FLEXURAL BEHAVIOR OF RC BEAMS REINFORCED WITH NSM AFRP RODS

Size: px
Start display at page:

Download "FLEXURAL BEHAVIOR OF RC BEAMS REINFORCED WITH NSM AFRP RODS"

Transcription

1 Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005) Chen and Teng (eds) 2005 International Institute for FRP in Construction FLEXURAL BEHAVIOR OF RC BEAMS REINFORCED WITH NSM AFRP RODS N. Kishi 1, H. Mikami 2, Y. Kurihashi 3, and S. Sawada 1 1 Dept. of Civil Engineering and Architecture, Muroran Institute of Technology, Japan kishi@news3.ce.muroran-it.ac.jp 2 Sumitomo Mitsui Construction Co., Ltd., Japan 3 Material Division, Civil Engineering Research Inst. of Hokkaido, Japan. ABSTRACT In this paper, in order to investigate an enhancement of flexural load-carrying capacity of the existing reinforced concrete (RC) members reinforced with near surface mounted (NSM) fibre reinforced polymer (FRP) rods and debonding behavior of those FRP rods, static four-point loading tests for RC beams reinforced with NSM Aramid FRP (AFRP) rods were conducted. For comparisons, RC beams reinforced in flexural with bonding AFRP sheet on the tension-side surface were also tested, in which axial stiffness EA between two reinforcing materials is similar to each other. In this study, the axial stiffness EA is varied in three levels of magnitude. The results obtained from this study are as follows: 1) It is experimentally observed that the similar reinforcing effects of AFRP rods/sheet can be expected if axial stiffness EA of reinforcing materials is similar to each other; and 2) The failure mode of the RC beams can be predicted using an empirical equation for the RC beams reinforced with bonding FRP sheet. KEYWORDS RC beams, flexural reinforcing, NSM FRP rods, FRP sheet. INTRODUCTION At present, FRP sheet bonding method and/or tension-side surface overlaying method with concrete have been applied for reinforcing the existing RC slabs and beams. However, applying those reinforcing methods, concrete surface of those existing RC members will be perfectly covered with sheet and/or overlaid concrete. As the results, following drawbacks are pointed out: 1) it is impossible to do a visual inspection of crack developed due to degradation of concrete; 2) anti-fatigue capacity of existing concrete tends to be decreased due to undrained water infiltrated in concrete and so on. As one of the methods for figuring out of those drawbacks, near-surface mounting method of FRP rod has been proposed. Lorenzis and Nanni (2001a, 2001b) have conducted static loading tests for RC beams reinforced in shear with NSM FRP rods and it is experimentally confirmed that the shear capacity of the RC beams can be effectively enhanced by applying this method. Nordin and Taljsten (2003) have conducted static loading tests for RC beams reinforced with pre-stressed NSM Carbon FRP (CFRP) rods and it is demonstrated experimentally that the pre-stressing of FRP rods in slots gives a very good bonding capacity for retaining the pre-stressing forces. Micelli et al. (2003) have studied the environmental effects to RC beams reinforced with NSM rods due to exposing environmental agents including freezing and thaw, high temperature and high relative humidity cycles under direct UV exposure. In this paper, in order to investigate the reinforcing effects and debonding behavior of NSM AFRP rods, static four-point loading tests for RC beams reinforced in flexure with NSM AFRP rods were conducted. Here, for comparisons, RC beams reinforced with bonding AFRP sheet on the tension-side surface were also tested, in which axial stiffness EA of those reinforcing materials is similar to each other. Here, three levels of magnitude for axial stiffness EA of the reinforcing materials were taken as variable by changing radius for AFRP rods, and width and mass for AFRP sheet. EXPERIMENTAL OVERVIEW Total six reinforced RC beams listed in Table 1 were used in this study, in which those three are of reinforced with NSM AFRP rods and the other three are of reinforced bonding AFRP sheet on the tension-side surface. Each beam was designated using two items: reinforcing material (R: AFRP rod, S: AFRP sheet) and index 337

2 number in ascending order of axial stiffness EA for each reinforcing material. The axial stiffness EA of reinforcing material was varied in three levels by changing rod size for AFRP rod, and width and mass for AFRP sheet. From Table 1, it is observed that the axial stiffness EA in same index number for both beams R and S are similar to each other. All beams were designed as double reinforced RC beam with a rectangular cross section as shown in Fig. 1. SD 345 D13/D19 and SD 295 D10 rebar were used as the axial rebar and stirrup, respectively. Here, SD 345 D19 and D13 rebar were used as top and bottom one, respectively, so as the RC beams to reach ultimate state with AFRP rods/sheet debonding failure mode. Schematic reinforcing diagrams for beams R/S and location of strain gauges glued on the reinforcing material are shown in Fig. 2, in which two AFRP rods were used as NSM one. NSM AFRP rods were mounted based on the following procedure: 1) two grooves with a little wider width and depth than the diameter of mounted AFRP rod at 40 mm inside from the side edges, where are the same lateral positions with the bottom axial rebar, were excavated using diamond disc saw; 2) those grooves were filled with putty made from epoxy resin; and 3) AFRP rods were mounted into the grooves. In case of beams S, unidirectional AFRP sheet was bonded on the tension-side surface of RC beams. Concrete surface was gritblasted to improve the bonding strength between AFRP sheet and concrete. Both beams R and S were reinforced in the region of RC beams leaving 100 mm between the supporting points and the rod/sheet end. Four-point loading test method with a 500-mm pure bending span was applied. Strain gauges were glued to the AFRP rod/sheet at intervals of 100 mm to measure the strain distribution within the AFRP rod/sheet during the whole loading procedure. In these experiments, surcharged load, mid-span deflection (hereinafter, deflection), and strain distribution of AFRP rod/sheet were measured and recorded continuously using digital data recorders. At the commencement of experiment, mechanical properties of concrete and rebar used in the experiments were as follows: compressive strength of concrete f c = 34.3 MPa and yielding stress of axial rebar f y = 362 MPa. Mechanical properties of AFRP rods and sheet are listed in Tables 2 and 3, in which the values for AFRP rods are nominal values of the pre-cured ones and those of AFRP sheet are tensile test results. Table 1 RC beams Specimen Reinforcing material Reinforcing volume Axial stiffness EA (MN) R-1 RA5 two rods (φ5.0 mm) 2.45 R-2 RA7 two rods (φ7.3 mm) 5.25 R-3 RA9 two rods (φ9.0 mm) 7.88 S-1 A200 width: 136 mm 2.46 S-2 A415 width: 140 mm 5.25 S-3 A415+A200 width: 142 mm 7.89 Figure 1 RC beam configurations Figure 2 Lower surface of reinforced RC beams and location of strain gauge 338

