Jan. 7; Revised March, 7, Accepted April, 7 Research on the Influence of Infill Walls on Seismic Performance of Masonry

More information

Available at ISSN

Available at  ISSN Page No.149 Available at www.ijcasonline.com ISSN 2349 0594 International Journal of Modern Chemistry and Applied Science International Journal of Modern Chemistry and Applied Science 2015, 2(3), 148-152

More information