3 Table 2 Material properties of pre-cured AFRP rods (nominal value) AFRP rod Diameter (mm) Area of cross section A (mm 2 ) E-modulus (GPa) Tensile strength σ f (GPa) Strain limit (%) RA RA RA Table 3 Material properties of AFRP sheet (nominal value) AFRP sheet Mass (g/m 2 ) Thickness t (mm) E-modulus (GPa) Tensile strength σ f (GPa) Strain limit (%) A A EXPERIMENTAL RESULTS AND DISCUSSIONS Non-Dimensional Load- Deflection Curves Figures from 3(a) to 3(c) show experimental and analytical non-dimensional load-deflection curves for three different cases of axial stiffness EA of reinforcing material. In those figures, load and deflection are normalized with reference to each experimental and/or analytical load P ye, P yc and deflection δ ye, δ yc at the loading point of main rebar yielding, respectively, to compare the reinforcing effects of FRP material in the region over the rebar yield point based on the same scale among experimental and analytical results. Those analytical results were estimated by using multi-section method. Load and deflection at main rebar yielding, non-dimensional maximum load and deflection for each analytical and experimental results, non-dimensional load and deflection with reference to analytical results, and failure mode are listed in Table 4. From Fig. 3, it is observed that if the axial stiffness EA of reinforcing material is similar between both beams R and S, non-dimensional load-deflection curves for those beams are in good corresponding to each other from beginning to ultimate state. Then, if axial stiffness EA of NSM AFRP rods is similar to that of AFRP sheet, the similar flexural reinforcing effects of NSM AFRP rods with those of AFRP sheet bonded to tension-side surface can be expected. Even though non-dimensional load-deflection curves for beams S after main rebar yielding have a tendency to a little underestimate those of analytical results, the curves obtained from experimental results are generally better corresponding to analytical ones in spite of the type of reinforcing material. Then, it is supposed that a better bonding capacity can be obtained in cases of both AFRP rod and sheet from the beginning of loading to near ultimate state of the RC beams. From Table 4, comparing the non-dimensional maximum load and deflection of the experimental results with those of analytical ones, it is seen that the experimental results for all RC beams considered here are smaller than the analytical ones which were obtained by means of multi-section methods considering stress-strain relation for each material. Every RC beam reaches ultimate state with AFRP rod/sheet debonding failure mode. Based on the empirical equations for predicting the failure type of RC beams reinforced in flexural with bonding FRP sheet on tension-side surface developed by Kishi et al. (2002), all beams R and S are judged as reaching Figure 3 Comparison of non-dimensional load-deflection curves among experimental and analytical results 339

4 Table 4 Experimental and analytical results Beam At rebar yield point At maximum loading point (normalized) Load Deflection Load Deflection Exp. Ana. Exp. Ana. Exp. Ana. Exp. Ana. P ye P yc δ ye δ yc P ue /P ye P uc /P yc (i)/(ii) δ ue /δ ye δ uc /δ yc (iii)/(iv) (kn) (kn) (mm) (mm) (i) (ii) (iii) (iv) R R R S S S Experimental behavior at ultimate Rods Rods Rods Sheet broken Sheet Sheet ultimate state with rod/sheet debonding failure mode. It implies that the empirical equations may be applicable for RC beams reinforced with NSM AFRP rods. The equation for the lower bound of the sheet debonding failure mode is as follows: L yu /d = 0.35 r s (1) Where L yu is main rebar yield length in the equi-shear span at ultimate state estimated by using multi-section method, d is effective height of the cross section of RC beam and r s is shear span ratio which is obtained dividing shear span length a by the effective height d. Strain Distribution of AFRP Rod/Sheet Figure 4 compares analytical and experimental strain distributions of AFRP rod/sheet at three loading points in the region over the rebar yield point up to ultimate state: rebar yield point (i), midway point (ii), and measured maximum loading point (iii). In those figures, analytical results are drawn symmetrically with respect to the mid-span point and experimental results are illustrated using the strains measured over the entire length of the span. Since non-dimensional deflection δ max /δ y at maximum load point is different between two beams R and S, here the strain distributions at smaller non-dimensional deflection between them are illustrated. From those figures, it is observed that at rebar yield point (i), experimental and analytical results for three different levels of axial stiffness EA of reinforcing materials are in good corresponding among them and AFRP rod/sheet have still near perfectly bonded to concrete. From the experimental results at midway point (ii), even though bigger strains occurred locally in the equi-bending span due to flexural cracks, both experimental results are in better corresponding to the analytical ones. However, in the equi-shear span, experimental results in main rebar yield area have a tendency to be larger than the analytical ones, and this tendency is specially remarkable for the RC beams with larger axial stiffness EA of reinforcing materials. This implies that since critical diagonal crack (CDC) occurred in the lower concrete cover of the main rebar yield area, a peeling action of the CDC is remarkable due to pushing AFRP rod/sheet downward by increasing of shear force. From the strain distributions at the maximum loading point (iii), it is observed that bigger strain distribution comparing with the analytical one is spread toward the supporting point corresponding to the expansion of rebar yield area. The strain distribution in the equi-shear span obtained from beams R has a tendency to be larger than those from beams S. This implies that in cases reinforcing with NSM AFRP rods, all forces for peeling action of CDC have applied to only two AFRP rods locally. Figure 5 shows an appearance of development of CDC at the beginning of AFRP rod/sheet debonding for beams R/S-3. From those figures, it is observed that AFRP rods/sheet is pressed downward due to the peeling action of CDC developed in the lower concrete cover of the equi-shear span and reinforcing materials have a tendency to be. 340

5 Figure 4 Comparison of axial strain distribution of AFRP rod/sheet among experimental and analytical results Figure 5 Cracking of beam at the time of rod/sheet debonding for beams R/S-3 Therefore, it is seen that NSM AFRP rods will be peeled-off due to the tip of CDC pressing downward as well as in case of RC beams reinforced with bonding FRP sheet on the tension-side surface. This implies that the failure mode of the RC beams reinforced with NSM AFRP rods may be predicted by using an empirical equation as proposed for the RC beams reinforced with bonding FRP sheet on the tension-side surface. Figure 6 shows crack distributions of each RC beam after experiment. From this figure, in case of beams R, it is observed that the flexural cracks and splitting cracks are developed in the lower concrete cover of equi-bending span, but the concrete cover has not been still spalled yet. In the equi-shear span, since the formation of CDCs are observed, it is reconfirmed that the NSM AFRP rods have been due to the peeling action of CDC and the RC beams have reached ultimate state with AFRP rods debonding. On the other hand, in case of beams S, it is observed that in equi-bending span, flexural cracks and splitting cracks along the main rebar are developed. Since CDCs have been also developed in the lower concrete cover of the equi-shear span near loading point, it is supposed that AFRP sheet has been fully due to the peeling action of the CDC. However, since beam S-1 has reached ultimate state due to sheet rupture, the lower concrete cover has not been severely suffered from the damage. Figure 7 shows the damage conditions of the lower surface of beam R-2 after experiment, which has reached ultimate state with AFRP rods debonding. From this figure, it is observed that the concrete around the NSM AFRP rods has been spalled out corresponding to debonding of AFRP rods. Therefore, bonding strength between NSM AFRP rod and concrete may be similar or higher than the tensile strength of concrete. 341

6 Figure 6 Crack pattern for beams R/S after experiment Figure 7 Lower surface of beam R-2 after experiment CONCLUSIONS In this paper, in order to overcome the drawbacks of reinforcing methods for enhancing the flexural loadcarrying capacity of existing RC members such as FRP sheet bonding method and/or overlaying method with concrete, by proposing the use of near surface mounting method with FRP rods, the enhancing effects of flexural load-carrying capacity and debonding behavior of the FRP rods were experimentally investigated comparing with those for the RC beams reinforced with bonding FRP sheet on the tension-side surface. Here, AFRP rods and sheet were used for flexural reinforcing of the RC beams. Results obtained from this study are as follows: 1) If axial stiffness EA of NSM AFRP rods is similar with that of AFRP sheet, flexural reinforcing effects of the NSM AFRP rods may be similar with those of bonding FRP sheet; 2) RC beams reinforced in flexural with NSM AFRP rods reached ultimate state accompanying with the AFRP rods being due to a peeling action of critical diagonal crack (CDC) developed in the lower concrete cover of the equi-shear span near loading point as well as in the case reinforcing with bonding AFRP sheet; and 3) Failure mode of the RC beams reinforced with NSM AFRP rods can be predicted by using an empirical equation developed for that of the RC beams reinforced with bonding FRP sheet. REFERENCES JSCE: Standard Specifications for Concrete Structures-2002 [Structural Performance Verification], (2002) (in Japanese) Kishi, N., Mikami, H. and Kurihashi, Y. (2002). Experimental study for investigation of load-carrying behavior and prediction of failure mode of RC beams reinforced in flexure with bonding FRP sheet, Journal of materials, concrete structures and pavements, JSCE, 771(V-56), (in Japanese). Lorenzis, L. D., Nanni, A. (2001a). Characterization of FRP rods as near-surface mounted reinforcement, Journal of Composite for Construction, ASCE, 5(2), Lorenzis, L. D., Nanni, A. (2001b). Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods, ACI Structural Journal, 98(1), Micelli, F. and Tegola, A.L, and Myers, J.J. (2003). Environmental effects on RC beams with near surface mounted FRP rods, Proceedings of FRPRCS-6, Singapore, 8-10 July, Nordin, H. and Taljsten, B. (2003). Concrete beams strengthened with pre-stressed near surface mounted reinforcement, Proceedings of FRPRCS-6, Singapore, 8-10 July,

Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain 1, Khaled Fawzy 2, and Mahmoud Nasr 3

Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain 1, Khaled Fawzy 2, and Mahmoud Nasr 3 ISSN: 239-5967 ISO 900:2008 Certified Volume 4, Issue 5, September 205 Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain, Khaled Fawzy 2, and Mahmoud Nasr 3 Abstract-

More information

Performance of NSM FRP strengthened concrete slabs at low temperatures

Performance of NSM FRP strengthened concrete slabs at low temperatures Fourth International Conference on FRP Composites in Civil Engineering (CICE8) 22-24July 8, Zurich, Switzerland Performance of NSM FRP strengthened concrete slabs at low temperatures P. Burke, L.A. Bisby

More information

AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES. Abstract

AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES. Abstract AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES Nabil F. Grace, Lawrence Technological University, Southfield, MI George Abdel-Sayed, University of Windsor, Windsor, ON Wael

More information

Tests on FRP-Concrete Bond Behaviour in the presence of Steel

Tests on FRP-Concrete Bond Behaviour in the presence of Steel Tests on FRP-Concrete Bond Behaviour in the presence of Steel M. Taher Khorramabadi and C.J. Burgoyne Engineering Department, University of Cambridge Trumpington St., Cambridge, UK ABSTRACT The bond behaviour

More information

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP)

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Abstract This paper presents the potential use of externally bonded fiber reinforced

More information

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES F. El M e s k i 1 ; M. Harajli 2 1 PhD student, Dept. of Civil and Environmental Engineering, American Univ. of Beirut;

More information

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams Journal of Asian Concrete Federation Vol. 2, No. 2, Dec. 2016, pp. 117-127 ISSN 2465-7964 / eissn 2465-7972 http://dx.doi.org/10.18702/acf.2016.12.2.2.117 Experimental investigation of the use of CFRP

More information

Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened with CFRP Plates

Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened with CFRP Plates CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened

More information

Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems

Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems Mohamad J. Terro Associate Professor. Civil Engineering Department, Kuwait University. Sameer

More information

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS Weichen XUE Professor Tongji University Siping Road 1239#, Shanghai 200092, China xuewc@tongji.edu.cn*

More information

Fiber-Reinforced Polymer Bond Test in Presence of Steel and Cracks

Fiber-Reinforced Polymer Bond Test in Presence of Steel and Cracks ACI STRUCTURAL JOURNAL TECHNICAL PAPER Title no. 108-S69 Fiber-Reinforced Polymer Bond Test in Presence of Steel and Cracks by Mehdi Taher Khorramabadi and Chris J. Burgoyne The understanding of failure

More information

Beam Pull Out Tests of NSM FRP and Steel Bars in Concrete

Beam Pull Out Tests of NSM FRP and Steel Bars in Concrete Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Beam Pull Out Tests of NSM FRP and Steel Bars in Concrete D. G. Novidis and S. J. Pantazopoulou

More information

PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS

PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS Renata Kotynia Ph.D., Assistant Professor Technical University of Lodz, Poland Al. Politechniki 6,

More information

Bond Characteristics of GFRP Sheet on Strengthened Concrete Beams due to Flexural Loading

Bond Characteristics of GFRP Sheet on Strengthened Concrete Beams due to Flexural Loading Bond Characteristics of GFRP Sheet on Strengthened Concrete Beams due to Flexural Loading Rudy Djamaluddin, Mufti Amir Sultan, Rita Irmawati, and Hino Shinichi Abstract Fiber reinforced polymer (FRP) has

More information

Effects of FRP-Concrete Interface Bond Properties on the Performance of RC Beams Strengthened in Flexure with Externally Bonded FRP Sheets

Effects of FRP-Concrete Interface Bond Properties on the Performance of RC Beams Strengthened in Flexure with Externally Bonded FRP Sheets Effects of FRP-Concrete Interface Bond Properties on the Performance of RC Beams Strengthened in Flexure with Externally Bonded FRP Sheets Hedong Niu 1 and Zhishen Wu 2 Abstract: Fiber reinforced polymer

More information

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS D.S. Lunn 1,2, V. Hariharan 1, G. Lucier 1, S.H. Rizkalla 1, and Z. Smith 3 1 North Carolina State University, Constructed Facilities Laboratory,

More information

AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION. Abstract

AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION. Abstract AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION Renato Parretti, Co-Force America, Inc., Rolla, MO Antonio Nanni, University of Missouri-Rolla, Rolla, MO Abstract

More information

Application of Tensioned CFRP Strip Method to an Existing Bridge

Application of Tensioned CFRP Strip Method to an Existing Bridge SP-230 66 Application of Tensioned CFRP Strip Method to an Existing Bridge by A. Tateishi, A. Kobayashi, Y. Hamada, T. Takahashi, and H. Yasumori Synop nopsis: s: Tensioned carbon fiber reinforced polymer

More information

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni Deflection Assessment of an FRP-Reinforced Concrete Bridge By Danielle K. Stone, Andrea Prota, and Antonio Nanni Synopsis: Serviceability of FRP-reinforced concrete structures remains a highly relevant

More information

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips M. Samadi Department of civil engineering., Mashhad Branch, Islamic Azad University, Mashhad,

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information

Moment curvature analysis of concrete flexural members confined with CFRP grids

Moment curvature analysis of concrete flexural members confined with CFRP grids Materials Characterisation V 131 Moment curvature analysis of concrete flexural members confined with CFRP grids A. Michael & P. Christou Department of Civil Engineering, Frederick University, Cyprus Abstract

More information

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP.

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Mohit Jaiswal Assistant Professor, Department of Civil

More information

CENTER FOR INFRASTRUCTURE ENGINEERING STUDIES

CENTER FOR INFRASTRUCTURE ENGINEERING STUDIES CENTER FOR INFRASTRUCTURE ENGINEERING STUDIES Moment Redistribution in Continuous CFRP-Strengthened Concrete Members: Experimental Results by P. Casadei & A. Nanni Department of Civil Engineering, University

More information

GFRP HOLLOW-CORE REBARS FOR CONCRETE BEAMS

GFRP HOLLOW-CORE REBARS FOR CONCRETE BEAMS GFRP HOLLOW-CORE REBARS FOR CONCRETE BEAMS Guillermo Claure 1, Francisco De Caso y Basalo 2 and Antonio Nanni 3 1 PhD Candidate, Civil Engineering, University of Miami 1251 Memorial Drive, MEB 105, Coral

More information

THE DESIGN OF EXTERNALLY BONDED REINFORCEMENT (EBR) FOR REINFORCED CONCRETE STRUCTURES BY MEANS OF FIBRE REINFORCED POLYMERS (FRP)

THE DESIGN OF EXTERNALLY BONDED REINFORCEMENT (EBR) FOR REINFORCED CONCRETE STRUCTURES BY MEANS OF FIBRE REINFORCED POLYMERS (FRP) THE DESIGN OF EXTERNALLY BONDED REINFORCEMENT (EBR) FOR REINFORCED CONCRETE STRUCTURES BY MEANS OF FIBRE REINFORCED POLYMERS (FRP) Introduction Dott. Ing. Giovanni Cerretini Studio Technica (studio@technica.net)

More information

EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS

EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS Ugo Ianniruberto Department of Civil Engineering, University of Rome Tor Vergata, ITALY Via del Politecnico, 1, 00133

More information

Strengthening Effect on Prestressed Concrete members Affected by Alkali-Silica Reaction(ASR)

Strengthening Effect on Prestressed Concrete members Affected by Alkali-Silica Reaction(ASR) Strengthening Effect on Prestressed Concrete members Affected by Alkali-Silica Reaction(ASR) Yukio Takebe 1, Takanobu Yokoyama 2, Hideshige Yonekawa 3, Kenichi Nakamura 4, Toyoaki Miyagawa 5 1 DPS Bridge

More information

EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE

EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE Hiroshi MUTSUYOSHI 1) and Nguyen Duc HAI 1) 1) Structural Material Lab., Department of Civil and Environmental Engineering,

More information

RESPONSE OF SUBSTANDARD REINFORCING DETAILS T CONNECTIONS UPGRADED WITH CONCRETE COVERS AND CFRP

RESPONSE OF SUBSTANDARD REINFORCING DETAILS T CONNECTIONS UPGRADED WITH CONCRETE COVERS AND CFRP Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013) 11-13 December 2013, Melbourne, Australia 2013 International Institute for FRP in Construction RESPONSE OF SUBSTANDARD REINFORCING DETAILS

More information

THE EFFECT OF FATIGUE LOADING ON BOND STRENGTH OF CFRP BONDED STEEL PLATE JOINTS

THE EFFECT OF FATIGUE LOADING ON BOND STRENGTH OF CFRP BONDED STEEL PLATE JOINTS Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005) Chen and Teng (eds) 2005 International Institute for FRP in Construction THE EFFECT OF FATIGUE LOADING ON BOND

More information

Flexural Behavior of Reinforced Concrete Beams Strengthened with CFRP Sheets and Epoxy Mortar

Flexural Behavior of Reinforced Concrete Beams Strengthened with CFRP Sheets and Epoxy Mortar University of New Haven Digital Commons @ New Haven Civil Engineering Faculty Publications Civil Engineering 8-2008 Flexural Behavior of Reinforced Concrete Beams Strengthened with CFRP Sheets and Epoxy

More information

(FRP) ( CFRP

(FRP) ( CFRP ISSN: 23195967 Effect of Temperature on Strength of Concrete Strengthening With CFRP H. Shehab El Din, Heba A. Mohamed hshehabeldin@yahoo.com, hebawahbe@yahoo.com Dean & Professor of Reinforced Concrete,

More information

Behaviour of FRP wrapped circular concrete columns under eccentric loading

Behaviour of FRP wrapped circular concrete columns under eccentric loading University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2007 Behaviour of FRP wrapped circular concrete columns under eccentric

More information

Effect of FRP strengthening on the behavior of shear walls with opening

Effect of FRP strengthening on the behavior of shear walls with opening CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Effect of FRP strengthening on the behavior of shear walls with opening M. Asfa

More information

NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT

NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT M. A. Musmar 1, M. I. Rjoub 2 and M. A. Abdel Hadi 1 1 Department of Civil Engineering, Al-Ahliyya Amman University,

More information

Sustainable Shear Behaviour of 2-Span Continuous Reinforced Concrete T-Beams with CFRP Strips

Sustainable Shear Behaviour of 2-Span Continuous Reinforced Concrete T-Beams with CFRP Strips Sustainable Shear Behaviour of 2-Span Continuous Reinforced Concrete T-Beams with CFRP Strips Abdul Aziz Abdul Samad 1,*, Marwan B.S. Alferjani 2, Noorwirdawati Ali 1, Noridah Mohamad 2, Mohd Hilton Ahmad

More information

Finite Element Modelling of RC Beams Retrofitted with CFRP Fabrics

Finite Element Modelling of RC Beams Retrofitted with CFRP Fabrics SP-230 29 Finite Element Modelling of RC Beams Retrofitted with CFRP Fabrics by H.B. Pham and R. Al-Mahaidi Synopsis: In this paper, non-linear finite element modelling of debonding failure of rectangular

More information

Shear Assessment and Strengthening of Contiguous-Beam Concrete Bridges Using FRP Bars

Shear Assessment and Strengthening of Contiguous-Beam Concrete Bridges Using FRP Bars SP-230 48 Shear Assessment and Strengthening of Contiguous-Beam Concrete Bridges Using FRP Bars by P. Valerio, T.J. Ibell and A.P. Darby Synopsis: Many concrete bridges related to railways in the U.K.

More information

Slenderness ratio effect on the behavior of steel and carbon-frp reinforced concrete-filled FRP tubes

Slenderness ratio effect on the behavior of steel and carbon-frp reinforced concrete-filled FRP tubes Slenderness ratio effect on the behavior of steel and carbon-frp reinforced concrete-filled FRP tubes H. M. Mohamed 1, R. Masmoudi 2, and Y. Shao 3 1 Postdoctoral Fellow, University of Sherbrooke, Sherbrooke,

More information

AFFECT OF ENVIRONMENTAL CONDITIONS DURING INSTALLATION PROCESS ON BOND STRENGTH BETWEEN CFRP LAMINATE AND CONCRETE SUBSTRATE

AFFECT OF ENVIRONMENTAL CONDITIONS DURING INSTALLATION PROCESS ON BOND STRENGTH BETWEEN CFRP LAMINATE AND CONCRETE SUBSTRATE AFFECT OF ENVIRONMENTAL CONDITIONS DURING INSTALLATION PROCESS ON BOND STRENGTH BETWEEN CFRP LAMINATE AND CONCRETE SUBSTRATE M. Ekenel, J. J. Myers and A. L. Khataukar Center for Infrastructure Engineering

More information

Tension and compression testing of fibre reinforced polymer (FRP) bars

Tension and compression testing of fibre reinforced polymer (FRP) bars University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Tension and compression testing of fibre reinforced

More information

DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP INTRODUCTION

DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP INTRODUCTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3242 DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP Javad

More information

STRENGTHENING OF MASONRY WITH NEAR SURFACE MOUNTED FRP BARS. Abstract

STRENGTHENING OF MASONRY WITH NEAR SURFACE MOUNTED FRP BARS. Abstract STRENGTHENING OF MASONRY WITH NEAR SURFACE MOUNTED FRP BARS J. Gustavo Tumialan, University of Missouri-Rolla, Rolla, MO Nestore Galati, University of Missouri-Rolla, Rolla, MO Sinaph M. Namboorimadathil,

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP)

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP) Asia-Pacific Conference on FRP in Structures (APFIS 7) S.T. Smith (ed) 7 International Institute for FRP in Construction SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED

More information

STATIC AND FATIGUE BEHAVIOR OF CFRP-STRENGTHENED RC BRIDGE GIRDERS SUBJECTED TO VEHICLE OVERLOADING

STATIC AND FATIGUE BEHAVIOR OF CFRP-STRENGTHENED RC BRIDGE GIRDERS SUBJECTED TO VEHICLE OVERLOADING Advanced Steel Construction Vol. 11, No. 3, pp. 359-371 (215) 359 STATIC AND FATIGUE BEHAVIOR OF CFRP-STRENGTHENED RC BRIDGE GIRDERS SUBJECTED TO VEHICLE OVERLOADING Xiao-Yan Sun 1, Jian-Guo Dai 2, Hai-Long

More information

Upgrading Missouri Transportation Infrastructure: Solid RC Decks Strengthened with FRP Systems

Upgrading Missouri Transportation Infrastructure: Solid RC Decks Strengthened with FRP Systems TRB paper Number: 00-1177 Upgrading Missouri Transportation Infrastructure: Solid RC Decks Strengthened with FRP Systems First Author: Tarek Alkhrdaji, Ph.D. Candidate, University of Missouri-Rolla Center

More information

Wood-based beams strengthened with FRP laminates Improved performance with pre-stressed systems

Wood-based beams strengthened with FRP laminates Improved performance with pre-stressed systems COST Action FP1004 Final Meeting 15 April 17 April 2015 Lisbon, Portugal Wood-based beams strengthened with FRP laminates Improved performance with pre-stressed systems Robert Kliger and Reza Haghani -

More information

Strengthening of infilled RC frames by CFRP

Strengthening of infilled RC frames by CFRP Earthquake Resistant Engineering Structures V 591 Strengthening of infilled RC frames by CFRP G. Erol, K. Taskın, E. Yuksel & H. F. Karadogan Civil Engineering Faculty of Istanbul Technical University,

More information

Seismic Performance of GFRP-RC Exterior Beam-Column Joints with Lateral Beams

Seismic Performance of GFRP-RC Exterior Beam-Column Joints with Lateral Beams Seismic Performance of GFRP-RC Exterior Beam-Column Joints with Lateral Beams By Shervin Khalili Ghomi A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment

More information

Behaviour of FRP wrapped circular reinforced concrete columns

Behaviour of FRP wrapped circular reinforced concrete columns Challenges, Opportunities and Solutions in Structural Engineering and Construction Ghafoori (ed.) 2010 Taylor & Francis Group, London, ISBN 978-0-415-56809-8 Behaviour of FRP wrapped circular reinforced

More information

DELAYING REINFORCED CONCRETE BEAM CRACKS USING CFRP (NUMERICAL MODELING)

DELAYING REINFORCED CONCRETE BEAM CRACKS USING CFRP (NUMERICAL MODELING) DELAYING REINFORCED CONCRETE BEAM CRACKS USING CFRP (NUMERICAL MODELING) Nadjib HEMAIDI ZOURGUI 1, Mohamed TAKI 2 and Abderrahmane KIBBOUA 3 ABSTRACT The main objective of this work is to analyze the beneficial

More information

DESIGN GUIDELINES Partial safety factors for strengthening of metallic structures. Dr. Stuart Moy University of Southampton

DESIGN GUIDELINES Partial safety factors for strengthening of metallic structures. Dr. Stuart Moy University of Southampton DESIGN GUIDELINES Partial safety factors for strengthening of metallic structures Dr. Stuart Moy University of Southampton Contents 1. Some examples of strengthening 2. Metallic structures 3. Why are Design

More information

Repair and upgrading of concrete structures with FRP materials

Repair and upgrading of concrete structures with FRP materials Repair and upgrading of concrete structures with FRP materials by Professor Björn Täljsten Luleå University of Technology Sto Scandinavia AB Definitions Maintenance: Keep a structure performance at original

More information

CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS

CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS Nagaraj Eshwar Dr Tim Ibell Dr Antonio Nanni Graduate Research Assistant Senior Lecturer Jones Professor CIES, # 223 ERL University of Bath CIES,

More information

FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing

FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing SP-230 26 FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing by B.M. McSweeney and M.M. Lopez Synopsis: The sensitivity of the FRP-concrete bond failure load to changes in geometric

More information

NEW HYBRID GLULAM BEAM REINFORCED WITH CFRP AND ULTRA-HIGH-PERFORMANCE CONCRETE

NEW HYBRID GLULAM BEAM REINFORCED WITH CFRP AND ULTRA-HIGH-PERFORMANCE CONCRETE NEW HYBRID GLULAM BEAM REINFORCED WITH CFRP AND ULTRA-HIGH-PERFORMANCE CONCRETE L. MICHEL Associate Professor Université Lyon 1-INSA LYON 1 82 bd Niels Bohr 69622 VILLEURBANNE Emmanuel.ferrier@univ-lyon1.fr

More information

STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) LAMINATES

STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) LAMINATES Composites in Construction 2005 Third International Conference, Hamelin et al (eds) 2005 ISBN xxxxx Lyon, France, July 11 13, 2005 STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON

More information

CENTER FOR INFRASTRUCTURE ENGINEERING STUDIES

CENTER FOR INFRASTRUCTURE ENGINEERING STUDIES CENTER FOR INFRASTRUCTURE ENGINEERING STUDIES BOND BETWEEN CARBON FIBER REINFORCED POLYMER SHEETS AND CONCRETE by BRIAN DANIEL MILLER University of Missouri-Rolla CIES 99-3 Disclaimer The contents of this

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN 1325 A Comparative Study on Beam Strengthened with Externally Bonded FRP Material Tanni Alam Dola and Md. Zakaria Ahmed Department of Civil Engineering, Bangladesh University of Engineering and Technology,

More information

ASLAN 500 CARBON FIBER REINFORCED POLYMER (CFRP TAPES) FOR STRUCTURAL STRENGTHENING COMPOSITE REINFORCING FOR LONG LASTING CONCRETE STRUCTURES

ASLAN 500 CARBON FIBER REINFORCED POLYMER (CFRP TAPES) FOR STRUCTURAL STRENGTHENING COMPOSITE REINFORCING FOR LONG LASTING CONCRETE STRUCTURES ASLAN 500 CARBON FIBER REINFORCED POLYMER (CFRP TAPES) FOR STRUCTURAL STRENGTHENING COMPOSITE REINFORCING FOR LONG LASTING CONCRETE STRUCTURES DRAMATICALLY INCREASE FLEXURAL & SHEAR CAPACITY EXTEND THE

More information

INNOVATIVE SEISMIC RETROFITTING OF OLD-TYPE RC COLUMNS THROUGH JACKETING: TEXTILE-REINFORCED MORTARS (TRM) VERSUS FIBER-REINFORCED POLYMERS (FRP)

INNOVATIVE SEISMIC RETROFITTING OF OLD-TYPE RC COLUMNS THROUGH JACKETING: TEXTILE-REINFORCED MORTARS (TRM) VERSUS FIBER-REINFORCED POLYMERS (FRP) INNOVATIVE SEISMIC RETROFITTING OF OLD-TYPE RC COLUMNS THROUGH JACKETING: TEXTILE-REINFORCED MORTARS (TRM) VERSUS FIBER-REINFORCED POLYMERS (FRP) ABSTRACT: D.A. Bournas 1 and T.C. Triantafillou 2 1 PhD

More information

FRP FOR CONSTRUCTION IN JAPAN

FRP FOR CONSTRUCTION IN JAPAN FRP FOR CONSTRUCTION IN JAPAN UEDA Tamon 1 SUMMARY This paper briefly introduces the current situation of FRP related materials, FRP reinforcement for concrete (and steel) structures and FRP shape, in

More information

Strengthening of hollow core precast slabs using FRP composite materials procedure, testing and rating

Strengthening of hollow core precast slabs using FRP composite materials procedure, testing and rating Strengthening of hollow core precast slabs using FRP composite materials procedure, testing and rating FLORUŢ SORIN-CODRUŢ*, NAGY-GYÖRGY TAMÁS*, STOIAN VALERIU*, DIACONU DAN* * Department of Civil Engineering

More information

DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP

DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP ------------ DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP Tarek Hassan 1, Amr Abdelrahman 2, Gamil Tadros 3, and Sami Rizkalla 4 Summary The use of carbon and glass fibre reinforced

More information

Study of the bond behavior of carbon fibre reinforced polymer bars

Study of the bond behavior of carbon fibre reinforced polymer bars Study of the bond behavior of carbon fibre reinforced polymer bars S.B. Singh and Aditi Chauhan In this study, experiments were conducted to find the bond characteristics of three different carbon fibre

More information

FLEXURAL IMPROVEMENT OF PLAIN CONCRETE BEAMS STRENGTHENED WITH HIGH PERFORMANCE FIBRE REINFORCED CONCRETE

FLEXURAL IMPROVEMENT OF PLAIN CONCRETE BEAMS STRENGTHENED WITH HIGH PERFORMANCE FIBRE REINFORCED CONCRETE Nigerian Journal of Technology (NIJOTECH) Vol. 36, No. 3, July 17, pp. 697 74 Copyright Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 331-8443, Electronic ISSN: 2467-8821 www.nijotech.com

More information

STATIC AND FATIGUE PERFORMANCE OF 40 YEAR OLD PRESTRESSED CONCRETE GIRDERS STRENGTHENED WITH VARIOUS CFRP SYSTEMS

STATIC AND FATIGUE PERFORMANCE OF 40 YEAR OLD PRESTRESSED CONCRETE GIRDERS STRENGTHENED WITH VARIOUS CFRP SYSTEMS STATIC AND FATIGUE PERFORMANCE OF 40 YEAR OLD PRESTRESSED CONCRETE GIRDERS STRENGTHENED WITH VARIOUS CFRP SYSTEMS O. A. ROSENBOOM, Dr. T. K. HASSAN Department of Civil, Construction, & Environmental Engineering,

More information

EXPERIMENTAL STUDY ON RC COLUMNS RETROFITTED BY FRP AND SUBJECTED TO SEISMIC LOADING

EXPERIMENTAL STUDY ON RC COLUMNS RETROFITTED BY FRP AND SUBJECTED TO SEISMIC LOADING EXPERIMENTAL STUDY ON RC COLUMNS RETROFITTED BY FRP AND SUBJECTED TO SEISMIC LOADING Raphaelle SADONE, Marc QUIERTANT Université Paris Est - IFSTTAR - SOA 58 Boulevard Lefebvre, 75015 PARIS r.sadone@hotmail.fr*;

More information

1. INTRODUCTION. Fig.1 Dimension of test specimen

1. INTRODUCTION. Fig.1 Dimension of test specimen F1B04 Evaluation of a Shear Wall Reinforced with Glass FRP Bars Subjected to Lateral Cyclic Loading Nayera Mohamed PhD candidate, Department of Civil Engineering, University of Sherbrooke, Sherbrooke,

More information

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams 111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

More information

CONFINEMENT EFFECT OF FRP AND TRANSVERSE STEEL ON RETROFITTING SQUARE CONCRETE COLUMNS

CONFINEMENT EFFECT OF FRP AND TRANSVERSE STEEL ON RETROFITTING SQUARE CONCRETE COLUMNS Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013) 11-13 December 2013, Melbourne, Australia 2013 International Institute for FRP in Construction CONFINEMENT EFFECT OF FRP AND TRANSVERSE

More information

Flexural performance of fire damaged and rehabilitated two span reinforced concrete slabs and beams

Flexural performance of fire damaged and rehabilitated two span reinforced concrete slabs and beams Structural Engineering and Mechanics, Vol. 42, No. 5 (2012) 000-000 1 Flexural performance of fire damaged and rehabilitated two span reinforced concrete slabs and beams Jiang-Tao Yu* 1, Yuan Liu 1, Zhou-Dao

More information

Bond performance of patching materials subjected to environmental effects

Bond performance of patching materials subjected to environmental effects Fourth International Conference on FRP Composites in Civil Engineering (CICE28) 22-24July 28, Zurich, Switzerland Bond performance of patching materials subjected to environmental effects W. Moore & J.J.

More information

YASMEEN TALEB OBAIDAT. STRUCTURAL RETROFITTING OF CONCRETE BEAMS USING FRP - Debonding Issues. Structural Mechanics.

YASMEEN TALEB OBAIDAT. STRUCTURAL RETROFITTING OF CONCRETE BEAMS USING FRP - Debonding Issues. Structural Mechanics. STRUCTURAL RETROFITTING OF CONCRETE BEAMS USING FRP - Debonding Issues YASMEEN TALEB OBAIDAT Structural Mechanics Doctoral Thesis Department of Construction Sciences Structural Mechanics ISRN LUTVDG/TVSM--11/123--SE

More information

Strengthening of prestressed concrete hollow-core slab openings using near-surface-mounted carbonfiber-reinforced

Strengthening of prestressed concrete hollow-core slab openings using near-surface-mounted carbonfiber-reinforced Strengthening of prestressed concrete hollow-core slab openings using near-surface-mounted carbonfiber-reinforced polymer reinforcement Karam Mahmoud, Steven Foubert, and Ehab El-Salakawy Precast, prestressed

More information

GFRP-STEEL HYBRID REINFORCED CONCRETE BRIDGE DECK SLABS IN QUEBEC, CANADA

GFRP-STEEL HYBRID REINFORCED CONCRETE BRIDGE DECK SLABS IN QUEBEC, CANADA Fourth Asia-Pacific Conference on FRP in Structures (APFIS 213) 11-13 December 213, Melbourne, Australia 213 International Institute for FRP in Construction GFRP-STEEL HYBRID REINFORCED CONCRETE BRIDGE

More information

Fiberglass-reinforced Glulam Beams: Mechanical Properties and Theoretical Model

Fiberglass-reinforced Glulam Beams: Mechanical Properties and Theoretical Model Materials Research, Vol. 9, No. 3, 263-269, 26 26 Fiberglass-reinforced Glulam Beams: Mechanical Properties and Theoretical Model Juliano Fiorelli a *, Antonio Alves Dias b a São Paulo State University,

More information

SEISMIC RETROFIT OF BEAM-COLUMN JOINTS WITH FRP SHEETS

SEISMIC RETROFIT OF BEAM-COLUMN JOINTS WITH FRP SHEETS B-4 ADVANCED COMPOSITE MATERIALS IN BRIDGES AND STRUCTURES MATÉRIAUX COMPOSITES D'AVANT GARDE POUR PONTS ET CHARPENTES Winnipeg, Manitoba, Canada, September 22 24, 28 / 22, 23 et 24 septembre 28 SEISMIC

More information

Address for Correspondence

Address for Correspondence Research Paper SHEAR STRENGTHENING OF DIFFERENT BEAMS USING FRP Patel Mitali R 1, Dr.R.K.Gajjar 2 Address for Correspondence 1 Research Scholar, 2 Professor and Head, Applied Mechanics Department, L. D.

More information

Behaviour of Post-Installed GFRP Adhesive Anchors in Concrete

Behaviour of Post-Installed GFRP Adhesive Anchors in Concrete NSERC Industrial Research Chair in Innovative FRP Composites for Infrastructures Behaviour of Post-Installed GFRP Adhesive Anchors in Concrete Prepared by: Ehab A. Ahmed, Ehab El-Salakawy, and Brahim Benmokrane

More information

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Ahmet Yakut, Taylan Solmaz Earthquake Engineering Research Center, Middle East Technical University, Ankara,Turkey SUMMARY:

More information

GFRP retrofitted RC frames with columns subjected to high axial stresses

GFRP retrofitted RC frames with columns subjected to high axial stresses GFRP retrofitted RC frames with columns subjected to high axial stresses K. D. Dalgic Istanbul Kultur University, Turkey O. Ozel Istanbul Technical University, Turkey M. Ispir Istanbul Technical University,

More information

Strengthening of Grinding Building Slab. Strengthening of Grinding Building Slab Batu Hijau Copper-Gold Mine

Strengthening of Grinding Building Slab. Strengthening of Grinding Building Slab Batu Hijau Copper-Gold Mine Strengthening of Grinding Building Slab Strengthening of Grinding Building Slab Batu Hijau Copper-Gold Mine 1 Introduction On the tropical island of Sumbawa, located in a remote section of Indonesia, is

More information

FUNDAMENTAL CHARACTERISTICS OF HIGH MODULUS CFRP MATERIALS FOR STRENGTHENING OF STEEL-CONCRETE COMPOSITE BEAMS

FUNDAMENTAL CHARACTERISTICS OF HIGH MODULUS CFRP MATERIALS FOR STRENGTHENING OF STEEL-CONCRETE COMPOSITE BEAMS FUNDAMENTAL CHARACTERISTICS OF HIGH MODULUS CFRP MATERIALS FOR STRENGTHENING OF STEEL-CONCRETE COMPOSITE BEAMS Mina Dawood, Sami Rizkalla and Emmett Sumner Constructed Facilities Laboratory North Carolina

More information

Shear studs in slab-column connections with rectangular column

Shear studs in slab-column connections with rectangular column Shear studs in slab-column connections with rectangular column C B Tan*, Nanyang Techological University, Singapore s C Lee, Nanyang Techological University, Singapore s Teng, Nanyang Techological University,

More information

Initial Tests of Kevlar Prestressed Timber Beams

Initial Tests of Kevlar Prestressed Timber Beams Initial Tests of Kevlar Prestressed Timber Beams Terrel L. Galloway, Christian Fogstad, Charles W. DoIan P. E., PhD., J. A. Puckett P. E., PhD., University of Wyoming Abstract The high strength, high modulus

More information

Near Surface Mounted Reinforcement A. Palmieri, UGent

Near Surface Mounted Reinforcement A. Palmieri, UGent Near Surface Mounted Reinforcement A. Palmieri, UGent RC beams strengthened with NSM reinforcement: Ambient and Fire behaviour A. Palmieri, S. Matthys KVIV-studiedag Nieuwe generatie gelijmde wapening

More information

Anchorage Failure and Shear Failure of RC Exterior Beam-Column Joint

Anchorage Failure and Shear Failure of RC Exterior Beam-Column Joint Anchorage Failure and Shear Failure of RC Exterior Beam-Column Joint Y. Goto, K. Nishimura, H. Yamazaki Hokkaido University, Japan A. Kitano Maebashi Institute of echnology, Japan SUMMARY: In the exterior

More information

Modelling of RC moment resisting frames with precast-prestressed flooring system

Modelling of RC moment resisting frames with precast-prestressed flooring system Modelling of RC moment resisting frames with precast-prestressed flooring system B.H.H. Peng, R.P. Dhakal, R.C. Fenwick & A.J. Carr Department of Civil Engineering, University of Canterbury, Christchurch.

More information

Collapse prevention of infill-brick wall of RC frames with FRP Stitching Technology

Collapse prevention of infill-brick wall of RC frames with FRP Stitching Technology Collapse prevention of infill-brick wall of RC frames with FRP Stitching Technology K. Kobayashi & K. Inoue University of Fukui, Japan B. Binici Middle East Technical University, Turkey SUMMARY: With recent

More information

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 Composites in Construction 2005 Third International Conference Lyon, France, July 11 13, 2005 MECHANICAL CHARACTERIZATION OF SANDWICH STRCTRE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 S.V. Rocca

More information

Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced Polymer

Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced Polymer Journal of Civil Engineering and Architecture 9 (2015) 1034-1046 doi: 10.17265/1934-7359/2015.09.003 D DAVID PUBLISHING Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced

More information

Performance of Pretensioning Prestressed Concrete Beams with Ruptured Strands Flexurally Strengthened by CFRP Sheets

Performance of Pretensioning Prestressed Concrete Beams with Ruptured Strands Flexurally Strengthened by CFRP Sheets Perormance o Pretensioning Prestressed Concrete Beams with Ruptured Strands Flexurally Strengthened by CFRP Sheets Thi Thu Dung NGUYEN 1, Koji MATSUMOTO 2, Asami IWASAKI 3, Yuji SATO 3 and Junichiro NIWA

More information

8.0 Structural strengthening

8.0 Structural strengthening Page 8 1 8.0 Structural strengthening In this section Section Page 8.1 Introduction 8 2 8.2 Approvals 8 2 8.3 Durability 8 2 8.4 Existing structure material strengths 8 3 8.5 Strengthening of flexural

More information

Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment

Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment Omar M. Ben-Sasi Abstract A total of fourteen slab-edge beam-column connection specimens were tested gradually to

More information

Behavior and Strength of Bearing Wall Strengthening by CFRP

Behavior and Strength of Bearing Wall Strengthening by CFRP Behavior and Strength of Bearing Wall Strengthening by CFRP Amer M. Ibrahim, Wissam D. Salman Prof. Dr., College of Engineering, Lect. Dr., College of Engineering, Diyala University, Iraq Abstract Collapse

More information

Scientific Seminar Design of Steel and Timber Structures SPbU, May 21, 2015

Scientific Seminar Design of Steel and Timber Structures SPbU, May 21, 2015 Riga Technical University Institute of Structural Engineering and Reconstruction Scientific Seminar The research leading to these results has received the funding from Latvia state research programme under

More information

LOAD TEST EVALUATION OF FRP-STRENGTHENED STRUCTURES

LOAD TEST EVALUATION OF FRP-STRENGTHENED STRUCTURES The 7 th International Conference on FRP Composites in Civil Engineering International Institute for FRP in Construction LOAD TEST EVALUATION OF FRP-STRENGTHENED STRUCTURES Nestore GALATI Senior Design

More information